

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY
 KHARKIV POLYTECHNIC INSTITUTE

Department Applied Mathematics (name)
"APPROVED"
Head of the department

$-\frac{\text { Kurpa L.V. }}{\text { (full name) }}$| (signature) |
| :--- |
| "_________ year |

Educational Subject Syllabus

higher education level \qquad first \qquad first (bachelor's) / second (master's)
type of discipline \qquad general training
(general training (required / optional) / professional training (required / optional)
form of education \qquad full-time
(full-time / part-time)

Kharkiv - 2019 year

Scope of the course: 8 ECTS credits $_240$ hours.

Lectures: $\mathbf{6 4}$ hours.

Practical classes: $\underline{64}$ hours.
Form of control: exam.
Teaching term for Bachelor / Master degree: 1-2 semesters.
Teaching language: English.
Purpose of the course of higher mathematics is to form a system of theoretical and practical knowledge of linear algebra, analytical geometry, mathematical analysis and differential equations.

The objective of the course is to teach students the basic methods of higher mathematics, which are necessary for the study of chemistry, physical chemistry, physics, and other general and special disciplines, as well as preparation for independent study of those sections of mathematics, which may be additionally required in the practical and research work of specialist chemist.

Competencies: GC-1, GC-4, GC-5, GC-6.
Learning achievements: LR-5, LR-9.

Topics covered:

Semester 1.

Content module 1. Linear algebra.
Theme 1. Matrices and determinants.
Theme 2. Systems of linear algebraic equations.
Content module 2. Analytic geometry.
Theme 1. Vector algebra.
Theme 2. Lines and surfaces.
Content module 3. The theory of limits and function continuity.
Theme 1. Limits and function continuity.

Semester 2.

Content module 4. Differential calculus of one variable function.
Theme 1. Differentiating the one variable function.
Theme 2. Application of the derivative.
Content module 5. Integral calculus of one variable function.
Theme 1. Indefinite integrals.
Theme 2. Definite integral.
Content module 6. Differential calculus of function of several variables.
Theme 1. Differential calculus of function of several variables.

Form and methods of teaching (description of teaching methods is provided): Higher mathematics education is provided in the form of training sessions (lectures, practical classes, consultations), as well as in the form of independent work (working out of educational material, performance and protection of the individual educational task in each semester).

Control methods (description of control methods is provided): The following types of control are used in the course of higher mathematics:

1) entrance control (control work at the beginning of the first semester);
2) current semester control (individual tasks, module tests on practice and theory at the end of each module);
3) final semester control (exam at the end of each semester).

DISTRIBUTION OF POINTS THAT STUDENTS RECEIVED AND KNOWLEDGE AND SKILLS SCALE (NATIONAL AND ECTS)

Table 1. - Points distribution for student achievement evaluation for passing

Semester	Control work	Individual tasks	Passing	Sum
1	70	10	20	100
2	70	10	20	100

Table 2. - Points distribution for student achievement evaluation for examination

Semester	Control work	Individual tasks	Examination	Sum
1	70	10	20	100
2	70	10	20	100

Criteria and system for assessing students' knowledge and skills.
According to the guidelines of ECTS, an assessment system should be understood as a set of methods (written, oral and practical tests, examinations, projects, etc.) used in assessing the achievement of the expected learning outcomes by the students.

Successful assessment of learning outcomes is a precondition for awarding credits to a person under study. Therefore, statements of learning outcomes of programme components should always be accompanied by clear and appropriate assessment criteria for awarding credits. This makes it possible to state that the learner has acquired the necessary knowledge, understanding, competences.

Assessment criteria are descriptions of what a person who is learning is expected to do in order to demonstrate the achievement of a learning outcome.

The main conceptual statements of the student's knowledge and skills assessment system are:

1. Improving the quality of training and competitiveness of specialists by stimulating independent and systematic work of students during an academic semester, establishment of constant feedback from teachers to each student and timely correction of his/her learning activities.
2. Improving the objectivity of students' knowledge assessment takes place through monitoring during a semester with the use of a 100 -point scale (Table 2). Grades are necessarily translated into the national scale (with the state semester grades "excellent", "good", "satisfactory" or "unsatisfactory") and the ECTS scale (A, B, C, D, E, FX, F).

Table 3 - Knowledge and skills assessment scale: national and ECTS rating

Rating Assessmen t, points	ECTS assessmen t and its definition	National assessment	Evaluation criteria	
			positive	negative
1	2	3	4	5
90-100	A	Excellent	- Deep knowledge of the educational material of the module contained in the main and additional literature sources; - ability to analyze the phenomena being studied in their relationship and development; - ability to perform theoretical calculations; - answers to questions are clear, concise, logically consistent; - ability to solve complex practical problems.	Answers to questions may contain minor inaccuracies
			- Deep level of knowledge in the amount of required	Answers to the questions

35-59	FX (потрібне додаткове вивчення)	Fail	Additional study of the module material can be performed in the time provided by the educational curriculum.	Ignorance of the basic fundamentals of the module - significant errors in answering questions; - inability to solve simple practical problems.
1-34	F (потрібне повторне вивчення)	Fail	-	- Complete lack of knowledge of a considerable part of the module's study material; - significant mistakes in answering the questions; -ignorance of the main fundamentals; - inability to orient while solving simple practical tasks

Basic Literature: (A list of literature that provides this subject)

1. Higher mathematics. Problem solving and variants of typical calculations. Edited by Dr.Sci.Tech. Kurpa L.V. - Kharkiv: NTU "KhPI", 2004. - Volume 1.
2. Higher mathematics. Problem solving and variants of typical calculations. Edited by Dr.Sci.Tech. Kurpa L.V. - Kharkiv: NTU "KhPI", 2004. - Volume 2.
3. Rudnyeva G.V. Elements of Linear Algebra and Analytic Geometry: Textbook. - Kharkiv: NTU KhPI: 2008.
4. Kurpa L.V., Shmatko T.V. Differential Calculus for One Variable Functions: Textbook. - Kharkiv: NTU KhPI: 2015.
5. L.V. Kurpa, T.V.Shmatko. Differential and integral calculus for functions with several variables: Textbook. - Kharkiv: NTU KhPI: 2012.
6. Higher mathematics. Problem solving and variants of typical calculations. Edited by Dr.Sci.Tech. Kurpa L.V. - Kharkiv: NTU "KhPI", 2004. - Volume 3.

Structural-logical scheme of education subject study
Table 3. - List of subjects Structural-logical scheme of educational subject

The study of this subject is based directly:	The results of the study of these subjects are based directly on:
School math course	Physics Computational Mathematics and Programming Theoretical mechanics Applied mechanics Physical chemistry of dispersed systems Physics and chemistry of fossil fuels
Strength of Materials Hydromechanics The physics of the oil and gas reservoir Gas hydromechanics Thermodynamics Mathematical modeling of mining processes and application of computers Systems of computer-aided design of oil and gas equipment	

Lead Lecturer: __Assoc. Prof., Dr. Rudnyeva G.V._ (position, title, full name)

