
1. The Mean-Value Theorems 

Fermat's Theorem: Let a function 𝑓(𝑥) be defined in a neighborhood of the 

point 𝑥0 and differentiable at this point. Then, if the function 𝑓(𝑥) has a local 

extremum at 𝑥0 then 

𝑓′(𝑥0) = 0. 

Rolle's Theorem: Suppose that a function 𝑓(𝑥) is continuous on the closed 

interval [a, b] and differentiable on the open interval (𝑎, 𝑏). Then if 𝑓(𝑎) =

 𝑓(𝑏), then there exists at least one point c in the open interval (𝑎, 𝑏) for which 

𝑓 ′(𝑐)  =  0. 

 

Geometric interpretation: There is a point c on the interval (𝑎, 𝑏) where the 

tangent to the graph of the function is horizontal. 

 

Example 1: Let 𝑓(𝑥) = 𝑥2 + 2𝑥. Find all values of c in the interval [−2,0] 

such that 𝑓′(𝑐) = 0. 

First of all, we need to check that the function 𝑓(𝑥) satisfies all the conditions 

of Rolle's theorem 

1. 𝑓(𝑥) = 𝑥2 + 2𝑥 is continuous in [−2,0] as a quadratic function; 

2. It is differentiable everywhere over the open interval (−2,0); 

3. Finally, 

𝑓(−2) = (−2)2 + 2 ⋅ (−2) = 0, 

𝑓(0) = 02 + 2 ⋅ 0 = 0, 

⇒ 𝑓(−2) = 𝑓(0). 

So we can use Rolle's theorem. 



To find the point c we calculate the derivative 

𝑓′(𝑥) = (𝑥2 + 2𝑥)′ = 2𝑥 + 2 

and solve the equation 𝑓 ′(𝑐)  =  0 

𝑓′(𝑐) = 2𝑐 + 2 = 0, ⇒ 𝑐 = −1. 

Thus, 𝑓 ′(𝑐)  =  0 at 𝑐 = −1. 

 

Example 2: Given an interval [𝑎, 𝑏] that satisfies hypothesis of Rolle's 

theorem for the function 

𝑓(𝑥) = 𝑥4 + 𝑥2 − 2. 

It is known that 𝑎 = −1. Find the value of 𝑏. 

 We factorize the polynomial: 

𝑥4 + 𝑥2 − 2 = (𝑥2 + 2)(𝑥2 − 1) = (𝑥2 + 2)(𝑥 − 1)(𝑥 + 1). 

It is now easy to see that the function has two zeros: 𝑥1 = −1 (coincides 

with the value of 𝑎) and 𝑥2 = 1. 

Since the function is a polynomial, it is everywhere continuous and 

differentiable. So this function satisfies Rolle's theorem on the interval [−1,1]. 

Hence, 𝑏 = 1. 

 

Example 3: Given an interval [𝑎, 𝑏] that satisfies hypothesis of Rolle's 

theorem for the function 

𝑓(𝑥) = 𝑥3 − 2𝑥2 + 3. 

It is known that 𝑎 = 0. Find the value of 𝑏. 

 We factorize the polynomial: 

𝑓1(𝑥) = 𝑥3 − 2𝑥2 = 𝑥2(𝑥 − 2). 

It is now easy to see that the function has two zeros: 𝑥1 = 0 (coincides with 

the value of 𝑎) and 𝑥2 = 2. 

The original function differs from this function in that it is shifted 3 units up. 

Therefore, we can write that 

𝑓(0) = 𝑓(2) = 3. 



 It is obvious that the function 𝑓(𝑥) is everywhere continuous and 

differentiable as a cubic polynomial. Consequently, it satisfies all the 

conditions of Rolle's theorem on the interval [0,2]. Hence, 𝑏 = 2. 

 

Example 4: Check the validity of Rolle's theorem for the function 

𝑓(𝑥) = 𝑥2 − 6𝑥 + 8. 

The given quadratic function has roots 𝑥 = 2 and 𝑥 = 4 that is 

𝑓(2) = 𝑓(4) = 0. 

The by Rolle's theorem, there is a point 𝜉 in the interval (2,4) where the 

derivative of the function 𝑓(𝑥) equals zero. 

𝑓′(𝑥) = (𝑥2 − 6𝑥 + 8)′ = 2𝑥 − 6. 

It is equal to zero at the following point  𝑥 = 𝜉: 

𝑓′(𝑥) = 0, ⇒ 2𝑥 − 6 = 0, ⇒ 𝑥 = 𝜉 = 3. 

It can be seen that the resulting stationary point 𝜉 = 3 belongs to the interval 

(2,4). 

 

2. The Mean Value Theorems (MVT) 

Lagrange's mean value theorem (MVT) states that if a function 𝑓 (𝑥) is 

continuous on a closed interval [𝑎, 𝑏] and differentiable on the open interval 

(𝑎, 𝑏), then there is at least one point 𝑥 =  𝑐 on this interval, such that 

𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐)(𝑏 − 𝑎). 

Lagrange's mean value theorem has a simple geometrical meaning. The chord 



passing through the points of the graph corresponding to the ends of the 

segment a and b has the slope equal to 

𝑘 = tan 𝛼 =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
. 

Then there is a point c inside the interval [𝑎, 𝑏], where the tangent to the graph 

is parallel to the chord 

 

 

Example 1: Check the validity of Lagrange's mean value theorem for the 

function 𝑓(𝑥) = 𝑥2 − 3𝑥 + 5 on the interval [1,4]. If the theorem holds, find 

a point c satisfying the conditions of the theorem. 

 The given quadratic function is continuous and differentiable on the 

entire set of real numbers. Hence, we can apply Lagrange's mean value 

theorem. The derivative of the function has the form 

𝑓′(𝑥) = (𝑥2 − 3𝑥 + 5)′ = 2𝑥 − 3. 

Find the coordinates of the point c: 

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
, ⇒ 2𝑐 − 3 =

(42 − 3 ⋅ 4 + 5) − (12 − 3 ⋅ 1 + 5)

4 − 1
,

⇒ 2𝑐 − 3 =
9 − 3

3
= 2, ⇒ 2𝑐 = 5, ⇒ 𝑐 = 2,5. 

You can see that the point 𝑐 = 2,5 lies in the interval (1,4). 

 

Example 2: Find all points c satisfying the conditions of the MVT for the 



function 𝑓(𝑥) = 𝑥3 − 𝑥 in the interval [−2,1]. 

We have here a cubic function which is continuous on the closed interval 

[−2,1] and diferentiable on the open interval (−2,1). 

The MVT states that 

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
. 

Calculate the quotient in the right-hand side: 

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
=

(13 − 1) − ((−2)3 − (−2))

1 − (−2)
=

6

3
= 2. 

Next, we take the derivative 

𝑓′(𝑥) = (𝑥3 − 𝑥)′ = 3𝑥2 − 1. 

Equate both expressions to find the value of c : 

3𝑐2 − 1 = 2, ⇒ 𝑐2 = 1, ⇒ 𝑐 = ±1. 

It is obvious that only one root 𝑐 = −1 falls within the open interval (−2,1) 

So, the answer is 𝑐 = −1. 

 

 

3. Cauchy’s Mean Value Theorem 

Cauchy's Mean Value Theorem generalizes Lagrange's Mean Value Theorem. 



This theorem is also called the Extended or Second Mean Value Theorem. It 

establishes the relationship between the derivatives of two functions and 

changes in these functions on a finite interval. 

Let the functions 𝑓(𝑥) and 𝑔(𝑥) be continuous on an interval [𝑎, 𝑏], 

differentiable on (𝑎, 𝑏), and 𝑔′(𝑥) ≠ 0 for all 𝑥 ∈ (𝑎, 𝑏). Then there is a point 

𝑥 = 𝑐 in this interval such that 

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
=

𝑓′(𝑐)

𝑔′(𝑐)
. 

Cauchy's mean value theorem has the following geometric meaning. Suppose 

that a curve is described by the parametric equations 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), 

where the parameter t ranges in the interval [𝑎, 𝑏]. When changing the 

parameter t the point of the curve in Figure runs from 𝐴(𝑓(𝑎), 𝑔(𝑎)) to 

𝐵(𝑓(𝑏), 𝑔(𝑏)). According to the theorem, there is a point (𝑓(𝑐), 𝑔(𝑐)) on the 

curve where the tangent is parallel to the chord joining the ends A and B of the 

curve. 

 

Example 1: Check the validity of Cauchy's mean value theorem for the 

functions 𝑓(𝑥) = 𝑥4 and 𝑔(𝑥) = 𝑥2 on the interval [1,2] 

 The derivatives of these functions are 

𝑓′(𝑥) = (𝑥4) = 4𝑥3, 𝑔′(𝑥) = (𝑥2) = 2𝑥. 

Substituting the functions and their derivatives in the Cauchy formula, we get 

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
=

𝑓′(𝑐)

𝑔′(𝑐)
, ⇒

𝑏4 − 𝑎4

𝑏2 − 𝑎2
=

4𝑐3

2𝑐
, ⇒

(𝑏2 − 𝑎2)(𝑏2 + 𝑎2)

𝑏2 − 𝑎2
= 2𝑐2, 



⇒ 𝑐2 =
𝑎2+𝑏2

2
, ⇒ 𝑐 = ±√

𝑎2+𝑏2

2
.  

We take into account that the boundaries of the segment are 𝑎 = 1 and 𝑏 = 2. 

Consequently, 

𝑐 = ±√
12+22

2
= ±√

5

2
≈ ±1,58.  

In this case, the positive value of the square root 𝑐 = √
5

2
≈ 1,58  is relevant. 

It is evident that this number lies in the interval (1,2), i.e. satisfies the Cauchy 

theorem. 

 

4. L’Hopital’s Rule 

Let 𝑎 be either a finite number or infinity. 

If 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 0  and  𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = 0,  then 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
; 

If 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = ∞  and  𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = ∞,  then 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
; 

 

We can apply L'Hopital's rule to indeterminate forms of type 0 ⋅ ∞, ∞ − ∞, 

00, 1∞ , ∞0 as well. The first two indeterminate forms 0 ⋅ ∞ and ∞ − ∞ can 

be reduced to the forms 
0

0
 or 

∞

∞
 using algebraic transformations. The 

indeterminate forms 00, 1∞  and ∞0 can be reduced to the form  with the help 

of identity  

𝑓(𝑥)𝑔(𝑥) = 𝑒𝑔(𝑥)ln 𝑓(𝑥). 

 

Example 1: Find the limit 

𝑙𝑖𝑚
𝑥→2

√7 + 𝑥 − 3

𝑥 − 2
. 

Because direct substitution leads to an indeterminate form 
0

0
 we can use 

L'Hopital's rule: 



𝑙𝑖𝑚
𝑥→2

√7 + 𝑥 − 3

𝑥 − 2
= [

0

0
] = 𝑙𝑖𝑚

𝑥→2

(√7 + 𝑥 − 3)′

(𝑥 − 2)′
= 𝑙𝑖𝑚

𝑥→2

1

2√7 + 𝑥
1

=
1

2
𝑙𝑖𝑚
𝑥→2

1

√7 + 𝑥

=
1

2
⋅

1

3
=

1

6
. 

 

Example 2: Calculate the limit 

𝑙𝑖𝑚
𝑥→2

(
4

𝑥2 − 4
−

1

𝑥 − 2
). 

Here we deal with an inderminate form of type ∞ − ∞. After simple 

transformations, we have 

𝑙𝑖𝑚
𝑥→2

(
4

𝑥2 − 4
−

1

𝑥 − 2
) = 𝑙𝑖𝑚

𝑥→2

4 − (𝑥 + 2)

𝑥2 − 4
= 𝑙𝑖𝑚

𝑥→2

2 − 𝑥

𝑥2 − 4
= [

0

0
]

= 𝑙𝑖𝑚
𝑥→2

(2 − 𝑥)′

(𝑥2 − 4)′
= 𝑙𝑖𝑚

𝑥→2
(
−1

2𝑥
) = −

1

4
. 

 

Example 3: Find the limit 

𝑙𝑖𝑚
𝑥→∞

𝑥2

2𝑥
. 

Using L'Hopital's rule, we can write 

𝑙𝑖𝑚
𝑥→∞

𝑥2

2𝑥
= [

∞

∞
] = 𝑙𝑖𝑚

𝑥→∞

(𝑥2)′

(2𝑥)′
= 𝑙𝑖𝑚

𝑥→∞

2𝑥

2𝑥 ln 2
=

2

ln 2
𝑙𝑖𝑚
𝑥→∞

𝑥

2𝑥
= [

∞

∞
] = 

2

ln 2
𝑙𝑖𝑚
𝑥→∞

(𝑥)′

(2𝑥)′
=

2

ln 2
𝑙𝑖𝑚
𝑥→∞

1

2𝑥ln 2
=

2

(ln 2)2
𝑙𝑖𝑚
𝑥→∞

1

2𝑥
=

2

(ln 2)2
⋅ 0 = 0. 

 

Example 4: Find the limit 

𝑙𝑖𝑚
𝑥→1

𝑥
1

1−𝑥. 

We have an indeterminate form of type 1∞. Let 𝑦 = 𝑥
1

1−𝑥 Then 

ln 𝑦 = ln 𝑥
1

1−𝑥 =
ln 𝑥

1 − 𝑥
. 

Using L'Hopital's rule, we get 



𝑙𝑖𝑚
𝑥→1

ln 𝑦 = 𝑙𝑖𝑚
𝑥→1

 
ln 𝑥

1 − 𝑥
= 𝑙𝑖𝑚

𝑥→1

(ln 𝑥)′

(1 − 𝑥)′
= 𝑙𝑖𝑚

𝑥→1

1/𝑥

−1
= −𝑙𝑖𝑚

𝑥→1

1

𝑥
= −1. 

Hence 

𝑙𝑖𝑚
𝑥→1

𝑦 = 𝑒−1 =
1

𝑒
. 

 

Example 5: Find the limit 

𝑙𝑖𝑚
𝑥→𝜋/2

(sin 𝑥)tan 𝑥 . 

Direct substitution leads to the indeterminate form of type 1∞. Let 𝑦 =

(sin 𝑥)tan 𝑥. Take logarithms of both sides. 

ln 𝑦 = ln (sin 𝑥)tan 𝑥 = tan 𝑥ln sin 𝑥. 

Apply L'Hopital's rule: 

𝑙𝑖𝑚
𝑥→𝜋/2

ln 𝑦 = 𝑙𝑖𝑚
𝑥→

𝜋
2

(tan 𝑥ln sin 𝑥) = 𝑙𝑖𝑚
𝑥→

𝜋
2

ln sin 𝑥

cot 𝑥
= [

∞

∞
] = 𝑙𝑖𝑚

𝑥→
𝜋
2

(ln sin 𝑥)′

(cot 𝑥)′

= 𝑙𝑖𝑚
𝑥→

𝜋
2

1
sin 𝑥

⋅ cos 𝑥

−
1

sin2𝑥

= −𝑙𝑖𝑚
𝑥→

𝜋
2

sin2𝑥 ⋅ cos 𝑥

sin 𝑥
= −𝑙𝑖𝑚

𝑥→
𝜋
2

(sin 𝑥 cos 𝑥) 

= − 𝑙𝑖𝑚
𝑥→𝜋/2

sin 𝑥 ⋅ 𝑙𝑖𝑚
𝑥→𝜋/2

cos 𝑥 = −1 ⋅ 0 = 0. 

Then the final answer is 

𝑙𝑖𝑚
𝑥→𝜋/2

𝑦 = 𝑒0 = 1. 

 

Example 6: Find the limit 

𝑙𝑖𝑚
𝑥→𝜋/2

tan 𝑥

tan 3𝑥
. 

According to L'Hopital's rule, we differentiate both the numerator and 

denominator a few times until the indeterminate form disappears: 

𝑙𝑖𝑚
𝑥→𝜋/2

tan 𝑥

tan 3𝑥
= [

∞

∞
] = 𝑙𝑖𝑚

𝑥→𝜋/2

(tan 𝑥)′

(tan 3𝑥)′
= 𝑙𝑖𝑚

𝑥→𝜋/2

sec2𝑥

3sec23𝑥
=

1

3
𝑙𝑖𝑚

𝑥→𝜋/2

1
cos2𝑥

1
cos23𝑥

 



=
1

3
𝑙𝑖𝑚

𝑥→𝜋/2

cos23𝑥

cos2𝑥
= [

0

0
] =

1

3
𝑙𝑖𝑚
𝑥→

𝜋
2

(cos23𝑥)′

(cos2𝑥)′
=

1

3
𝑙𝑖𝑚
𝑥→

𝜋
2

2 cos 3𝑥 ⋅ (−3 sin 3𝑥)

2 cos 𝑥 ⋅ (− sin 𝑥)
 

= 𝑙𝑖𝑚
𝑥→

𝜋
2

cos 3𝑥 sin 3𝑥

cos xsin 𝑥
= 𝑙𝑖𝑚

𝑥→
𝜋
2

cos 3𝑥

cos 𝑥
⋅ 𝑙𝑖𝑚

𝑥→
𝜋
2

sin 3𝑥

sin 𝑥
= 𝑙𝑖𝑚

𝑥→
𝜋
2

cos 3𝑥

cos 𝑥
⋅

sin
3𝜋
2

sin
𝜋
2

= 

𝑙𝑖𝑚
𝑥→𝜋/2

cos 3𝑥

cos 𝑥
⋅

(−1)

1
= − 𝑙𝑖𝑚

𝑥→𝜋/2

cos 3𝑥

cos 𝑥
= [

0

0
] = − 𝑙𝑖𝑚

𝑥→𝜋/2

(cos 3𝑥)′

(cos 𝑥)′
= 

− 𝑙𝑖𝑚
𝑥→𝜋/2

(−3sin 3𝑥)

(−sin 𝑥)
= −3 𝑙𝑖𝑚

𝑥→𝜋/2

sin 3𝑥

sin 𝑥
= −3 ⋅

(−1)

1
= 3 

 

Example 7: Find the limit 

𝑙𝑖𝑚
𝑥→𝜋/2

(tan 𝑥)cos 𝑥. 

Here we deal with an indeterminate form of type ∞0. Let 𝑦 = (tan 𝑥)cos 𝑥 . 

Then 

ln 𝑦 = ln (tan 𝑥)cos 𝑥 = cos 𝑥ln tan 𝑥. 

Then the limit becomes 

𝐿 = 𝑙𝑖𝑚
𝑥→𝜋/2

ln 𝑦 = 𝑙𝑖𝑚
𝑥→

𝜋
2

(cos 𝑥 ln tan 𝑥) = 𝑙𝑖𝑚
𝑥→

𝜋
2

ln tan 𝑥

sec 𝑥
= [

∞

∞
] = 

𝑙𝑖𝑚
𝑥→𝜋/2

(ln tan 𝑥)′

(sec 𝑥)′
= 𝑙𝑖𝑚

𝑥→𝜋/2

1
tan 𝑥

⋅ sec2𝑥

sec 𝑥 ⋅ tan 𝑥
= 𝑙𝑖𝑚

𝑥→𝜋/2

sec 𝑥

tan2𝑥
= [

∞

∞
]. 

As it can be seen, we still have an indeterminate form, so we differentiate the 

numerator and denominator one more time: 

𝐿 = 𝑙𝑖𝑚
𝑥→𝜋/2

(sec 𝑥)′

(tan2𝑥)′
= 𝑙𝑖𝑚

𝑥→𝜋/2

sec 𝑥tan 𝑥

tan 𝑥sec2𝑥
=

1

2
𝑙𝑖𝑚

𝑥→𝜋/2

1

sec 𝑥
=

1

2
𝑙𝑖𝑚

𝑥→𝜋/2
cos 𝑥

=
1

2
⋅ 0 = 0. 

Hence, 

𝑙𝑖𝑚
𝑥→𝜋/2

𝑦 = 𝑒0 = 1. 


