Shafts, axels_3

FATIGUE STRENGTH

The failure began at the end of a keyway that was machined without fillets (B) and progressed to final rupture at (C). The final rupture zone is small, indicating that loads were low.

Changing of bending stresses

Changing of torsion stresses

Fatigue Limit (**endurance limit**) is the stress level, below which fatigue failure does not occur. This limit exists only for some ferrous (iron-base) and titanium alloys, for which the S–N curve becomes horizontal at higher N values. Other structural metals, such as aluminium and copper, do not have a distinct limit and will eventually fail even from small stress amplitudes.

Fatigue Strength - the value of stress at which failure occurs after some specified number of cycles

Fatigue Life characterizes a material's fatigue behavior. It is the number of cycles to cause failure at a specified stress level

Haigh Diagram (Goodman diagram)

$$
S_{\sigma} = \frac{\sigma_{fa}}{K_{\sigma d} \sigma_a + \psi_{\sigma} \sigma_m}
$$

Safety factor

$$
S \geq \begin{bmatrix} S \end{bmatrix} \qquad \text{Safety factor}
$$
\n
$$
S_{\sigma} = \frac{\sigma_{fa}}{K_{\sigma d} \cdot \sigma_{\text{max}}} \qquad S_{\tau} = \frac{\tau_{fa}}{K_{\tau d} \cdot \tau_{\text{max}}}
$$

$$
S_{\sigma} = \frac{\sigma'_{\text{max}}}{\sigma_{\text{max}}} = \frac{\sigma'_{m} + \sigma'_{a}}{\sigma_{m} + \sigma_{a}} = \frac{OK'}{ON}
$$

 $OA = \sigma_{fa}$

 $OM = OF + FM = \sigma_a + \sigma_m \cdot tg\gamma$

$$
\psi_{\sigma} = tg\gamma = \frac{\sigma_{fa}}{\sigma_{u}}
$$

$$
K_{\sigma d} = \frac{K_{\sigma}}{K_b \cdot K_a} \qquad K_{\tau d} = \frac{K_{\tau}}{K_b \cdot K_a} \qquad \text{the}
$$

the total factors of fatigue strength reducing

 $K_{\;\sigma_{\!c}}^{}K_{\tau}^{}$ stress concentration factors

K_a surface roughness factor

 K_h scale factor

Obtained experimentally, analytically, etc

Published in charts and tables

Values of size factor

The most typical stress concentrations of the shaft

- Filleted transition regions;
- Grooves;
- Radial holes;

-
- Keyed and splined portions;
- Threaded portions;
- Interference fits.

 (b)

 \propto \times

Safety factor for bending Safety factor for torsion

Safety factor for torsion
\n
$$
S_{\tau} = \frac{\tau_{\text{fa}}}{K_{\text{b}} \cdot K_{\text{a}}} \cdot \tau_{\text{a}} + \psi_{\tau} \cdot \tau_{\text{m}}
$$
\nSafety factor
\n
$$
\frac{\sigma \cdot S_{\tau}}{\frac{\sigma}{\sigma} + S_{\tau}^{2}} \geq [S] = 1.5...2.5.
$$

Safety factor

 $\frac{S_{\tau}}{S_{\tau}}$ > $[S]$ = 1.5...2.5. Safety factor
 $\frac{\sum_{\tau}^{1} S_{\tau}}{2 + S_{\tau}^{2}} \geq [S] = 0$ *Safety factor for torsion*
 $S_{\tau} = \frac{\tau_{\text{fa}}}{K_{\tau}} \cdot \tau_{\text{a}} + \psi_{\tau} \cdot \tau_{\text{a}}$
 $S_{\tau} = \frac{K_{\tau}}{K_{\text{b}} \cdot K_{\text{a}}} \cdot \tau_{\text{a}} + \psi_{\tau} \cdot \tau_{\text{a}}$
 $S_{\tau} = \frac{S_{\sigma} \cdot S_{\tau}}{\sqrt{S_{\sigma}^{2} + S_{\tau}^{2}}} \geq [S] = I.5...2.5.$ $S_{\tau} = \frac{S_{\tau}}{K}$
 Safety factor
 $\frac{S_{\sigma} \cdot S_{\tau}}{S_{\sigma}^2 + S_{\tau}^2} \geq [S] = 1.5...2.5$

$$
S_{\sigma} = \frac{\sigma_{\text{fa}}}{K_{\sigma} \cdot K_{\text{a}} \cdot \sigma_{\text{a}} + \psi_{\sigma} \cdot \sigma_{\text{m}}}
$$
\n
$$
S_{\tau} = \frac{\tau_{\text{fa}}}{K_{\text{b}} \cdot K_{\text{a}} \cdot \tau_{\text{a}} + \psi_{\tau} \cdot \tau_{\text{m}}}
$$

 $\sigma_{f\alpha}$, $\tau_{f\alpha}$ – limit of endurance in bending and in torsion (table-material)

 $\sigma_{\rm fa}^{} = \theta\raisebox{0.1ex}{\textbf{.}}43 \cdot \sigma_{ult}^{}$ $\,$ - $\,$ for carbon steels; $\sigma_{\rm fa} = 0.35 \cdot \sigma_{ult} + 120$ \quad - for alloy steels; $\tau_{\rm fa} = (0, 2...0.3) \cdot \sigma_{\rm nlt}$.

 σ_{a} , τ_{a} – alternating bending and torsion stresses

$$
\sigma_{\rm a} = \frac{\sigma_{max} - \sigma_{min}}{2} = \sigma_{max} = \frac{M_{\Sigma}}{W} = \frac{M_{\Sigma}}{0.1 \cdot d^3};
$$
\n
$$
\tau_{\rm a} = \frac{\tau_{max} - \tau_{min}}{2} = \frac{\tau_{max}}{2} = 0.5 \cdot \frac{T}{W_p} = 0.5 \cdot \frac{T}{0.2 \cdot d^3}.
$$

$$
\sigma_{m, \tau_{m}}
$$
 -mean bending and torsion stresses
$$
\sigma_{mean} = \frac{\sigma_{max} + \sigma_{min}}{2} = 0;
$$

$$
\tau_{mean} = \frac{\tau_{max} + \tau_{min}}{2} = \frac{\tau_{max}}{2} = 0.5 \cdot \frac{T}{W_{p}} = 0.5 \cdot \frac{T}{0.2 \cdot d^{3}}.
$$

 ψ_{σ} , ψ_{τ} factors of constant components of bending and torsion stresses (table-material)

$$
\psi_{\sigma} = 0.1;
$$
 $\psi_{\tau} = 0.05$ – for carbon steels;
\n $\psi_{\sigma} = 0.15;$ $\psi_{\tau} = 0.1$ – for alloy steels.

STIFFNESS ANALYSIS OF THE SHAFT **Flexural stiffness**

Basic criteria of flexural stiffness are:

- Maximum deflection (sag) *y* of the shaft;
- Angle of rotation θ of support sections.

Flexural stiffness conditions

 $y \leq [y]; \quad \theta \leq [\theta],$

where

[y] is the maximum safe sag; θ *[θ]* is the maximum safe angle of rotation.

[y]= 0.01m – for shafts of spur gears and worm gear drives; *[y]= 0.005m* – for shafts of bevel gear, hypoid gear and hourglass worm gear drives;

[y]= (0.0002…0.0003)l – for general purpose shafts used in machine tools;

 $[*\theta*] = 0.001$ *rad* – for shafts mounted in sliding contact bearings;

 $[*\theta*] = 0.005$ *rad* – for shafts mounted in radial ball bearings.

Torsional stiffness

Basic criterion of torsional rigidity is the angle of twist.

Torsional stiffness condition

 $\varphi \leq [\varphi],$

where $[p]$ is the maximum safe angle of twist.

$$
\varphi=\frac{T\cdot l}{G\cdot J_{\rm p}},
$$

where *T* is torque; *l* is length of the shaft; *G* is shear modulus; J_p = π d⁴/32 is polar moment of inertia.

