
Using the Derivative to Graph Functions 

 

1. Increasing and Decreasing Function 

Definition 1: Let 𝑦 =  𝑓 (𝑥) be a differentiable function on an interval (𝑎, 𝑏). 

If for any two points 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) such that 𝑥1 <  𝑥2, there holds the 

inequality 𝑓(𝑥1) ≤  𝑓(𝑥2), the function is called increasing (or non-

decreasing) in this interval.  

Definition 2: Let 𝑦 =  𝑓 (𝑥) be a differentiable function on an interval (𝑎, 𝑏). 

If for any two points 𝑥1, 𝑥2 ∈ (𝑎, 𝑏) such that 𝑥1 <  𝑥2, there holds the 

inequality 𝑓(𝑥1) ≥  𝑓(𝑥2), the function is called decreasing (or non- 

increasing) in this interval, i.e. 

∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏): 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) ≥ 𝑓(𝑥2); 

Theorem 1. In order for the function 𝑦 =  𝑓 (𝑥)  to be increasing on the 

interval (𝑎, 𝑏) it is necessary and sufficient that the first derivative of the 

function be non-negative everywhere in this interval: 

𝑓′(𝑥) ≥ 0∀𝑥 ∈ (𝑎, 𝑏). 

A similar criterion applies to the case of a function that is decreasing on the 

interval: 

𝑓′(𝑥) ≤ 0   ∀𝑥 ∈ (𝑎, 𝑏). 

Theorem 2. Suppose that a function 𝑦 =  𝑓 (𝑥) is differentiable on an interval 

(𝑎, 𝑏). In order for the function to be strictly increasing in this interval, it is 

necessary and sufficient that the following conditions are satisfied: 

1) 𝑓′(𝑥) ≥ 0  ∀𝑥 ∈ (𝑎, 𝑏); 

2) 𝑓′(𝑥) is not identically equal to zero at any interval [𝑥1, 𝑥2] ∈ (𝑎, 𝑏). 

 

Theorem 3. Let 𝑥0 ∈ (𝑎, 𝑏). 

If 𝑓′(𝑥0) > 0, then the function 𝑓(𝑥) is strictly increasing at the point 𝑥0 

If 𝑓′(𝑥0) < 0, then the function 𝑓(𝑥) is strictly decreasing at the point 𝑥0 



Example 1. Show that the function 𝑓(𝑥) = 𝑥3 − 3𝑥2 + 6𝑥 − 1 is strictly 

increasing on ℝ 

Find the derivative: 

𝑓′(𝑥) = (𝑥3 − 3𝑥2 + 6𝑥 − 1)′ = 3𝑥2 − 6𝑥 + 6. 

Notice that the discriminant of the quadratic function is negative: 

𝐷 = 𝑏2 − 4𝑎𝑐 = (−6)2 − 4 ⋅ 3 ⋅ 6 = 36 − 72 = −36 < 0. 

Therefore, the quadratic function has no zeros and has the same sign over the 

interval (−∞, ∞). 

We choose 𝑥 = 0 to evaluate the sign of the derivative: 

𝑓′(0) = 3 ⋅ 02 − 6 ⋅ 0 + 6 = 6 > 0. 

Hence, the function is strictly increasing on (−∞, ∞). 

 

Example 2. For what values of 𝑥 is the function 𝑓(𝑥) = 𝑥4 − 2𝑥2 strictly 

increasing? 

Calculate the derivative: 

𝑓′(𝑥) = (𝑥4 − 2𝑥2)′ = 4𝑥3 − 4𝑥 = 4𝑥(𝑥2 − 1) = 4𝑥(𝑥 − 1)(𝑥 + 1). 

Equate the derivative to zero: 

𝑓′(𝑥) = 0,  4𝑥(𝑥 − 1)(𝑥 + 1) = 0 

The derivative is zero at the points 

𝑥1 = −1, 𝑥2 = 0, 𝑥3 = 1 

Using the interval method we find the intervals where the derivative has a 

constant sign (see the sign chart below). 

 

Hence, the function is increasing on (−1,0) and (1, +∞). 

 

Example 3. What is the length L of the interval on which the function 𝑓(𝑥) =



𝑥4𝑒−𝑥 is increasing? 

Find the derivative using the product rule: 

𝑓′(𝑥) = (𝑥4𝑒−𝑥)′ = (𝑥4)′ ⋅ 𝑒−𝑥 + 𝑥4 ⋅ (𝑒−𝑥)′ = 4𝑥3𝑒−𝑥 − 𝑥4𝑒−𝑥

= 𝑥3𝑒−𝑥(4 − 𝑥). 

Determine the sign of the derivative by the interval method. 

 

We see in the figure above that the derivative is positive for 𝑥 ∈ (0,4), so the 

length of the interval on which the function is increasing is 4. 

 

Example 4. Find the intervals of monotonicity of the function 𝑓(𝑥) = 𝑥3 −

12𝑥 + 5. 

The derivative of this function is given by 

𝑓′(𝑥) = (𝑥3 − 12𝑥 + 5)′ = 3𝑥2 − 12 = 3(𝑥2 − 4). 

Determine the intervals where the derivative is positive and negative. Solve 

the following inequality: 

𝑓′(𝑥) > 0, ⇒ 3(𝑥2 − 4) > 0, ⇒ 𝑥2 − 4 > 0, ⇒ (𝑥 − 2)(𝑥 + 2) > 0. 

Using the interval method we find that 

𝑓′(𝑥) > 0for𝑥 ∈ (−∞, −2) ∪ (2, ∞), 

𝑓′(𝑥) < 0for𝑥 ∈ (−2,2). 

Consequently, the function 𝑓(𝑥) is increasing (in the strict sense) in the 

intervals (−∞, −2) and (2, ∞) and, accordingly, is strictly decreasing in the 

interval (−2,2). 

 

Example 5. Find the intervals of monotonicity of the function 𝑓(𝑥) =
𝑥

𝑥2+1
. 

The function is defined and differentiable on the whole set of real numbers. 



Calculate its derivative: 

𝑓′(𝑥) = (
𝑥

𝑥2 + 1
)′ =

𝑥′(𝑥2 + 1) − 𝑥(𝑥2 + 1)′

(𝑥2 + 1)2
=

1 ⋅ (𝑥2 + 1) − 𝑥 ⋅ 2𝑥

(𝑥2 + 1)2

=
1 − 𝑥2

(𝑥2 + 1)2
. 

Determine the intervals where the derivative has a constant sign. Equate the 

derivative to zero and find the roots of the equation: 

𝑓′(𝑥) = 0, ⇒
1 − 𝑥2

(𝑥2 + 1)2
= 0, ⇒ {

1 − 𝑥2 = 0
(𝑥2 + 1)2 ≠ 0

, ⇒ 1 − 𝑥2 = 0,

⇒ (1 − 𝑥)(1 + 𝑥) = 0. 

Determine the intervals where the derivative has a constant sign. Equate the 

derivative to zero and find the roots of the equation: 

 

 

Thus, the function is decreasing (in the strict sense) in the intervals (−∞, −1) 

and (1, ∞) and increasing in the interval (−1,1). Given that the root of the 

function is of the form 𝑥 = 0, we can schematically draw its graph (Figure ). 

 



2. Local Extrema of Functions 

Definition 1. Let a function 𝑦 =  𝑓 (𝑥) be defined in a δ-neighborhood of 

a point 𝑥0, where 𝛿 >  0. The function 𝑓 (𝑥) is said to have a local (or 

relative) maximum at the point 𝑥0, if for all points 𝑥 ≠  𝑥0 belonging to the 

neighborhood (𝑥0–  𝛿, 𝑥0 +  𝛿) the following inequality holds: 

𝑓(𝑥) ≤ 𝑓(𝑥0). 

If the strict inequality holds for all points 𝑥 ≠  𝑥0 in some neighborhood of 

𝑥0: 

𝑓(𝑥) < 𝑓(𝑥0), 

then the point 𝑥0 is a strict local maximum point. 

Similarly,  

Definition 2. We define a local (or relative) minimum of the function 𝑦 =

 𝑓 (𝑥). In this case, the following inequality is valid for all points 𝑥 ≠ 𝑥0 of 

the δ -neighborhood (𝑥0 − 𝛿, 𝑥0 + 𝛿) of the point 𝑥0 

𝑓(𝑥) ≥ 𝑓(𝑥0). 

Accordingly, a strict local minimum at the point 𝑥0 is described by the 

inequality 

𝑓(𝑥) > 𝑓(𝑥0) 

Definition. The points at which the derivative of the function 𝑓(𝑥) is equal to 

zero are called the stationary points. 

Definition. Let 𝑓(𝑥) be a function and let 𝑥0 be a point in the domain of the 

function. The point 𝑥0 is called a critical point of 𝑓 (𝑥) if either 𝑓 ′(𝑥0)  =  0 

or 𝑓 ′(𝑥0) does not exist. 

 

First Derivative Test: Let the function 𝑓(𝑥) be differentiable in a 

neighborhood of the point 𝑥0, except perhaps at the point 𝑥0 itself, in which, 

however, the function is continuous. Then: 

1) If the derivative 𝑓′(𝑥) changes sign from minus to plus when passing 

through the point 𝑥0 (from left to right), then 𝑥0 is a strict minimum point 



(Figure 1). In other words, in this case there exists a number 𝛿 > 0 such that 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓′(𝑥) < 0, and ∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓′(𝑥) > 0. 

2) If the derivative 𝑓′(𝑥) on the contrary, changes sign from plus to minus when 

passing through the point 𝑥0 then 𝑥0 is a strict maximum point (Figure 2). In 

other words, there exists a number 𝛿 > 0 such that 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓′(𝑥) > 0, and ∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓′(𝑥) < 0. 

Second Derivative Test: Let the first derivative of a function 𝑓(𝑥) at the point 

𝑥0 be equal to zero: 𝑓(𝑥0) = 0, that is 𝑥0 is a stationary point of  Suppose also 

that there exists the second derivative  at this point. Then 

1) If 𝑓′′(𝑥0) > 0, then 𝑥0 is a strict minimum point of the function ; 

2) If 𝑓′′(𝑥0) < 0, then 𝑥0 is a strict maximum point of the function  

Proof. In the case of a strict minimum 𝑓′′(𝑥0) > 0. Then the first derivative is 

an increasing function at the point 𝑥0. Consequently, there exists a number 

𝛿 > 0  such that 

∀𝑥 ∈ (𝑥0 − 𝛿, 𝑥0) ⇒ 𝑓′(𝑥) < 𝑓′(𝑥0), 

∀𝑥 ∈ (𝑥0, 𝑥0 + 𝛿) ⇒ 𝑓′(𝑥) > 𝑓′(𝑥0). 

 

Example 1. Find the local (relative) extrema of the function 𝑓(𝑥) = −𝑥2 +

4𝑥 − 3. 

This function is differentiable everywhere on the set (−∞, +∞). 

Consequently, the extrema of the function are contained among its stationary 

points. Solve the equation 𝑓′(𝑥) = 0: 

𝑓′(𝑥) = (−𝑥2 + 4𝑥 − 3)′ = −2𝑥 + 4, 

𝑓′(𝑥) = 0, ⇒ −2𝑥 + 4 = 0, ⇒ 𝑥 = 2. 

The function has one stationary point 𝑥 = 2. Determine the sign of the 

derivative to the left and right of the point 𝑥 = 2. The derivative is positive for 

𝑥 < 2 and negative for  𝑥 > 2. Thus, when passing through the point 𝑥 = 2, 

the derivative changes sign from plus to minus. By the first derivative test, this 



means that 𝑥 = 2 is a maximum point. 

 The maximum value (that is the value of the function at the maximum 

point) is equal to 

𝑓𝑚𝑎𝑥 = 𝑓(2) = −22 + 4 ⋅ 2 − 3 = 1. 

 

Example 2. Find the local (relative) extrema of the function 𝑓(𝑥) = 𝑥3 − 12𝑥. 

This function is differentiable everywhere on the set (−∞, +∞). Determine 

the critical points. The first derivative is given by 

𝑓′(𝑥) = (𝑥3 − 12𝑥)′ = 3𝑥2 − 12. 

It is equal to zero at the following points: 

𝑓′(𝑥) = 0, ⇒ 3𝑥2 − 12 = 0, ⇒ 𝑥2 = 4, ⇒ 𝑥1 = −2, 𝑥2 = 2. 

These two points are critical since the function is defined and continuous over 

all 𝑥. The derivative also exists for all 𝑥 so there are no other critical points. 

 We use the Second Derivative Test: 

𝑓′′(𝑥) = (3𝑥2 − 12)′ = 6𝑥, 

𝑓′′(−2) = 6 ⋅ (−2) = −12 < 0, 

𝑓′′(2) = 6 ⋅ 2 = 12 > 0. 

Hence, 𝑥 = −2 is a point of local maximum, and 𝑥 = 2 is a point of local 

minimum. 

Calculate the 𝑦 −values for these points: 

𝑓𝑚𝑎𝑥 = 𝑓(−2) = (−2)3 − 12 ⋅ (−2) = 16, 

𝑓𝑚𝑖𝑛 = 𝑓(2) = 23 − 12 ⋅ 2 = −16. 

Answer: 

local max:(−2,16); local min:(2, −16). 

 

Example 3. Find the local (relative) extrema of the function  

𝑓(𝑥) = 𝑥3 − 3𝑥2 − 9𝑥 + 2. 

The function is differentiable on the whole set of real numbers. Therefore, the 

extremum points are contained among the stationary points (where the 

derivative is equal to zero). 



 We find these points: 

𝑓′(𝑥) = 0, ⇒ (𝑥3 − 3𝑥2 − 9𝑥 + 2) = 0, ⇒ 3𝑥2 − 6𝑥 − 9 = 0,

⇒ 𝑥2 − 2𝑥 − 3 = 0, ⇒ 𝑥1 = −1, 𝑥2 = 2. 

Substituting test values of 𝑥, we determine the sign of the derivative 𝑓′(𝑥) =

3𝑥2 − 6𝑥 − 9 in the corresponding intervals (Figure ). 

 

As seen, when passing through the point 𝑥 = −1, the derivative changes sign 

from plus to minus. By the first derivative test, this point is a local maximum 

point. Similarly, we establish that 𝑥 = 2 is a local minimum point. 

 We now determine the maximum and minimum values of the function: 

𝑓𝑚𝑎𝑥 = 𝑓(−1) = (−1)3 − 3 ⋅ (−1)2 − 9 ⋅ (−1) + 2 = 7, 

𝑓𝑚𝑖𝑛 = 𝑓(2) = 23 − 3 ⋅ 22 − 9 ⋅ 2 + 2 = −20. 

 

Example 4. Using the second derivative test, find the local extrema of the 

function 𝑓(𝑥) = 𝑥3 − 9𝑥2 + 24𝑥 − 7. 

The function is defined for all 𝑥. Take the first derivative and determine the 

critical points: 

𝑓′(𝑥) = (𝑥3 − 9𝑥2 + 24𝑥 − 7)′ = 3𝑥2 − 18𝑥 + 24. 

𝑓′(𝑥) = 0, ⇒ 3𝑥2 − 18𝑥 + 24 = 0, ⇒ 3(𝑥2 − 6𝑥 + 8) = 0,

⇒ 3(𝑥 − 2)(𝑥 − 4) = 0, ⇒ 𝑥1 = 2, 𝑥2 = 4. 

The second derivative is given by 

𝑓′′(𝑥) = (3𝑥2 − 18𝑥 + 24)′ = 6𝑥 − 18. 

Determine the sign of the 2nd derivative at the critical points: 

𝑓′′(𝑥1) = 𝑓′′(2) = 6 ⋅ 2 − 18 = −6 < 0. 

𝑓′′(𝑥2) = 𝑓′′(4) = 6 ⋅ 4 − 18 = 6 > 0. 

Hence, the point 𝑥1 = 2 is a local maximum, and the point 𝑥2 = 4 is a local 



minimum. 

Compute the 𝑦 − coordinates: 

𝑓(𝑥1) = 23 − 9 ⋅ 22 + 24 ⋅ 2 − 7 = 13, 

𝑓(𝑥2) = 43 − 9 ⋅ 42 + 24 ⋅ 4 − 7 = 9. 

The answer is 

local max:(2,13); local min:(4,9). 

 

Example 5. Find the local extrema of the function 𝑓(𝑥) = 𝑥2𝑒−𝑥. 

The function is defined and differentiable on the whole set ℝ Calculate its 

derivative: 

𝑓′(𝑥) = (𝑥2𝑒−𝑥)′ = (𝑥2)′𝑒−𝑥 + 𝑥2(𝑒−𝑥)′ = 2𝑥𝑒−𝑥 − 𝑥2𝑒−𝑥

= 𝑥𝑒−𝑥(2 − 𝑥). 

Find the roots of the equation 𝑓′(𝑥) = 0: 

𝑥𝑒−𝑥(2 − 𝑥) = 0, ⇒ 𝑥1 − 0, 𝑥2 = 2. 

When passing through these points, the derivative changes sign as shown 

above in Figure 

 

Hence, at the point 𝑥 = 0, the function has a minimum, and at the point 𝑥 = 0, 

it has a maximum. The minimum and maximum values, respectively, are equal 

to: 

𝑓𝑚𝑖𝑛 = 𝑓(0) = 02𝑒−0 = 0, 

𝑓𝑚𝑎𝑥 = 𝑓(2) = 22𝑒−2 =
4

𝑒2
≈ 0,541. 

 

3. Convex Functions 

Definition 1. Consider a function 𝑦 =  𝑓 (𝑥), which is assumed to be 

continuous on the closed interval [𝑎, 𝑏]. The function 𝑦 =  𝑓 (𝑥) is called 



convex downward (or concave upward) if for any two points 𝑥1 and 𝑥2 in 

[𝑎, 𝑏], the following inequality holds: 

𝑓(
𝑥1 + 𝑥2

2
) ≤

𝑓(𝑥1) + 𝑓(𝑥2)

2
 

If this inequality is strict for any 𝑥1, 𝑥2 ∈  [𝑎, 𝑏], such that 𝑥1 ≠  𝑥2, then the 

function 𝑓(𝑥) is called strictly convex downward on the interval [𝑎, 𝑏]. 

Similarly, we define a concave function.  

Definition 2. A function 𝑓 (𝑥) is called convex upward (or concave 

downward) if for any two points 𝑥1 and 𝑥2 in the interval [𝑎, 𝑏], the following 

inequality is valid: 

𝑓(
𝑥1 + 𝑥2

2
) ≥

𝑓(𝑥1) + 𝑓(𝑥2)

2
 

If this inequality is strict for any 𝑥1, 𝑥2 ∈  [𝑎, 𝑏], such that 𝑥1 ≠  𝑥2, then the 

function 𝑓 (𝑥) is called strictly convex upward on the interval [𝑎, 𝑏]. 

 

Theorem. Suppose that the first derivative 𝑓′(𝑥) of a function 𝑓(𝑥) exists in 

a closed interval [𝑎, 𝑏], and the second derivative 𝑓′′(𝑥) exists in an open 

interval (𝑎, 𝑏). Then the following sufficient conditions for 

convexity/concavity are valid: 

1) If 𝑓′′(𝑥) ≥ 0 for all 𝑥 ∈ (𝑎, 𝑏), then the function 𝑓(𝑥) is convex 

downward (or concave upward) on the interval [𝑎, 𝑏]; 

2) If 𝑓′′(𝑥) ≤ 0 for all 𝑥 ∈ (𝑎, 𝑏),  then the function  is convex upward (or 

concave downward) on the interval [𝑎, 𝑏]. 

In the cases where the second derivative is strictly greater (or less) than zero, 

we say, respectively, about the strict convexity downward (or strict convexity 

upward). 

 

Example 1. Find the intervals of convexity and concavity of the function 

𝑓(𝑥) = −𝑥3 + 6𝑥2 − 2𝑥 + 1. 

Compute the derivatives: 



𝑓′(𝑥) = (−𝑥3 + 6𝑥2 − 2𝑥 + 1)′ = −3𝑥2 + 12𝑥 − 2; 

𝑓′′(𝑥) = (−3𝑥2 + 12𝑥 − 2)′ = −6𝑥 + 12. 

The second derivative is equal to zero at the following point: 

𝑓′′(𝑥) = 0, ⇒ −6𝑥 + 12 = 0, ⇒ 𝑥 = 2. 

The second derivative is positive to the left of this point and negative to the 

right. Hence, the function is convex downward on (−∞, 2) and convex upward 

on (2, +∞). 

 

Example 2. Find the intervals of convexity and concavity of the function 

𝑓(𝑥) = 2𝑥3 − 18𝑥2. 

Differentiating this function, we have 

𝑓′(𝑥) = (2𝑥3 − 18𝑥2)′ = 6𝑥2 − 36𝑥; 

𝑓′′(𝑥) = (6𝑥2 − 26𝑥)′ = 12𝑥 − 36. 

We set 𝑓′′(𝑥) equal to zero and solve the equation: 

𝑓′′(𝑥) = 0, ⇒ 12𝑥 − 36 = 0, ⇒ 𝑥 = 3. 

The second derivative is negative if 𝑥 < 3 and positive if 𝑥 > 3 Hence, the 

function is convex downward on the interval (3, +∞) and convex upward on 

(−∞, 3). 

 

Example 3. Find the intervals of convexity and concavity of the function 

𝑓(𝑥) = √2 + 𝑥2. 

This function is defined and differentiable for all 𝑥 ∈ ℝ. Calculate the second 

derivative: 

𝑓′(𝑥) = (√2 + 𝑥2)′ =
1

2√2 + 𝑥2
⋅ (2 + 𝑥2)′ =

2𝑥

2√2 + 𝑥2
=

𝑥

√2 + 𝑥2
; 

𝑓′′(𝑥) = (
𝑥

√2 + 𝑥2
)′ =

𝑥′√2 + 𝑥2 − 𝑥(√2 + 𝑥2)′

(√2 + 𝑥2)2
 

=

√2 + 𝑥2 − 𝑥 ⋅
𝑥

√2 + 𝑥2

2 + 𝑥2
=

(√2 + 𝑥2)2 − 𝑥2

(2 + 𝑥2)√2 + 𝑥2
=

2 + 𝑥2 − 𝑥2

√(2 + 𝑥2)3
 



=
2

√(2 + 𝑥2)3
. 

It can be seen that the second derivative is always positive. Therefore, the 

function is convex downward for all values of 𝑥. 

 

4. Inflection Points 

Definition: Consider a function 𝑦 =  𝑓 (𝑥), which is continuous at a point 𝑥0. 

The function 𝑓(𝑥) can have a finite or infinite derivative 𝑓 ′(𝑥0) at this point. 

If, when passing through 𝑥0, the function changes the direction of convexity, 

i.e. there exists a number 𝛿 >  0 such that the function is convex upward on 

one of the intervals (𝑥0–  𝛿, 𝑥0) or (𝑥0, 𝑥0 +  𝛿), and is convex downward on 

the other, then 𝑥0 is called a point of inflection of the function 𝑦 =  𝑓 (𝑥). 

 

Theorem. If 𝑥0 is a point of inflection of the function 𝑓(𝑥), and this function 

has a second derivative in some neighborhood of 𝑥0 which is continuous at the 

point 𝑥0 itself, then 

𝑓′′(𝑥0) = 0. 

Second Derivative Test: If the function 𝑓(𝑥) is continuous and differentiable 

at a point 𝑥0, has a second derivative 𝑓′′(𝑥0) in some deleted 𝛿-neighborhood 

of the point 𝑥0 and if the second derivative changes sign when passing through 

the point 𝑥0 then 𝑥0 is a point of inflection of the function 𝑓(𝑥) 

 

Third Derivative Test:  Let 𝑓′′(𝑥0) = 0, 𝑓′′′(𝑥0) ≠ 0. Then 𝑥0 is a point of 

inflection of the function 𝑓(𝑥) 

 

Example 1. Find the points of inflection of the function 𝑓(𝑥) = 𝑥3 − 3𝑥2 − 1. 

Compute the first and second derivatives: 

𝑓′(𝑥) = (𝑥3 − 3𝑥2 − 1)′ = 3𝑥2 − 6𝑥; 

𝑓′′(𝑥) = (3𝑥2 − 6𝑥)′ = 6𝑥 − 6. 

We see that 𝑓′′(𝑥) = 0 at 𝑥 = 1. The function changes concavity as shown in 



figure below.  

 

Since 

𝑓(1) = 13 − 3 ⋅ 12 − 1 = −3, 

the inflection point is at (1, −3). 

 

Example 2. Find the inflection points of the function 𝑓(𝑥) = 𝑥4 − 6𝑥2. 

Compute the first derivative: 

𝑓′(𝑥) = (𝑥4 − 6𝑥2)′ = 4𝑥3 − 12𝑥. 

The second derivative is 

𝑓′′(𝑥) = (4𝑥3 − 12𝑥)′ = 12𝑥2 − 12 = 12(𝑥2 − 1). 

Find the roots of the second derivative: 

𝑓′′(𝑥) = 0, ⇒ 12(𝑥2 − 1) = 0, ⇒ 𝑥1 = −1, 𝑥2 = 1. 

We need to determine where the second derivative changes sign. Draw a sign 

𝑓′′(𝑥)chart for  (see below). 

 

Clearly, the concavity changes at both points, 𝑥 = −1 and 𝑥 = 1. Hence, these 

points are points of inflection. 

 We can easily calculate their 𝑦 −coordinates: 

𝑓(−1) = (−1)4 − 6 ⋅ (−1)2 = −5; 

𝑓(1) = 14 − 6 ⋅ 12 = −5. 

So, the inflection points are (−1, −5) and (1, −5). 

 

Example 3. Find the points of inflection of the function 𝑓(𝑥) = 𝑥4 − 12𝑥3 +

48𝑥2 + 12𝑥 + 1. 



Find the derivatives: 

𝑓′(𝑥) = (𝑥4 − 12𝑥3 + 48𝑥2 + 12𝑥 + 1)′ = 4𝑥3 − 36𝑥2 + 96𝑥 + 12

= 4(𝑥3 − 9𝑥2 + 24𝑥 + 3); 

𝑓′′(𝑥) = (4(𝑥3 − 9𝑥2 + 24𝑥 + 3))′ = 4(3𝑥2 − 18𝑥 + 24)

= 12(𝑥2 − 6𝑥 + 8). 

Calculate the roots of the second derivative: 

𝑓′′(𝑥) = 0, ⇒ 12(𝑥2 − 6𝑥 + 8) = 0, ⇒ 𝑥2 − 6𝑥 + 8 = 0, ⇒ 𝑥1 = 2, 𝑥2 = 4. 

In this case it is convenient to use the second sufficient condition for the 

existence of an inflection point. The third derivative is written as 

𝑓′′′(𝑥) = (12(𝑥2 − 6𝑥 + 8))′ = 12(2𝑥 − 6) = 24(𝑥 − 3). 

From this we immediately see that the third derivative is not zero at the points 

𝑥1 = 2 and 𝑥2 = 4. Therefore, these points are points of inflection. 

 

5. Asymptotes 

Definition: An asymptote of a curve 𝑦 =  𝑓 (𝑥) that has an infinite branch is 

called a line such that the distance between the point (𝑥, 𝑓 (𝑥)) lying on the 

curve and the line approaches zero as the point moves along the branch to 

infinity. 

Vertical Asymptote 

Definition: The straight line 𝑥 =  𝑎 is a vertical asymptote of the graph of the 

function 𝑦 =  𝑓 (𝑥) if at least one of the following conditions is true: 

𝑙𝑖𝑚
𝑥→𝑎−0

𝑓(𝑥) = ±∞, 𝑙𝑖𝑚
𝑥→𝑎+0

𝑓(𝑥) = ±∞. 

Oblique Asymptote 

Definition: The straight line 𝑦 = 𝑘𝑥 + 𝑏 is called an oblique (slant) asymptote 

of the graph of the function 𝑦 = 𝑓(𝑥) as 𝑥 → +∞ (Figure ) if 

𝑙𝑖𝑚
𝑥→+∞

[𝑓(𝑥) − (𝑘𝑥 + 𝑏)] = 0. 

Theorem. A straight line 𝑦 = 𝑘𝑥 + 𝑏 is an asymptote of a function 𝑦 = 𝑓(𝑥) 

as 𝑥 → +∞ if and only if the following two limits are finite: 



𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥)

𝑥
= 𝑘   and   𝑙𝑖𝑚

𝑥→+∞
[𝑓(𝑥) − 𝑘𝑥] = 𝑏. 

 

Horizontal Asymptote 

Definition: In particular, if 𝑘 = 0, we obtain a horizontal asymptote, which is 

described by the equation 𝑦 = 𝑏. The theorem on necessary and sufficient 

conditions for the existence of a horizontal asymptote is stated as follows: 

Theorem. A straight line 𝑦 = 𝑏 is an asymptote of a function 𝑦 = 𝑓(𝑥) as 

𝑥 → +∞, if and only if the following limit is finite: 

𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥) = 𝑏. 

 The case 𝑥 → −∞ is considered in the same way. 

 

Example 1. Find the asymptotes of the function 𝑓(𝑥) =
𝑥

𝑥+1
. 

When 𝑥 = −1, the function has a discontinuity of the second kind. Indeed: 

𝑙𝑖𝑚
𝑥→−1−0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→−1−0

𝑥

𝑥 + 1
=

−1

(−1 − 0) + 1
=

−1

−0
= +∞, 

𝑙𝑖𝑚
𝑥→−1+0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→−1+0

𝑥

𝑥 + 1
=

−1

(−1 + 0) + 1
=

−1

+0
= −∞. 

Hence, 𝑥 = −1 is the equation of the vertical asymptote. 

 Find the horizontal asymptote. Compute the limit: 

𝑙𝑖𝑚
𝑥→±∞

𝑥

𝑥 + 1
= 𝑙𝑖𝑚

𝑥→±∞

1

1 +
1
𝑥

= 1. 

Thus, there exists a horizontal asymptote for the curve, and its equation is 𝑦 =

1. 

The function has no oblique asymptotes. This can be verified by calculating 

the coefficients 𝑘 and 𝑏: 

𝑘 = 𝑙𝑖𝑚
𝑥→±∞

𝑦(𝑥)

𝑥
= 𝑙𝑖𝑚

𝑥→±∞

𝑥

(𝑥 + 1)𝑥
= 𝑙𝑖𝑚

𝑥→±∞

𝑥

𝑥2 + 𝑥
= 𝑙𝑖𝑚

𝑥→±∞

1
𝑥

1 +
1
𝑥

= 0, 



𝑏 = 𝑙𝑖𝑚
𝑥→±∞

[𝑦(𝑥) − 𝑘𝑥] = 𝑙𝑖𝑚
𝑥→±∞

(
𝑥

𝑥 + 1
− 0) = 𝑙𝑖𝑚

𝑥→±∞

1

1 +
1
𝑥

= 1. 

It can be seen that actually we obtained the horizontal asymptote, which has 

already been defined above. 

 So, the graph of the function has the vertical asymptote 𝑥 = −1 and the 

horizontal asymptote 𝑦 = 1 (Figure ). 

 

 

Example 2. Find the asymptotes of the function 𝑓(𝑥) =
𝑥2−2𝑥−3

𝑥
. 

The function has a discontinuity at 𝑥 = 0. Since 

𝑙𝑖𝑚
𝑥→0−0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→0−0

𝑥2 − 2𝑥 − 3

𝑥
= +∞; 

𝑙𝑖𝑚
𝑥→0+0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→0+0

𝑥2 − 2𝑥 − 3

𝑥
= −∞, 

the straight line 𝑥 = 0 (the 𝑦 −axis) is a vertical asymptote. 

 The function does not have a horizontal asymptote because the following 

limits are infinite: 

𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→+∞

𝑥2 − 2𝑥 − 3

𝑥
= +∞; 



𝑙𝑖𝑚
𝑥→−∞

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→−∞

𝑥2 − 2𝑥 − 3

𝑥
= −∞. 

We write the function as follows: 

𝑓(𝑥) =
𝑥2 − 2𝑥 − 3

𝑥
= 𝑥 − 2 −

3

𝑥
. 

The term 
3

𝑥
 approaches zero as 𝑥 → ±∞. Hence, the function has the oblique 

asymptote 𝑦 = 𝑥 − 2. 

 

 

Example 3. Find the asymptotes of the function 𝑓(𝑥) =
3𝑥2−2𝑥+1

𝑥−1
. 

It is clear that the line 𝑥 = 1 is a vertical asymptote, because at this point the 

function has a discontinuity and the following conditions are true: 

𝑙𝑖𝑚
𝑥→1−0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→1−0

3𝑥2 − 2𝑥 + 1

𝑥 − 1
=

3(1 − 0)2 − 2(1 − 0) + 1

1 − 0 − 1
= −∞, 

𝑙𝑖𝑚
𝑥→1+0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→1+0

3𝑥2 − 2𝑥 + 1

𝑥 − 1
=

3(1 + 0)2 − 2(1 + 0) + 1

1 + 0 − 1
= +∞. 

We write the function as 



𝑦 = 𝑓(𝑥) =
3𝑥2 − 2𝑥 + 1

𝑥 − 1
=

3𝑥2 − 3𝑥 + 𝑥 − 1 + 2

𝑥 − 1

=
3𝑥(𝑥 − 1)

𝑥 − 1
+

𝑥 − 1

𝑥 − 1
+

2

𝑥 − 1
= 3𝑥 + 1 +

2

𝑥 − 1
= 3𝑥 + 1 + 𝛼(𝑥), 

where 𝛼(𝑥) → 0 as 𝑥 → ±∞. 

Thus, the function has the oblique asymptote 𝑦 = 3𝑥 + 1. 

 Note that a rational function may have an oblique asymptote if the degree 

of the numerator is one greater than the degree of the denominator. A 

schematic view of this curve is shown in Figure 

 

 

6. Curve Sketching 

Example 1. 𝑦 = 𝑥3 − 3𝑥2 + 2𝑥. 

1. The function is defined for all 𝑥 ∈ ℝ. Consequently, this function has no 

vertical asymptotes. Check for oblique (slant) asymptotes. Calculate the slope 

of the asymptote: 



𝑘 = 𝑙𝑖𝑚
𝑥→±∞

𝑦(𝑥)

𝑥
= 𝑙𝑖𝑚

𝑥→±∞

𝑥3 − 3𝑥2 + 2𝑥

𝑥
= 𝑙𝑖𝑚

𝑥→±∞
(𝑥2 − 3𝑥 + 2) = +∞. 

This indicates that the function has also no oblique asymptotes. 

2. Determine the points of intersection of the graph with the coordinate axes: 

𝑦(0) = 0. 

Next, solving the equation 

𝑥3 − 3𝑥2 + 2𝑥 = 0, 

we find: 

𝑥(𝑥2 − 3𝑥 + 2) = 0, ⇒ 𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 2, 

that is the function has three real roots. 

 

3. The intervals where the function is positive or negative can be found solving 

the following inequality (Figure ): 

𝑥3 − 3𝑥2 + 2𝑥 > 0, ⇒ 𝑥(𝑥 − 1)(𝑥 − 2) > 0. 

 

4. The first derivative of the function is 

𝑦′(𝑥) = (𝑥3 − 3𝑥2 + 2𝑥)′ = 3𝑥2 − 6𝑥 + 2. 

We find the stationary points by setting the first derivative equal to zero: 

𝑦′(𝑥) = 0, ⇒ 3𝑥2 − 6𝑥 + 2 = 0, ⇒ 𝐷 = 36 − 4 ⋅ 3 ⋅ 2 = 12, ⇒ 

𝑥1,2 =
6 ± √12

6
= 1 ± √3 ≈ 0,42; 1,58 

When passing through the point 𝑥 = 1 −
√3

3
,  the derivative changes sign from 

plus to minus (Figure ). Hence, this point is the maximum point. Similarly, we 

establish that 𝑥 = 1 +
√3

3
 is the minimum point. Calculate the approximate 

value of the function at the points of maximum and minimum: 

𝑦(1 −
√3

3
) = (1 −

√3

3
)3 − 3(1 −

√3

3
)2 + 2(1 −

√3

3
) = 

1 − 3 ⋅
√3

3
+ 3 ⋅ (

√3

3
)2 − (

√3

3
)3 − 3[1 −

2√3

3
+ (

√3

3
)2] + 2 −

2√3

3
= 



1 − √3 + 1 −
√3

9
− 3 + 2√3 − 1 + 2 −

2√3

3
=

9√3 − √3 − 6√3

9
=

2√3

9
≈ 0,38; 

Similarly, we find that 

𝑦(1 +
√3

3
) = −

2√3

9
≈ −0,38. 

Thus, the function has a local maximum at the point 

(1 −
√3

3
,
2√3

9
) ≈ (0,42; 0,38). 

Respectively, the local minimum is reached at the point 

(1 +
√3

3
, −

2√3

9
) ≈ (1,58; −0,38) 

The intervals of increasing/decreasing follow from Figure  

 

5. Consider the second derivative: 

𝑦′′(𝑥) = (3𝑥2 − 6𝑥 + 2)′ = 6𝑥 − 6; 

𝑦′′(𝑥) = 0, ⇒ 6𝑥 − 6 = 0, ⇒ 𝑥 = 1. 

If 𝑥 ≤ 1, the function is convex upward, and if 𝑥 ≥ 1, it is convex downward. 

Hence, the point 𝑥 = 1 is a point of inflection. At this point we have: 

 

6. Given these results, we can draw a schematic graph of the function 



 

 

Example 2. 𝑦 =
1

1+𝑥2. 

The function is defined for all real values of 𝑥. Consequently, it has no vertical 

asymptotes. Since 

𝑙𝑖𝑚
𝑥→±∞

𝑦(𝑥) = 𝑙𝑖𝑚
𝑥→±∞

1

1 + 𝑥2
= 0, 

then the graph of the function has horizontal asymptote 𝑦 = 0, that is the 𝑥-

axis is the horizontal asymptote. 

This function is even. Indeed, 

𝑦(−𝑥) =
1

1 + (−1)2
=

1

1 + 𝑥2
= 𝑦(𝑥). 

It is obvious that the function has no roots and positive for all 𝑥. At the point 

𝑥 = 0, its value is 

𝑦(0) =
1

1 + 02
= 1. 

Find the first derivative: 

𝑦′(𝑥) = (
1

1 + 𝑥2
)′ = −

1

(1 + 𝑥2)2
⋅ (1 + 𝑥2)′ = −

2𝑥

(1 + 𝑥2)2
. 

This shows that 𝑥 = 0 is a stationary point. When passing through this point 

the derivative changes sign from plus to minus (Figure ). Therefore, we have 



a maximum at 𝑥 = 0 Its value is 𝑦(0) = 1. 

Calculate the second derivative: 

𝑦′′(𝑥) = (−
2𝑥

(1 + 𝑥2)2
)′ = −

2(1 + 𝑥2)2 − 2𝑥 ⋅ 2(1 + 𝑥2)

(1 + 𝑥2)4

=
8𝑥2 − 2 − 2𝑥2

(1 + 𝑥2)3
=

6𝑥2 − 2

(1 + 𝑥2)3
. 

It is equal to zero at the following points: 

𝑦′′(𝑥) = 0, ⇒
6𝑥2 − 2

(1 + 𝑥2)3
= 0, ⇒

2(𝑥 − √3)(𝑥 + √3)

(1 + 𝑥2)3
= 0, ⇒ 

𝑥1 = −√3, 𝑥2 = √3. 

When passing through these points the second derivative changes its sign. 

Therefore, both points are inflection points. The function is strictly convex 

downward in the intervals (−∞, −√3) and (√3, +∞) and, accordingly, strictly 

convex upward in the interval (−√3, √3). Since the function is even, the found 

inflection points have the same values of𝑦: 

𝑦(±√3) =
1

1 + (±√3)2
=

1

1 + 3
=

1

4
. 

 

Figure presents a schematic graph of the function. 



 

 

Example 3. 𝑓(𝑥) =
𝑥2+1

𝑥−1
. 

The function is defined for all 𝑥 except the point 𝑥 = 1 where it has a 

discontinuity. 

Find the intercept: 

𝑓(0) =
02 + 1

0 − 1
= −1. 

The function is negative for 𝑥 < 1 and positive for 𝑥 > 1 but it has no 

𝑥 −intercepts. 

Look for vertical asymptote near 𝑥 = 1: 

𝑙𝑖𝑚
𝑥→1−0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→1−0

𝑥2 + 1

𝑥 − 1
= −∞; 

𝑙𝑖𝑚
𝑥→1+0

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→1+0

𝑥2 + 1

𝑥 − 1
= ∞. 

There is a vertical asymptote at 𝑥 = 1. 

Rewrite the function in the form 

𝑓(𝑥) =
𝑥2 + 1

𝑥 − 1
=

𝑥2 − 𝑥 + 𝑥 − 1 + 2

𝑥 − 1
=

𝑥(𝑥 − 1) + 𝑥 − 1 + 2

𝑥 − 1

= 𝑥 + 1 +
2

𝑥 − 1
, 

where 
2

𝑥−1
→ 0 as 𝑥 → ∞. Hence the function has an oblique asymptote 𝑦 =



𝑥 + 1. 

Take the first derivative: 

𝑓′(𝑥) = (
𝑥2 + 1

𝑥 − 1
)′ =

2𝑥 ⋅ (𝑥 − 1) − (𝑥2 + 1) ⋅ (𝑥 − 1)

(𝑥 − 1)2

=
2𝑥2 − 2𝑥 − 𝑥2 − 1

(𝑥 − 1)2
=

𝑥2 − 2𝑥 − 1

(𝑥 − 1)2
. 

Determine the critical points: 

𝑓′(𝑥) = 0, ⇒
𝑥2 − 2𝑥 − 1

(𝑥 − 1)2
= 0, ⇒ {𝑥2 − 2𝑥 − 1 = 0

𝑥 ≠ 1
. 

Solve the quadratic equation: 

𝑥2 − 2𝑥 − 1 = 0, ⇒ 𝐷 = (−2)2 − 4 ⋅ (−1) = 8, ⇒ 

𝑥1,2 =
2 ± √8

2
= 1 ± √2. 

Thus, the function has two critical points: 𝑥1 = 1 − √2 ≈ −0.41 and 𝑥2 =

1 + √2 ≈ 2.41 

The second derivative is written as 

𝑓′′(𝑥) = (
𝑥2 − 2𝑥 − 1

(𝑥 − 1)2
)′ =

4

(𝑥 − 1)3
. 

We see that the function is concave downward at 𝑥 < 1 and concave upward 

at 𝑥 > 1 though it has no inflection points. 

Draw a sign chart for the function and its derivatives (Figure ). 

 



 

 

7. Global Extrema of Functions 

Example 1. Find the global maximum and minimum of the function in the 

given interval: 𝑓(𝑥) = 𝑥2 − 2𝑥 + 5, where 𝑥 ∈ [−1,4]. 

 The function is defined and differentiable for all 𝑥 ∈ ℝ. Determine its 

stationary points: 

𝑓′(𝑥) = 0, ⇒ (𝑥2 − 2𝑥 + 5)′ = 0, ⇒ 2𝑥 − 2 = 0, ⇒ 𝑥 = 1. 



 This local extremum point belongs to the interval (−1,4). We compute 

the values of the function at 𝑥 = 1 and at the endpoints of the interval: 

𝑓(1) = 12 − 2 ⋅ 1 + 5 = 4, 𝑓(−1) = (−1)2 − 2 ⋅ (−1) + 5 = 8, 𝑓(4)

= 42 − 2 ⋅ 4 + 5 = 13. 

Consequently, the maximum value of the function is equal 𝑓(4) = 13, and the 

minimum value is 𝑓(1) = 4. 

 

Example 2. Calculate the difference d between the global maximum and global 

minimum values of 𝑓(𝑥) = 𝑥2 − 4𝑥 + 6 in the interval [−2,4]. 

Find the derivative: 

𝑓′(𝑥) = (𝑥2 − 4𝑥 + 6)′ = 2𝑥 − 4. 

Solve the equation 𝑓′(𝑐) = 0 to determine the critical points: 

𝑓′(𝑐) = 0, ⇒ 2𝑐 − 4 = 0, ⇒ 𝑐 = 2. 

 

We must evaluate 𝑓(𝑥) at the critical point 𝑥 = 2 and at the endpoints 𝑥 =

−2, 𝑥 = 4: 

𝑓(−2) = (−2)2 − 4 ⋅ (−2) + 6 = 18, 

𝑓(2) = 22 − 4 ⋅ 2 + 6 = 2, 

𝑓(4) = 42 − 4 ⋅ 4 + 6 = 6. 

Thus, the global maximum value is 18 and the global minimum value is 2, so 

the difference d is equal to 

𝑑 = 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 = 18 − 2 = 16. 

 

Example 3. Find the global extrema of the function 𝑓(𝑥) = 3𝑥4 − 6𝑥2 + 2 in 

the interval [−2,2]. 

This function is defined and differentiable on the whole real axis. In this case, 

all local extrema can be found from the equation 𝑓′(𝑥) = 0: 

𝑓′(𝑥) = (3𝑥4 − 6𝑥2 + 2)′ = 12𝑥3 − 12𝑥 = 12𝑥(𝑥2 − 1)

= 12𝑥(𝑥 − 1)(𝑥 + 1); 

𝑓′(𝑥) = 0, ⇒ 12𝑥(𝑥 − 1)(𝑥 + 1) = 0, ⇒ 𝑥1 = 0, 𝑥2 = −1, 𝑥3 = 1. 



As it can be seen, the function has three local extrema and all these points fall 

in the given interval [−2,2]. Calculate the values of the function at the points 

of extremum and at the endpoints of the interval: 

𝑓(0) = 3 ⋅ 04 − 6 ⋅ 02 + 2 = 2; 𝑓(−1) = 3 ⋅ (−1)4 − 6 ⋅ (−1)2 + 2 = −1 

𝑓(−2) = 3 ⋅ (−2)4 − 6 ⋅ (−2)2 + 2 = 26. 

Since the function is even, we can write: 

𝑓(1) = 𝑓(−1) = −1, 𝑓(2) = 𝑓(−2) = 26. 

 

Thus, the function has the minimum value −1 at two points: at 𝑥 = −1 and 

𝑥 = 1 The maximum value 26 is also attained at two points: at 𝑥 = −2 and 

𝑥 = 2. A schematic graph of the function is given in Figure 

 

 


