Шифр: Каскад

Тема «Каскадна холодильна машина гібридного типу»

Зміст

Вступ	3
2.Схемно-циклове рішення холодильної машини	4
2.1 Концепція схемного рішення пропонованої каскадної холодильно	oï
машини	4
2.2.Опис схемного рішеня	6
3. Розрахунок параметрів циклу нижньої гілки	8
3.1 Вхідні дані	8
3.2 Розрахунок параметрів циклу	9
4. Розрахунок параметрів циклу верхньої гілки 1	9
4.1 Вихідні дані 1	9
4.2 Визначення параметрів холодоагенту в вузлових точках циклу 2	20
5. Розрахунок енергетичної ефективності холодильної машини 2	23
Висновок 2	26
Список використаної літератури 2	27

ВСТУП

Актуальність роботи пов'язана з виконанням ряду міжнародних угод щодо обмеження емісії речовин, що посилюють парниковий ефект. У даній роботі розглядається варіант використання діоксиду вуглецю в якості робочої речовини холодильної машини.

Для діоксиду вуглецю фактор GWP=1, (Global Warming Potention тенціал глобального потепління для $CO_2 \epsilon$ еталонним рівнем в порівняння з іншими речовинами. Так наприклад, для R134a GWP=1300, для вуглеців R600 и R600a GWP=0.

Метою дослідження є оцінка енергоефективності використання теплоти, яка відводиться в циклі парокомпресорної холодильної машини на холодоагенті R744, для генерації холоду в циклі тепловикористовуючої холодильної машини.

Задачі дослідження для досягнення мети:

- розробка схемного рішення каскадної холодильної машини;

 розробка методики розрахунку параметрів циклу каскадної холодильної машини;

- виконати розрахунок показників енергоефетивності циклу.

Об'єкт дослідження – системи з двома рівнями генерації холоду.

Предмет дослідження – процеси трансформації теплоти системи холодопостачання.

2.СХЕМНО-ЦИКЛОВЕ РІШЕННЯ ХОЛОДИЛЬНОЇ МАШИНИ

2.1 Концепція схемного рішення пропонованої каскадної холодильної машини

Повернення до використання натуральних і екологічно чистих речовин (R744 один з них) для отримання холоду знову поставив завдання реалізації схем і циклів холодильних машин, що працюють в надкритичній області, [1;2].

У циклі парокомпресійної холодильної машини на R744 відведення тепла від робочої речовини до охолоджуючого середовища (після стиснення в компресорі) відбувається вище критичної точки і звісно без конденсації.

Вказаний процес відведення тепла реалізується в теплообміннику, званому газоохолоджувачем. Температурний інтервал охолодження діоксиду вуглецю в газоохолоджувачі для оптимальних режимів досить широкий (від 180 до 40 °C).

Зважаючи на це пропонується використовувати тепловий потік, що відводиться від CO₂ для нагріву іншого робочої речовини, що циркулює в контурі тепловикористовуючої холодильної машини.

Таким чином на базі газоохолоджувача можна з'єднати дві холодильні машини: парокомпресійна на CO₂ і тепловикористовуючих на високотемпературному синтезуванні холодоагенти або вуглеводні: n-бутан (R600) й і-бутан (R600a)

В результаті схемного рішення такого з'єднання утворюємо каскадну холодильну машину, принципова схема якої представлена на рисунку 2,1.

Холодильна машина на CO₂ стає нижньою гілкою каскадної машини, а в якості верхньої гілки в даній роботі прийнята пароежекторна холодильна машина, працююча на високотемпературному синтезованому холодоагенті R236fa.

Рис2.1. Принципова схема каскадної холодильної машини

КМ – компресор; ГО – газоохолоджувач; РТО – регенеративний теплообмінник;иДП1,ДП2 – дросельні пристрої; В1, В2 – випарник; Е – ежектор; КД – конденсатор; Н – насос.

У подібній схемі газоохолоджувач в нижній гілці функціонує одночасно як парогенератор для циклу верхньої гілки.

Переваги розглянутої схеми полягають в наступному:

- скидна ексергія теплового потоку газоохолоджувача нижньої гілки використовується для вироблення додаткової холодопродуктивності в випарнику верхньої гілки;
- зниження температури кипіння у випарнику верхньої гілки або збільшення холодопродуктивності можна забезпечити за рахунок включення в схему додаткового газонагрівача передачею теплоти від зовнішнього джерела;

 на базі даного схемного рішення можливе створення холодильного агрегату для двокамерних холодильників.

2.2.Опис схемного рішеня

Рис 2.2 Цикл в T,s-координатах(а) і в p,h-координатах (б) для нижньої гілки.

Базове холодильне навантаження $\mathscr{Q}_{0,\mu}$ підводиться до діоксиду вуглецю в випарнику нижньої гілки каскаду, В1, в результаті чого відбувається зміни параметрів циклу від стану 6_н до стану 8_н. після випарника пар перегрівається в регенеративної теплообміннику, 8_н - 1_н, за рахунок теплоти газового потоку CO₂ після газоохолоджувача, (процес 4_н-5_н)

У компресорі, КМ відбувається стиснення робочої речовини в процесі $1_{\rm H}$ - $2_{\rm H}$ в результаті чого підвищується тиск від $p_{1\rm H}$ до $p_{2\rm H}$ і відповідно температурі $T_{1\rm H}$ до $T_{2\rm H}$.

Далі пари діоксиду вуглецю охолоджуються в газоохолоджувачі, ГО в процесі $2_{\rm H}$ - $3_{\rm H}$, потім в РТО, процесі $3_{\rm H}$ - $4_{\rm H}$ і після дроселювання в дросельному пристрої, ДП1в стані насиченого пара ($5_{\rm H}$) надходять у випарник.

У верхній гілці каскаду реалізується цикл пароежекторної холодильної машини з такою послідовністю процесів:

Рис. 2.3 Цикл в T,s-координатах(а) і в p,h-координатах (б) для верхньої гілки.

6-1'-1_а -процес нагріву і кипіння рідкої фази холодоагенту;

1_а – 2_а - процес розширення в робочому соплі ежектора (розширення активного потоку);

1_п – 2_п - процес розширення пара пасивного потоку в приймальній камері ежектора;

2 – 3 – 4 - процес змішування і стиснення в камері змішання і дифузора ежектора;

4-5 - процес конденсації пари при тиску p_{κ} і температурі T_{κ} за рахунок передачі теплоти охолоджуючого середовища в конденсаторі (КД);

5-6 - процес підвищення тиску конденсату до рівня р_а в насосі (H);

5-7 - процес дроселювання конденсату в ДП2;

7 – 1_п - процес кипіння рідкої фази холодоагенту у випарнику (В2).

3. РОЗРАХУНОК ПАРАМЕТРІВ ЦИКЛУ НИЖНЬОЇ ГІЛКИ

3.1 Вхідні дані.

Розрахунок виконується по схемно-циклових рішеннях, наданим на рисунку 2.2. В якості вхідних даних прийняті наступні величини (таблиця 3.1)

Таблиця 3.1 Вхідні дані.

Параметри	Позначен	Розмірніс	Величина
	ня	ТЬ	
Робоча речовина циклу	R 744	(діоксин вуг	лецю)
Холодопродуктивність випарника В1	$\mathcal{Q}_{0,H}$	кВт	10
Температура кипіння холодоагента в випарнику В1	t _{0,н}	°C	-15
Перегрів пара холодоагента в випарнику В1	ΔT_{sh}	К	5
Підігрів пара холодоагенту на ділянці трубопроводу між випарником і регенеративним теплообмінником	$\Delta T_{\rm sh,sl}$	K	1
Втрати тиску у всмоктувальній лінії компресора	Δp_{sl}	бар	0,2
Ізоентропний ккд компресора	η_s	-	0,7
Температурна ефективність			В
регенеративного теплообмінника	$\eta_{\scriptscriptstyle SGHX}$	-	інтервалі 0,2÷0,8
Температура пари високого тиску на вході			В
в регенеративний теплообмінник	t_4	°C	інтервалі 40÷60

Тиск нагнітання і у всій порожнин до ДП1	р _{2н}	бар	В інтервалі 90÷120
Тепловий еквівалент механічних втрат в компресорі	E loss	%	10

3.2 Розрахунок параметрів циклу

Розрахунок параметрів циклу виконуємо з використанням прпограмного додатка COOL PACK. Результати розрахунків приводимо в додаток 3.1. В якості величин, визначаємо конкретний вибір параметрів з заданих інтервалів зазначених в додаток 3.1 приняті:

- Коефіцієнт перетворення циклу, СОР_{ен};(по ефективній потужності);
- Температура холодоагента на нагнітанні з компресора, $t_{2H} = t_{3H}$

Решта розрахунки параметрів приведені тільки для обраного розрахункового режиму в таблиці 3.1.

Таблиця 3.2 Результати розрахунків циклу холодильної машини на діоксиді вуглецю.

	Розрахункові	$COP_{e,H}/t_{2,H}, °C$	
	величини		
η_{scuv}	Тиск, р _{2н} ,		
ISGHA	$\Pi = p_{2H}/p_{B}$	р _{2н} =90 бар; Г	I=3,948
		t _H ,°C	
	40	50	60
0,2	1,134 / 124,1	0,4559 / 126,8	0,1756 / 129,5
0,3	1,157 / 130,7	0,5042 / 134/8	0,2421 / 138,8
0,4	1,173 / 137,3	0,5483 / 142,6	0,302 / 147,9
0,5	1,191 / 143,8	0,5889 / 150,4	0,3564 / 156,9

0,6	1,207 / 150,3	0,6265 / 158,1	0,4066 / 165,9
0,7	1,223 / 156,7	0,6617 / 165,8	0,453 / 174,8
0,8	1,239 / 163,1	0,6947 / 173,4	0,4964 / 183,7

Продовження таблиці 3.2

	Розрахункові	СОР _{е,н} /t _{2,н} , °С	
	величини		
$\eta_{_{SCHY}}$	Тиск, р _{2н} ,		
	$\Pi = p_{2H}/p_{B}$	р _{2н} =95 бар; Г	I=4,168
		t _H ,°C	
	40	50	60
0,2	1,274 / 129,6	05767 / 132,3	0,2523 / 135,0
0,3	1,287 / 136,3	0,6178 / 140,3	0,3124 / 144,4
0,4	1,30 / 142,9	0,6553 / 148,3	0,3665 / 153,6
0,5	1,312 / 149,5	0,690/156,1	0,4159 / 162,7
0,6	1,323 / 156,0	0,7221 / 163,9	0,4613 / 171,8
0,7	1,334 / 162,5	0,7523 / 171,7	0,5035 / 180,8
0,8	1,345 / 168,9	0,7807 / 179,4	0,5429 / 189,7

Продовження таблиці 3.1

	Розрахункові	$\operatorname{COP}_{e,H}/t_{2,H}, °C$	
	величини		
$n_{\rm conv}$	Тиск, р _{2н} ,		
I SGHX	$\Pi = p_{2\mathrm{H}}/p_{\mathrm{B}}$	р _{2н} =100 бар;	П=4,387
		t _H ,°C	
	40	50	60
0,2	1,32 / 134,8	0,7005 / 137,6	0,3295 / 140,3
0,3	1,33 / 141,6	0,7346 / 145,7	0,3836 / 149,7

0,4	1,339 / 148,3	0,7659 / 153,7	1,4324 / 159,1
0,5	1,348 / 154,9	0,7948 / 161,6	0,4769 / 168,3
0,6	1,357 / 161,5	0,8217 / 169,5	0,518 / 177,4
0,7	1,365 / 168,0	0,8471 / 177,3	0,5561 / 186,5
0,8	1,373 / 174,5	0,8709 / 185	0,5917 / 195,5

Продовження таблиці 3.2

	Розрахункові	СОР _{е,н} /t _{2,н} , °С	
	величини		
$\eta_{\rm scurv}$	Тиск, р _{2н} ,		
ISGHA	$\Pi = p_{2H}/p_{B}$	р _{2н} =105 бар;	П=4,607
		t _H ,°C	
	40	50	60
0,2	1,33 / 139,8	0,8089 / 142,6	0,4068 / 145,4
0,3	1,337 / 146,6	0,8369 / 150,8	0,4552 / 154,9
0,4	1,345 / 153,4	0,8626 / 158,9	0,4989 / 164,3
0,5	1,352 / 160,1	0,8865 / 166,9	0,5389 / 173,6
0,6	1,359 / 166,7	0,9089 / 174,8	05757 / 182,8
0,7	1,366 / 173,3	0,9299 / 182,7	0,61 / 191,9
0,8	1,372 / 179,9	0,9498 / 190,5	0,6421 / 201,0

Продовження таблиці 3.2

	Розрахункові	СОР _{е,н} /t _{2,н} , °С	
$\eta_{\scriptscriptstyle SGHX}$	величини		
	Тиск, р _{2н} ,		
	$\Pi = p_{2H}/p_{B}$	р _{2н} =110 бар; П=4,607	
	t _H ,°C		
	40	50	60

0,2	1,324 / 144,6	0,8883 / 147,4	0,4819 / 150,2
0,3	1,33 / 151,5	0,9115 / 155,7	0,5249 / 159,8
0,4	1,336 / 158,3	0,9328 / 163,8	0,5639 / 169,3
0,5	1,342 / 165,1	0,9528 / 171,9	0,5996 / 178,7
0,6	1,342 / 165,1	0,9714 / 179,9	0,6325 / 188,0
0,7	1,354 / 178,4	0,9891 / 187,8	0,6632 / 197,2
0,8	1,359 / 185,0	1,006 / 195,7	0,692 / 206,3

Продовження таблиці 3.2

	Розрахункові	СОР _{е,н} /t _{2,н} , °С	
	величини		
$\eta_{\rm scurv}$	Тиск, р _{2н} ,		
I SGHX	$\Pi = p_{2H}/p_{B}$	р _{2н} =115 бар;	П=5,045
		t _H ,°C	
	40	50	60
0,2	1,311 / 149,2	0,9401 / 152,1	0,5511 / 154,9
0,3	1,316 / 156,2	0,9596 / 160,4	0,5893 / 164,6
0,4	1,321 / 163,1	0,9776 / 168,6	0,624 / 174,1
0,5	1,326 / 169,9	0,9946 / 176,8	0,65557 / 183,6
0,6	1,331 /* 176,6	1,01 / 184,8	0,6852 / 192,9
0,7	1,336 / 183,3	1,026 / 192,8	0,7126 / 202,2
0,8	1,341 / 190,0	1,04 / 200,7	0,7384 / 211,4

Продовження таблиці 3.2

	Розрахункові	СОР _{е,н} /t _{2,н} , °С
	величини	
$\eta_{\rm scurv}$	Тиск, р _{2н} ,	
I SGHX	$\Pi = p_{2H}/p_{B}$	р _{2н} =120 бар; П=5,265

		t _H ,°C	
	40	50	60
0,2	1,295 / 153,7	0,9716 / 156,6	0,6109 / 159,4
0,3	1,299 / 160,7	0,988 / 165,0	0,6449 / 169,2
0,4	1,304 / 167,7	1,004 / 173,3	0,6757 / 178,8
0,5	1,308 / 174,5	1,018 / 181,4	0,704 / 188,3
0,6	1,312 / 181,3	1,032 / 189,5	0,7303 / 197,7
0,7	1,316 / 188,0	1,045 / 197,6	0,7549 / 207,1
0,8	1,321 / 194,7	1,058 / 205,6	0,778 / 216,4

На підставі даних, представлених в додатку 3.1, побудовані графічні залежності коефіцієнта перетворення і температури на вході в газоохолоджувач від тиску нагнітання $p_{2\mu}$ і температурної ефективності перегріву робочої речовини в регенеративному теплообміннику, η_{SGHX} , рис.3.1. і 3.2. Графіки побудовані тільки для $t_4 = 40$ °С, так як при більш високих температурах СОР_н набуває недопустиме значення.

Аналіз вказаних залежностей вказує,що $ext{COP}_{eH}$ має явно виражений максимум в інтервалі тисків 100÷105 бар незначно залежить від величини η_{SGHX}

Остаточне рішення з вибору величини η_{SGHX} приймаємо на основі графіку на рисунку 3.2, де показано граничний рівень температури $t_{2,\mu}=150^{\circ}$ С.

Цей рівень температури t_{2,н} відповідає умові забезпечення хімічної стабільності холодоагента верхній гілці, а саме R236fa.

Рисунок 3.1. Залежність коефіцієнта перетворення циклу нижньої гілки каскада від тиску нагнітання компресора.

Рисунок 3.2. Графік залежності $t_{2,H}=f(p_{2,H})$.

На основі даних з графіків (рис. 2.2 і 2.3) приймаємо в якості нижченаведених параметрів, що уточнюють вихідні дані в таб. 3.1:

Р_{2,н}=100 бар; η_{SGHX}=0,4; t₄=40°С.

Розрахунок нижньої гілки каскада характеризується наступними параметрами, які представлені в таб.3.2.

Точки	Температура	Тиск	Ентальпія	Густина
	°C	кПа	кДж/кг	кг/м ³
1н	10,6	2279	467,1	50,1
2s	130,6	10000	538,6	138,5
2н	148,3	10000	569,2	146,4
3н	148,3	10000	569,2	1464
4н	40,0	10000	313,8	622,6
5н	35,3	10000	290,9	706,1
6н	-15,0	2293	290,9	(x _{6H} =0,46)
7н	-10,0	2293	442,7	58,2
8н	-9,0	2279	444,3	57,3

Таблиця 3.3. Параметри стану R744 у вузлових точках циклу.

Режимні параметри даного циклу визначаються на основі даних в таблицях 3.1 і 3.2:

• Питома холодопродуктивність циклу, q_{0,н},

 $q_{0,{\rm H}}\!\!=\!\!h_{7,{\rm H}}\!\!-\!\!h_{6,{\rm H}}\text{,}$

q_{0,н}=442,7-290,9=151,8 кДж/кг;

• Масова витрата холодоагента, na $m_{a,\mu}$

$$m_{a,H} = Q_{0,H} / q_{0,H}$$

*п*а_{*а,н*} =10/151,8=0,0659 кс/с;

• Питома політропна робота циклу, l_{i,н}

 $l_{i,{\rm \tiny KM}}\!\!=\!\!h_{2{\rm \tiny H}}\!\!-\!\!h_{1{\rm \tiny H}},$

l_{i,км}=569,2-467,1=102,1 кДж/кг;

• Індикаторна потужність компресора, N_{і,км}

$$\mathbf{N}_{i,\mathrm{KM}} = \mathcal{N}_{a,\mu} \cdot \mathbf{l}_{i,\mathrm{KM}},$$

N_{i,км}=0,0659·102,1=6,728 кВт

• Ефективна потужність компресора, N_{е,н}

N_{e,км}=N_{i,км}/η_{мех,км} де η_{мех,км}=0,9 − коефіцієнт корисної дії компресора; N_{e,км}=6,728/0,9=7,47 кВт

- Об'ємна продуктивність компресора за умовами всмоктування,
 V^Q_{1,км} = n^Q_{a,н} / ρ_{1,н}
 V^Q_{1,км} = 0,659 / 50,1 = 0,001315 m³ / c = 4,73 m³ / год
- Теоретична об'ємна продуктивність компресора, $V_{h,\mu}^{\&}$

 $V_{h,\mu}^{\&} = V_{1,\kappa\mu}^{\&} / \lambda_{\nu},$

де $\lambda_v = 0,7 -$ коефіцієнт подачі комресора,

 $V_{h,\kappa_{M}}^{\&} = 4,73/0,7 = 6,76 \, \text{m}^{3}/200$,

• Ступінь підвищення тискув компресорі, П_н,

 $\Pi_{\rm H} = p_{2\rm H}/p_{1\rm H}$ $\Pi_{\rm H} = 10000/2279 = 4,287$

Питома теплове навантаження на газоохолоджувач
 q_{го,н}=h_{3н}-h_{4н}

q_{го,н}=569,2-313,8=255,4 кДж/кг

• Тепловий потік відведений від R744 до газоохолоджувача

- Питоме теплове навантаження на регенеративний теплообмінник q_{рто,н}=h_{4н}-h_{5н}, q_{рто,н}=313,8-290,9=22,9 кДж/кг
- Тепловий потік, що відбирається від рідини в регенеративному теплообміннику

$$\mathcal{Q}_{pmo,H} = n \mathcal{X}_{a,H} \cdot q_{pmo,H}$$

$$\mathscr{G}_{pmo,\mu}^{k} = 0,0659 \cdot 22,9 = 1,509 \kappa Bm$$

• Коефіцієнт перетворення циклу

 $\text{COP}_{e,H} = \mathcal{O}_{0,H}^{k} / N_{e,KM},$ $\text{COP}_{e,H} = 10/7,47 = 1,339.$

Результати розрахунків циклу нижньої гілки заносимо до таблиці 3.4.

Таблиця 3.4. Параметри циклу ПКХМ нижньої гілки.

Параметри	Позначення	Розмірність	Величина
Холодоагент	R744 (діоксид вуглецю)		
Випарник:			
- тиск	р _{0,н}	бар	22,93
- температура на вході	t _{6,н}	°C	-15
- температура на виході	t _{7,н}	°C	-10
Компресор			
- тиск всмоктування	р _{1,н}	бар	22,79
- тиск нагнітання	р _{2,н}	бар	100
- відношення тисків	П _н	-	4,387
- температура	t	°C	10.6
всмоктування	С1,Н	6	10,0
- температура нагнітання	t _{2,н}	°C	148,3
- масова витрата	nex _{а,н}	кг/с	0,0659
 об'ємна продуктивність 	$V_{1,\kappa_M}^{\&}$	м ³ /год	4,73
- теоретична	V&	м ³ /год	676
продуктивність	, h,км	МЛОД	0,70
- ефективна потужність	N _{е,км}	кВт	7,47
Газоохолоджувач			
- температура на вході	t _{3H}	°C	148,3
 температура на виході 	t _{4,H}	C°	40

- тиск	р _{2,н}	бар	100
- теплове навантаження	Ф _{го,н}	кВт	16,83
Регенеративний			
теплообмінник			
* густина рідкої фази			
холодоагенту			
- тиск	р _{2,н}	бар	100
- температура на вході	t _{4,H}	°C	40
 температура на вході 	t _{4,H}	°C	35,3
* густина парової фази			
холодоагенту			
- тиск на вході	р _{8,н}	бар	22,93
- тиск на виході	р _{1,н}	бар	22,79
 температура на вході 	t _{8,н}	°C	-9,0
- температура на виході	t _{1,H}	°C	10,6
*теплове навантаження	Е рто,н	кВт	1,51
Коефіцієнт перетворення з ефективної потужності	COP _{e,H}	-	1,339

4. РОЗРАХУНОК ПАРАМЕТРІВ ЦИКЛУ ВЕРХНЬОЇ ГІЛКИ

4.1 Вихідні дані

Схемно-циклове рішення для верхньої гілки каскада представлено і описано на рисунку 2.1,2.3 і в розділі 2.

В даному випадку розглядається пароежекторна холодильна машина (ПЕХМ), в якій джерелом теплоти для парогенераціі робочої речовини є тепловий потік, що відбирається від робочої речовини нижньої гілки в газоохолоджувачі.

На підставі виконаного аналізу вихідні дані для розрахунку даного циклу представлені в таблиці 4.1.

Таблиця 4.1 Вихідні дані для розрахунку ПЕХМ

Параметри	Позначення	Розмірніс	Велич
		ТЬ	ина
Робоча речовина		R236fa	
Парогенераторна порожнина			
газоохолоджувача			
- температура кипіння холодоагента	t _A	C°	100
- перегрів пари	$\Delta t_{\rm A}$	C	20
Теплове навантаження зі сторони	Å	кВт	16,8
холодоагента нижньої гілки	У го,н	KD1	3
Випарник В2			
- температура кипіння холодоагента	t _{0,в}	°C	-2
 масова частка пара на виході з В2 	Χ _{1π}	-	1,0
Конденсатор			
 температура конденсації 	t _ĸ	°C	30
Ступінь розширення пасивного потоку			
у всмоктувальній порожнині	SNPD	кПа	30
ежектора(suction nozzle pressure drop)			
Ефективний ККД насоса	$\eta_{\scriptscriptstyle \rm H}$	-	0,65

4.2 Визначення параметрів холодоагенту в вузлових точках циклу

Розрахунок параметрів холодоагента у вузлових точках циклу, режимних параметрів в елементах ежектора виконуємо за методикою, викладеною в [3,4,5]. В таблиці 4.2 і 4.3 приведено показники цих розрахунків.

N⁰	t	р	h	S	ρ	Х
точки	°C	кПа	кДж/кг	кДж/(кг•К)	кг/м ³	-
1'	100	1950	337	1,42	1020	0,0
1''	100	1950	418	1,64	160	1,0
1 _A	120	1950	445	1,71	130	-
2 _{AS}	35	70	390	1,71	4,3	-
1_{Π}	-2	100	358	1,57	7,2	1,0
2_{Π}	-10	70	350	1,56	5,3	1,0
5	30	320	237	1,13	1350	0,0
6	31	1950	238	1,14	1360	0,0
7	-2	100	237	1,135	1090	0,25
2 _A	45	1950	395,36	1,42	1020	314,14
2	38	80	388,3	1,71	5	-
3	55	160	403,8	1,725	8,5	228,8
4	84	320	429,8	1,75	18	20

Таблиця 4.2. Параметри стану холодоагента R236fa.

Параметри	Розмірн Вал		Dominio
	Позначення	ість	Беличина
Холодоагент	R236fa		
Параметри активного потоку			
- тиск	p _a	кПа	1950
- масова витрата	nor	кг/с	0,0772
Параметри пасивного потоку			
- тиск	pп	кПа	100
- масова витрата	n <mark>e</mark> x	кг/с	0,0143
Параметри потоку змішування			
- тиск	pк	кПа	320
- масова витрата	Maz 3M	кг/с	0,09148
Теплове навантаження для			
парогенерації R236fa в	$\mathcal{Q}_{_{ro, 6}}$	кВт	16,0
газоохолоджувачі			
Температура холодоагента в		I	I
газоохолоджувачі			
- на вході	t ₆	°C	30
- на виході	t _{1,A}	°C	120
 у випарниковій частині 	t _{1'} ,t _{1''}	°C	100
Коефіцієнт ежекції в ежекторі	U	-	0,185
Ступінь розширення активного потоку	$\Pi_A = \frac{P_A}{P_{\Pi}}$	-	19,5
Ступінь стиснення пасивного потоку	$\Pi_{\Pi} = \frac{P_{K}}{P_{\Pi}}$	_	3,2
Теплове навантаження на конденсатор	${ otin{tabular}{l}} { otint{tabular}{l}} { otint{tabular}{l} { otint{tabular}{l}} { otint{tabular}{l} { otint{tabular}$	кВт	17,64

Таблиця 4.3. Параметри циклу ПЕХМ верхньої гілки.

холодопродуктивність випарника В2	${ ot\!\!\!\!\mathcal{Q}}_{0,B}$	кВт	1,73
Ефективна потужність насоса холодоагента	N _{e,n}	кВт	0,143
Об'ємна витрата холодоагента через насос	V&r	м ³ /год	0,206
Коефіцієнт перетворення	COP _B	-	0,11

5. РОЗРАХУНОК ЕНЕРГЕТИЧНОЇ ЕФЕКТИВНОСТІ ХОЛОДИЛЬНОЇ МАШИНИ

Енергетична ефективність виробництва холоду по гілках каскаду даної холодильної машини представлена вище у вигляді відповідних коефіцієнтів перетворення

- Для нижньої гілки, COP_{е.н}=1,339

- Для верхньої гілки, СОР_в=0,11

- Для верхньої гілки без урахування теплоті $\mathscr{G}_{20.6}$, COP_{e,B}=12,1

Зіставлення цих величин не є коректним, з огляду на те, що в якості витраченої на термотрансформацію енергії розглядається їх різні форми, механічна і теплова.

Для коректного зіставлення використовується величина коефіцієнта перетворення по повному ланцюгу від первинного енергоресурсу, що позначається у вигляді COP_{Σ} Цей коефіцієнт враховує ефективність перетворення хімічної енергії викопного палива в теплоту і далі в електроенергію для приводу компресора, насоса та інших елементів холодильної машини.

Для циклу нижньої гілки СРО_Σ записується у вигляді:

$$COP_{\Sigma,H} = \frac{\mathcal{Q}_{0,}}{N_{e,KM} / COP_{E\Gamma}} = COP_{e,H} \cdot COP_{E\Gamma}$$

Де СОР_{ЕГ}=0,28...0,3 – коефіцієнт перетворення при генерації і транспортуванні електричної енергії.

Таким чином:

 $COP_{\Sigma,H} = 1,339.0,3 = 0,4$

Для циклу верхньої гілки маємо:

$$COP_{\Sigma,B} = \frac{\cancel{0}_{0,B}}{\cancel{0}_{TO,B} + Ne_{H} / COP_{E\Gamma}}$$
$$COP_{\Sigma,B} = \frac{1,73}{16 + 0,143 / 0,3} = 0,105$$
$$COP^{*}_{\Sigma,B} = \frac{1,73}{0,143 / 0,3} = 3,629$$

В цілому для каскадної холодильної машини енергетична ефективність буде коректно оцінена за допомогою коефіцієнта перетворення СОР_Σ,

$$(COP_{\Sigma})_{KXM} = \frac{\mathcal{Q}_{0,B}^{\chi} + \mathcal{Q}_{0,H}^{\chi}}{(N_{e,KM} + N_{e,H}) / COP_{E\Gamma}}$$
$$(COP_{\Sigma})_{KXM} = \frac{10 + 1,73}{7,47 + 0,143} \cdot 0,3 = 0,462$$

Приріст енергетичної ефективності холодильної машини, якщо теплоту газоохолоджувача використовувати для отримання додаткової холодопродуктивності запишеться у вигляді:

 $\Delta(\text{COP}_{\Sigma}) = (\text{COP}_{\Sigma})_{\text{KXM}} - \text{COP}_{\Sigma,\text{H}}$ $\Delta(\text{COP}_{\Sigma}) = 0,462 - 0,4 = 0,062$

Відносна величина збільшується енергетичною ефективністю каскадної холодильної машиною становить:

$$\frac{\Delta(COP_{\Sigma})}{COP_{\Sigma,\mu}} = \frac{0,062}{0,4} = 0,155, \text{ тобто } 15,5\%$$

Енергетичну ефективність каскадної холодильної машини можна також визначити шляхом використання ексергетичного методу термодинамічного аналізу, на базі робіт [7,4,6,8]

Для даної системи у вигляді каскадної холодильної машини ексергетична ефективність запишеться у вигляді:

$$\varepsilon_{\rm KXM} = \frac{\oint_{\rm KO}^{\rm X} (1 - \frac{T_{\rm H.C}}{T_{\rm K}}) - \oint_{\rm 0,H}^{\rm X} (1 - \frac{T_{\rm H.C}}{T_{\rm 0,H}}) - \oint_{\rm 0,g}^{\rm X} (1 - \frac{T_{\rm H.C}}{T_{\rm 0,g}})}{N_{e,H} + N_{e,H}}$$

При допущенні, що розрахункова температура навколишнього середовища, Т_{н.с} дорівнює температурі конденсації, Т_{н.с}=Т_к= 303К отримаємо

$$\varepsilon_{\rm KXM} = \frac{14,8(1 - \frac{303}{303}) - 10(1 - \frac{303}{268}) - 1,73(1 - \frac{303}{271})}{7,43 + 0,143} = \frac{0 + 1,306 + 0,204}{7,613} = 0,198 \approx 0,2$$

Для холодильної машини на R744 без використання теплоти газоохолоджувача ексергетичної ефективність при віднесенні теплоти газоохолоджувача до втрат енергії має вигляд:

$$\varepsilon_{xm} = \frac{-\mathcal{Q}_{0,n}^{z}(1 - \frac{T_{n.c.}}{T_{0,n}})}{N_{e,\kappa m}},$$
$$\varepsilon_{xm} = \frac{-10(1 - \frac{303}{268})}{7,47} = 0,175$$

Звідки випливає, що відносне збільшення ексергетичної ефективності для какскадной схеми:

$$\frac{\Delta \varepsilon}{\varepsilon_{_{XM}}} = \frac{0, 2 - 0, 175}{0, 175} = 0,143$$
, або ж це 14,3%

Результати розрахунків ефективності застосування енергозберігаючої схеми холодильної машини зведені в таблицю 5.1

Таблиця 5.1. Показники енергоефективності

Показники	Позначення	Величина
Коефіцієнт перетворення		
 У циклі нижньої гілки 	COP _{e,H}	1,34
 У циклі верхньої гілки 	COP _B	0,11
- У циклі верхньої гілки без урахування теплоти $\mathscr{G}_{_{co, в}}$	COP _{e,B}	12,1
Коефіцієнт перетворення по повному		
ланцюгу енергоперетворень		
 У циклі нижньої гілки 	$\operatorname{COP}_{\Sigma,\mathrm{H}}$	0,4
 У циклі верхньої гілки 	$\operatorname{COP}_{\Sigma, \mathtt{B}}$	0,105
- У циклі верхньої гілки без урахування теплоти $\mathscr{G}_{\scriptscriptstyle co, 6}$	COP [*] _{∑,B}	3,63

- Каскадної схеми	$(\text{COP}_{\Sigma})_{\text{KXM}}$	0,462
Ексергетична ефективність		
- Холодильна машина без		
використання теплоти	$\epsilon_{_{XM}}$	0,175
газоохолоджувача		
 Каскадна схема холодильної машини 	ε _{κcx}	0,2

ВИСНОВОК

- 1. Виконано оптимізаційні розрахунки параметрів циклу нижньої гілки каскадної холодильної машини для узгодження можливостей використання в верхній гілці холодоагенту R236fa.
- Теоретично на базі ексергетичного аналізу обґрунтовано доцільність використання теплоти газоохолоджувача углекислотной холодильної машини в циклі тепловикористовуючої холодильної машини (підвищення ексергетичної ефективності на 14,3%)
- 3. Пропоновані напрямки: нижня гілка з використанням компресорнодетандерних агрегатів дозволяє збільшити температурний інтервал в газоохолоджувачі без зниження ефективності. Для верхньої гілки можливе використання інших схемних рішень (цикл Чистякова-Плотнікова, цикл з двуфазность ексектором і ін)

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Петренко В. А. Новый термодинамический цикл каскадной компрессионио-эжекторной холодильной машины и его анализ // холодильная техника и технология, - 2002, - №1(75). – с.21-26.
- Петренко В. А., Ерин В. А. Каскадные и комбинированные компрессионио-эжекторные холодилшьные машины, работающие на природних робочих веществах. Сталий розвиток і штучний холод/ Збірник наукових праць VIII Міжнародної науко-технічної конференції. Херсон: Гринь Д. С.,2012. – с.88-93.
- Сакун И.А. Холодильные машини / под ред. И. А. Сакуна. Л.: Машиностроение, 1985.-510с.
- Морозюк Т. В. Теория холодильних машин и тепловых насосов / Т.
 В. Морозюк. Одесса: Студия «Негоциант»,2006 . 712с. (с приложением)
- 5. Тепловые и корнструктивные расчеты холодильних машин: Учебное пособие для вузов по специальностим «Холодильные и компрессорные машины и установки»/ Е.М. Бамбушек, Н.Н. Бухарин и др..; Под общей редакцией И.А. Сакуна. – Л.: Машиностроение. Ленинград отд-ние 1987.-423с.
- 6 Арсеньев В.М. Теплові насоси: основи теорії і розрахунку: навчальний посібник / В.М. Арсеньєв, С.С. Мелейчук. Суми: Сумський державний університет, 2018. 364с.
- 7 Тсатсаронис Д. Взаимодействие термодинамики и экономики для минимилизации стоимосити энергопреобразующей системы / Д. Тсатсаронис. Одесса: ООО ,Студия «Негоциант», 2002.-152с.
- 8 Арсеньєв В.М. Теплонасосна технологія енергозбереження: навчальний посібник / В.М. Арсеньєв. – Суми: Сумський державний університет, 2011.- 283с.