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1. The nature and properties of fluids, forces, and flows

1.1  Properties of fluids

1.1.1 Definition of a fluid

(a) Liquid (b) Gas (¢) Liquid with other molecule

Figure 1-1. Behaviour of typical molecules (a) of a liquid, (b) a gas, and (¢) a different molecule in a liquid

A fluid is matter which, if subject to an unbalanced external force. suffers a continuous deformation. The forces
which may be sustained by a fluid follow from the structure, whereby the molecules are able to move freely. Gas
molecules have much larger paths, while liquid molecules tend to be closer to each other and hence are heavier.

Fluids can withstand large compressive forces (pressure), but only negligibly small tensile forces. Fluids at rest
cannot sustain shear forces, however fluids in relative motion do give rise to shear forces, resulting from a mo-
mentum exchange between the more slowly moving particles and those which are moving faster. The momentum
exchange is made possible because the molecules move relatively freely.

Especially in the case of a liquid, we can use the analogy of smooth spheres (ball bearings, billiard balls) to model
the motion of molecules. Clearly they withstand compression, but not tension.

Molecular characteristic Solids Fluids
Liquids Gases

Spacing Small (material is heavy) Large (light)

Activity Very little Vibratory Great, molecules
moving at large
velocities and
colliding

Structure Rigid, molecules do not move | If confined, elastic in compression, not

relative to each other. Stress is | in tension or shear.
proportional to strain
Response to force Resisted continuously, static or | Molecules free to move and slip past
dynamic one another. If a force is applied it con-
tinues to change the alignment of parti-
cles. Liquid resistance is dynamic (in-
ertial and viscous).

Table 1-1. Characteristics of solids and fluids

1.1.2  The continuum hypothesis

In dealing with fluid flows we cannot consider individual molecules. We replace the actual molecular structure
by a hypothetical continuous medium, which at a point has the mean properties of the molecules surrounding the
point, over a sphere of radius large compared with the mean molecular spacing. The term "fluid particle" is taken
to mean a small element of fluid which contains many molecules and which possesses the mean fluid properties at
its position in space.



1.1.3  Density

The density p is the mass per unit volume of the fluid. It may be considered as a point property of the fluid, and is
the limit of the ratio of the mass dm contained in a small volume dV' to that volume:

e lim d&m

P=sv oV
In fact the limit introduced above must be used with caution. As we take the limit 61" — 0, the density behaves as
shown in Figure 1-2. The real limit is 8V — §V*, which for gases is the cube of the mean free path, and for liquids

is the volume of the molecule. For smaller volumes considered the fact that the fluid is actually an assemblage of
particles becomes important. In this course we will assume that the fluid is continuous, the continuum hypothesis.
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Figure 1-2. Density of a fluid as obtained by considering successively smaller volumes 4V, showing the apparent limit of a
constant finite value at a point, but beyond which the continuum hypothesis breaks down.

As the temperature of a fluid increases, the energy of the molecules as shown in Figure 1-1 increases, each molecule
requires more space, and the density decreases. This will be quantified below in §1.1.8, where it will be seen that
the effect for water is small.

1.1.4  Surface tension

This is an important determinant of the exchange processes between the air and water, such as, for example, the
purification of water in a reservoir. or the nature of violent flow down a spillway. For the purposes of this course it
is not important and will not be considered further.

1.1.5 Bulk modulus and compressibility of fluids

The effect of a pressure change Jp is to bring about a compression or expansion of the fluid by an amount V. The
two are related by the bulk modulus /A, constant for a constant temperature, defined:

The latter term is the “volumetric strain”. K is large for liquids, so that density changes due to pressure changes
may be neglected in many cases. For water it is 2.070 GNm 2. If the pressure of water is reduced from I
atmosphere (101,000 N m ?) to zero, the density is reduced by 0.005%. Thus, for many practical purposes water
is incompressible with change of pressure.



1.1.7  Viscosity

If, instead of the fluid being stationary in a mean sense, if parts of it are moving relative to other parts, then if a
fluid particle moves randomly, as shown above, it will in general move into a region of different velocity, there
will be some momentum transferred, and an apparent force or stress appears. This gives rise to the phenomenon of
viscosity, which is a diffusivity associated with the momentum or velocity of the moving fluid, and has the effect
of smoothing out velocity gradients throughout the fluid in the same way that we saw that diffusivity of a substance
in water leads to smoothing out of irregularities.

A model of a viscous fluid: Consider two parallel moving rows of particles, each of mass 7, with N in
each row. The bottom row is initially moving at velocity u, the upper at v + du, as shown in the figure. At a certain
instant, one particle moves, in the random fashion associated with the movement of molecules even in a still fiuid,
as shown earlier, from the lower to the upper row and another moves in the other direction.
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The velocities of the two rows after the exchange are written as v and v + dv. Now considering the momenta of the
two layers, the effect of the exchange of particles has been to increase the momentum of the slow row and decrease
that of the fast row. Hence there has been an apparent force across the interface, a shear stress.

This can be quantified:

Initial z-momentum of bottom row = (Nm)u

Initial z-momentum of top row = (Nm)(u+ du)
Change of z-momentum of bottom row = +mdu

Change of z-momentum of top row = —mdu

Final z-momentum of bottom row = (Nm)w

Final z-momentum of top row = (Nm)(v+ dv)

In the absence of other forces, equating the momenta gives

Nmv = Nmu-+mdu
Nm(v+dv) = Nm(u+ du)—mdu
Thus,
n
v = u+ N and
5
v+o0v = u-+du-— %

Hence the lower slower fluid is moving slightly faster and the faster upper fluid is moving slightly slower than
before. Subtracting, the velocity difference between them now gives

ou
ov=0u—2—,
7 u N

thus dv < du, and we can see the effect of viscosity in reducing differences throughout the fluid.

In fact, if we consider the whole shear flow as shown in Figure 1-4, we can obtain an expression for shear stress in
the fluid in terms of the velocity gradient, as follows:

Impulse of top row on bottom = m du.
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Figure 1-4. Shear flow, where the velocity in one direction u is a function of the transverse velocity co-ordinate z

If 7" is the average time between such momentum exchanges, then

m o
mean shear force = —
As the horizontal velocity « is a function of z, then if the two rows are 4z apart, the differential of w is

du
ou= —uéz.
dz

and the mean shear stress per unit distance normal to the flow is

mean shear force ~ mdu/dzéz
lengthx1 ~ T Noéx

mean shear stress =

where 4z is the mean particle spacing in . Now, m, N 1", §z and 4z are characteristic of the fluid and not of the
flow, and so we have

du
mean shear stress oc 5

¥4

the transverse velocity shear gradient. Fluids for which this holds are known as Newtonian Fluids, as are most
common fluids. The law is written

T=p—, (1.2)

where pu is the coefficient of dynamic viscosity, which is defined here. Although we have only considered parallel
flows here, the result has been found to apply throughout Newtonian fluid flow.

Effects of viscosity:  The law (equation 1.2) shows how a transverse shear flow gives rise to shear stresses,
which acts, as suggested more immediately by the molecular argument above, so as to redistribute momentum
throughout a fluid. (Consider how stirring a bucket of water with a thin rod can bring all the water into rotation -
imagine trying to stir a fluid without viscosity!) If the fluid at the boundary of a flow has a certain specified velocity
(i.e. momentum per unit mass), then viscosity acts so as to distribute that momentum throughout the fluid. This can
be shown by considering the entry of flow into a pipe as shown in Figure 1-5. On the pipe wall the fluid velocity
must be zero, as the molecules adhere to the wall. Immediately inside the pipe entrance the velocity differences are
large, as viscosity has not yet had time to act, but as flow passes down the pipe viscosity acts so as to smooth out
the differences, until a balance is reached between the shear stresses set up by the viscosity, the driving pressure
gradient, and the momentum of the fluid.

Figure 1-5. Entry of viscous flow into a pipe, showing the effect of viscosity smoothing the initially discontinuous velocity
distribution



1.1.8  Typical values of physical properties of water

Temperature (°C) 0 4 10 20 30 .. 50 ... 100
Density( kgm?) 999.8 1000 999.7 9983 995.7 .. 988 .. 9581
Kinematic viscosity 1780 1.584 1300 1.006 0805 .. 0556 .. 0294

(units of 10°% m?s 1)

Table 1-2. Variation with temperature of the properties of pure water with no dis-
solved substances, from Jirka (2005) for the companion subject to this

The density of water depends on temperature (see Table 1-2), dissolved solid concentration (especially salt), but

little with pressure, as we have seen above. Changes in temperature and salinity are responsible for a number of

phenomena associated with convection currents and gravity currents, particularly in the ocean and lakes. However

in many fluid flows in rivers and pipes, these differences are small and can be ignored.

g (ms”)
9.83

=t 982 1

Figure 1-7. Variation of gravitational acceleration ¢ (m s~ ?) with latitude.

Gravitational acceleration varies between 9.78 ms 2 at the equator and 9.83 ms 2 at the poles, so that students
could use an appropriate value, as portrayed in Figure 1-7, however it is clear that a value of 9.8 ms 2 is accurate
enough, and even a value of 10 ms 2 (correct to 2%) could be used with an accuracy commensurate with almost
all of the theories and methods presented in this course.

Density of fresh water p 1000 kgm™*
Density of sea water p 1025 kgm *
Gravitational accelerationg 9.8~ 10 ms 2
Kinematic viscosity » 108 m?s

Table 1-3. Typical values of physical properties associated with water problems

In view of all the above remarks, in many engineering problems and in this course typical constant values can be
assumed, which are set out in Table 1-3. It is a strange fact, and with the exception of the density of fresh water,
an accidental one, that all of these quantities are close to an integer power of 10!



1.2 Forces acting on a fluid
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(a) Body force vector acting through (b) Pressure force vector acting normal
centre of mass of fluid particle to local surface of fluid

Figure 1-8. The two types of forces acting on a fluid particle — body force such as gravity acting through the centre of mass,
and surface force, in this case pressure acting normally to the local surface.

Consider figure 1-8 showing the two dominant types of forces acting on fluid particles.

1. Body forces — this type of force acts at a distance, penetrating deep inside the fluid. - the most common is
that duc to gravity. It is usually expressed as an acceleration, or, force per unit mass:

0F oty = 0mg = pg oV,

where g is the acceleration due to gravity, g = (0,0, —g), where we have assumed that the > co-ordinate is
vertically upwards.

2. Surface forces
a. Pressure forces — These are due to molecular motions of particles. Let n be a unit vector normal to the
surface, directed into the fluid. then

6Fpressum =-=p d/‘ n.

Pressure is a scalar quantity. In a static fluid (one where all particles have the same velocity) there are no
other stresses acting, and equilibrium of a finite volume lcads to Pascal’s Law?: pressure exerted anywhere
in a static fluid is transmitted equally in all directions.

b. Shear forces — the relative motion of real fluids is accompanied by tangential stresses. Those due to vis-
cous effects, whereby momentum exchange due to random movement of molecules occurs, are relatively
small in hydraulics problems. Rather more important than that of individual molecules is the momentum
exchange by turbulence and large masses of fluid.

1.3 Units

Throughout we will use the Systéme Internationale, in terms of metres, kilograms and seconds, the fundamental
units of mass (M), length (L) and time (T) respectively. Other quantities are derived from these. All are set out in
Table 1-4. Some of the derived quantities will be described further below.



Quantity Dimensions Units
Fundamental quantities

mass M kg

length L, m

time i | s

temperature 0 °Cor°K =°C+273.15
Derived quantities

linear velocity ElZ > ms '

angular velocity g1 s!

linear acceleration ~ LT 2 ms 2

volume flow rate [T m®s !

mass flow rate MT?! kgs !

linear momentum ML T ! kems !

force MLT 2 1 kgms 2 =1 N (Newton)

work, energy MI2T 2 INm = 1J (Joule)

power ML2T®  1Js ' — 1W (Wat))

pressure, stress ML 'T"?2 1Nm 2= 1Pa(Pascal) = 10 ® bar

surface tension MT 2 Nm?!

dynamic viscosity ML 'T*  1kem 's ' = 10 Poise

kinematic viscosity  L>T~! 1m?s™! = 10" Stokes

Table 1-4. Quantities, dimensions, and units

1.4 Turbulent flow and the nature of most flows in hydraulics

1.4.1 Reynolds’ experiments (1883)

Reynolds’ non-dimensionalised the differential equations which govern the flow of viscous fluid, and found that

Laminar flow.

A Y

“Turbulent flow

Figure 1-9. Reynolds’ apparatus — the diagram showing the dye trace in the pipe for two different flow cases.

for dynamic similarity between two geometrically similar flow situations the dimensionless group Velocity scale
x Length scale /~ must be the same in the two cases, the quantity which is now called the Reynolds number (for
these pipe experiments the mean velocity U/ and pipe diameter were used). To determine the significance of the
dimensionless group Reynolds conducted his experiments on flow of water through glass tubes, as shown in Figure
1-9, with a smooth bellmouth entrance and dye injected into the tube. For small flows the dye stream moved as
a straight line through the tube showing that the flow was laminar. With increasing velocity, and hence Reynolds
number, the dye stream began to waver and then suddenly broke up and was mixed through the tube. The flow
had changed to turbulent flow with its violent interchange of momentum. Starting with turbulent flow in the glass
tube, Reynolds found that it always becomes laminar when the velocity is reduced to make U D /v less than 2000.
Usually flow will change from laminar to turbulent in the range of Reynolds numbers from 2000 to 4000. In
laminar flow the losses are proportional to the average velocity, while in turbulent flow, proportional to a power of
velocity from 1.7 to 2.



The Reynolds number: It is an historical accident that in his 1883 paper, Osborne Reynolds introduced
the quantity that has since been called the Reynolds Number and given the symbol 2, which is the inverse of the
dimensionless viscosity, defined as

v 174 ?

which has been almost universally used as the measure of the relative importance of viscosity. It would have been
more satisfying if that number had been defined upside down as dimensionless viscosity! With the traditional

definition, high Reynolds number flows are those which are large and/or fast such that the effects of viscosity are

small. In environmental hydraulics problems, with, say, a typical length scale of 1 m, a velocity scale of Tms !,

and a typical value for water at 20°C of » = 1 x 107 %m”s~ ', a value of R = 10° (v, = 107%) is obtained,
showing how viscosity is unimportant in many outdoor problems. Flows in pipes, however, because they can
be smaller and have slower flow, may have Reynolds numbers of the order of 10%, when viscous effects may be
present.

The term “droplet liquid” “fluid” is a low-compressible medium, and the term "compressible
liguid" is a gas. Consequently, a liquid is understood as any medium with the property of fluidity.
Fluid has a certain volume, which practically does not change under the influence of forces.

Gases, occupying a certain space, can significantly change the volume, contracting and expanding
under the influence of forces.

This means that fluid easily change shape, in contrast to solids, but they hardly change the volume,
and gases easily change both shape and volume.



Conventional Derivation of the Van der Waals Equation

The state of a given amount of any substance can be described by three parameters: pressure p,
volume V, and temperature 7. These parameters are related to each other. Their relationship is

described by the equation of state, which in the general case has the form:
F(p,V,T)=0.

The specific form of the equation depends on the substance. For example, a rarefied gas at a
sufficiently high temperature is well described by the ideal gas model. Its equation of state is the well-

known ideal gas law stated by Emile Clapeyron (1799 — 1864) in 1834 :

m
Ve 2
PV =M

Here m is the mass of the gas, M is the molar mass (i.e. the mass of one mole of the gas), R is the

universal gas constant. For one mole of gas, this equation takes the following form:
oV = RT.

Subsequent experiments revealed deviations in the behavior of real gases from the ideal gas law.
These results were summarized by the Dutch physicist Johannes Diderik van der Waals

(1837 — 1923) who in 1873 proposed a more accurate equation of state for a real gas.



Fig.1 Johannes Diderik van der
Waals (1837-1923)

It is called the Van der Waals equation. For one mole of a gas, it can be written as
a
(p+775) (V—b) = BT.

This equation takes into account the attractive and repulsive forces between molecules. The attractive

forces are taken into account through the near-wall effect.



Van der Waals Isotherms

At a fixed temperature, the Van der Waals equation describes the dependence p (V). In the pV-plane,
this dependence is represented as a family of isotherms, each of which corresponds to a certain
temperature.

For a fixed value of p, the resulting equation is a third degree equation with respect to the variable V.
It is known that a cubic equation can have 1 or 3 real roots. The first case occurs at high temperatures

T (the green isotherm AB in Figure 3).

pressure p
A

‘ >
o Vi WVl Vs volume V
Figure 3.

With lowering the temperature, an undulating region appears on the isotherm. In this case, there are
three roots (the blue isotherm EFGHI.JL). The transition between the two types of isotherms occurs

at a certain temperature Tk, which is called the critical temperature.

To quantify just how compressible substances are, it is necessary to define the property. The isothermal compressibility is defined by the fractional differential
change in volume due to a change in pressure.
R )G
& V\dp/y

The isothermal bulk modulus of an ideal gas is the ratio of change in pressure (Ap) to the fractional change in volume (AV/V) at constant gas
temperature T Differentiate the ideal gas equation pV = nRT to get pAV + VAp = ie, AV/V = —Ap/p. Note that AT = 0 because the
temperature is constant. Substitute AV /V' in the defining equation to get the isothermal bulk modulus

Ap

Bi& chermal — — = In
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2. Hydrostatics

An understanding of fluid statics is essential for the design of hydraulic structures, tanks, ships, pressure measure-
ment and meteorology. We will consider the equilibrium of a mass of fluid which is at rest, or in uniform motion,
when no element of fluid moves relative to any other element. As there are no velocity gradients, there are no shear
stresses. The pressure forces balance applied body forces, in accordance with Newton’s second law.

2.1 Fundamentals

2.1.1  Pressure at a point

The pressure in a fluid in static equilibrium is the same in all directions. Pressure is a scalar quantity that arises
from the non-dircctional nature of the oscillations of fluid particles, nominally at rest here. This was considered in
§1.2.

2.1.2  The pressure in a fluid under static equilibrium

5o Consider an element of fluid in static equilibrium with components of body

oy forces f., [, and f. per unit mass. The fluid has accelerations a.., a, and ..
Considering motion in the « direction only at this stage, as shown in Figure

F ap 2-1, the acceleration in the 2 direction is caused by the net force in the =

oz | P > i+ 7(;;51‘" direction on the faces which are normal to that direction. The net force in the
x direction due to pressure forces is

e - (p+?6z) 5y52+p5y52=—g—p5:r5y(52. (2.1)
z 2z

Considering Newton’s second law in the = direction: mass x acceleration in

Fi direction=net force in x, this gives
‘igure 2-1.

(pdxéydz)a, = body force + net pressure force

(poxdydz) fo — 9 oxdydz,
ox

and cancelling the common factors of the volume of the body dx dy =, gives

%)
“2 = p(fx —ag) 2.2)

ox

and we obtain cxpressions for the ¥ and z components which are the same, with z replaced throughout by y and =z
respectively. Thus we have:

The pressure gradient at a point = fluid density x (body force per unit mass - fluid acceleration),
or in vector terms
Vp=p(f—a), (2.3)

where f = (f., fy. f-) is the body force per unit mass, and a = (a., ay, a.) is the fluid acceleration.

2.1.3  Fluid at rest in a gravity field

In the usual case of a body of fluid at rest in a field of constant gravity, where x and y are in a horizontal plane and
z is verlically upwards,

az=ay=a,=0 and f,=f,=0 f=—g~r —9.8ms~2,
and substituting into cquation (2.2) with similar cquations for the other co-ordinates, we obtain

ap ap
ap

5, — P9 (2.4b)



That is, the pressure does not vary with = or y, such that on any horizontal plane the pressure is constant, such as
anywhere on the plane XX or the plane YY within the fiuid in Figure 2-2. This is also known as Pascal’s law.

L &

Mg el

Figure 2-2. Two vessels and two typical horizontal planes, such that within the fluid the pressure on each plane is constant

Equation (2.4b) can be integrated in common cases where the density p is a known function of pressure p. For
most problems in hydraulics the fluid can be considered incompressible, such that p is constant, and the integration

is simple:
a
/U—Tz)dz /(—pg)dz. giving

/ dp = —pg / dz, and integrating,
p

= —pgz+C(z,y),

where because we integrated a partial derivative the quantity ' is in general a function of the other two variables
2 and y. However, the other differential equations (2.4a) show that C' cannot be a function of = or y so that it is
a constant throughout the fluid. Thus we have the equation governing the pressure in an incompressible fluid in a
constant gravity field, the

Hydrostatic Pressure Equation:
p» + pgz = Constant throughout the fluid 2.5

It is simpler to solve many problems in the form of equation (2.5), as we will see below while considering some
pressure measurement devices. However, many other problems are most casily solved by expressing the pressure
as a function of depth below the surface rather than elevation above a point. To do this the constant is evaluated by
considering a special point in the fluid, usually on the surface.

D =

||[r

p=pa+ pgh = p, + pg (ho — 2)

Y

Figure 2-3. Hydrostatic pressure variation with depth

Consider the general situation shown in Figure 2-3 that shows a graph of pressure plotted horizontally against
clevation using a datum (reference level) that is a vertical distance by below the surface. When 2z = hg the



pressure is atmospheric, denoted by p,, and so
p 4+ pgz = Conslant = p, + pghop,

thereby evaluating the constant and enabling us to write the equation for pressure p at an arbitrary point with
elevation z as

p—pa=pglho —z) or p=p,+pglhy— z).

Since hg — z = h, the height of the free surface above the point, this becomes
P— = pgh

and almost always we measure pressure as gauge pressure, relative to the atmosphere, as shown in Figure 2-4, so
that we usually just write

p = pgh, (2.6)

so that the pressure at a point is given by the density p multiplied by gravitational acceleration ¢ multiplied by the
depth of water above the point.

Gauge, absolute, and vacuum pressures  Figure 2-4 shows, on an absolute pressure scale, how the gauge
pressure, widely used for engineering purposes, is measured relative to the (variable) atmospheric pressure; and
vacuum pressure, used in engineering applications such as brakes for vehicles, is measured from the same datum
but in the other direction. An absolute vacuum corresponds to a vacuum pressure of one atmosphere.

4

Absolute

A Gauge pressure
pressure

Atmospheric pressure, variable, about 10° Pa

7

Y Vacuum pressure

4

Zero pressure

Figure 2-4. Definitions of gauge, absolute, and vacuum pressures.

Equivalent static head:  Throughout engineering, pressures are often expressed as the equivalent height of
liquid which can be supported by that pressure, called the ead, here denoted by /:

h = ﬁ.
Pg

2.14 Units

Pressure is a force per unit area, so in fundamental S7 units it is N m 2, for which a special name is used, a
Pascal, or Pa. We will see that this is an appropriate name, and that it has a value of about 10® Pa. Atmospheric
pressure used to be specified in terms of 1/1000 of that, or millibar, however they are not S7 units. Instead of a
millibar, the exactly numerical equivalent value of "hectoPascal" or "hPa" is used, which is a 1/100 of a Pascal.
Atmospheric pressure varies usually in the range 980 — 1030 hIPa. Hurricane Wilma was the most intense hurricane
ever recorded in the Atlantic basin, in the 2005 season; the eye pressure was 882 hPa.

List of Pressure Measuring Devices



The mercury barometer and atmospheric pressure

p=0

h
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Mercury

Figure 2-5. Mercury barometer.

Consider the hydrostatic pressure equation (2.5) for all points within the mercury of the barometer shown in Figure
2-5:

p + pgz = Constant.
We apply this at two points: at the surface open to the air and secondly at the surface in the tube, at which the
pressure is the vapour pressure of mercury, close to zero

pa+0 = 0+ pgh, thus

Pa = pgh.

The density of mercury is about 13 600 kg m 2, and typically # is about 0.76 m, hence
Pa~ 13600 x 9.8 x 0.76 & 1 x 10° Nm 2.

In terms of the equivalent height of water, which it is sometimes convenient to use, & = p/pg = 107 /1000 10 =~
10m.

Mercury is ideally suited for use in a barometer due to its high density (needing therefore only a short
tube) and its very low vapour pressure.

The altitude of a place and weather conditions influence the reading of the barometer. A reading of a
barometer recorded at a spot indicates only the local atmospheric pressure.

The International standard atmospheric pressure is 101.325 kPa corresponding to 10.325 m of water or
760 mm of mercury.

The Siphon Barometer

This instrument is conveniently used as a household barometer. This device consists of a
glass tube bent at the lower part to form a U-tube. The open end of the U-tube is enlarged. This
enlarged part takes the place of the bowl or reservoir of the ordinary barometer. An iron block of
small weight is supported on the mercury surface partly by up thrust of mercury on it and partly by
a counterweight.

Theiron block and the counterweight are connected by a string taken over a pulley. Variation
of atmospheric pressure brings about rise and fall of the mercury surface in the open end of the U-
tube which in turn causes the pulley to rotate by some angle. A pointer attached to the pulley will
move over a circular scale from which the atmospheric pressure may be read.



Pointer

Counter
weight

Piezometer or Pressure Tube

The piezometer is used to measure the static pressure head of a liquid flowing at any section
of a pipe. It consists of a tube whose open lower end is mounted flush with the inside wall of the
pipe. The other end of the tube is exposed to the atmosphere. In the arrangement shown in Fig. the
height h to which the liquid rises in the tube represents the pressure head at the level A where the
tube is connected to the pipe.

The piezometer has limitations for its use due to the following reasons:

(1) It is very difficult or impracticable to measure high pressures. Particularly for liquids of low specific
gravity, the height of the liquid column in the piezometer will be inconveniently high requiring a very
long piezometer tube.

(Il) The piezometer cannot work for negative gauge pressure since air would flow into the container
through the tube.




The piezometer tube may take the form shown in Fig. for measurement of small negative gauge
pressures. In this arrangement, the free surface of the liquid in the tube will be at a level lower than
the level A inside the container where the pressure is to be gauged. If the free liquid surface in the

tube is h units below A, then the pressure head at A

(Ill) Rapid changes of pressure which may take place continuously cannot be effectively measured.
This is because change in the piezometer level will lag behind corresponding rapid change of

pressure.

Manometers:

Manometers are pressure gauging devices using columns of different liquids. The fluid whose
pressure is to be determined is called the metered fluid while the other fluid is called the manometer
fluid. The manometer fluid may be of higher density or lower density than that of the metered fluid.
These devices can be used to gauge pressures of liquids as well as gases. Manometers have
connecting U-shaped tubes containing different fluids.

In a manometer when one limb of the device is open to the atmosphere it records the
pressure of the source connected to the other limb. When both the limbs are connected to pressure
sources, the manometer records the difference of pressure between the two pressure sources.
Accordingly, these manometers are called simple manometer and differential manometer.

The simple manometer

Consider the U-tube in Figure 2-6 filled with manometric fluid of density p, with one end attached to a point X
where the pressure of the fluid, of density p, is 0 be measured. The other end is open to the atmosphere.

In the fluid, using the hydrostatic pressure equation (2.5) at both X and B:
px + peghr = ps + 0.
In the manometric fluid, also using the hydrostatic pressure equation at B and at the surface open to the air:
pe + 0 = p, + p, ghe.
Eliminating the unknown intermediate pressure pp:
Px — Pa = pPughe — pegha,

thus by measuring the height difference of the fluid in the manometer we can calculate the gauge pressure at X. In
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‘gure 2-6. Simple manometer, measuring the pressure in a vessel relative to the atmosphere
Figure 2-6. Simple manometer, measuring the pressure in a vessel relative to the atmospher

the special case where the same fluid is used throughout,

Px — Pa = [’f,(l(h"_), — /11).

h

Sensitive Manometers

The single column manometer shown in Fig. is a modified form of the ordinary U-tube
manometer. This manometer also has two limbs, one of which is made very large in area compared
with the other. The area of the larger limb (also called the basin) may be made 100 times the area
of the other limb. The manometer contains a heavy liquid like mercury. The pipe in which the
pressure is to be determined is connected to the larger limb.

Any pressure change in the pipe may only produce a very small change in level of the
manometer liquid surface in the basin. This change in level may be neglected. Hence the reading in
the narrow tube only is to be taken. Since there is no need to take any reading corresponding to the
liquid surface in the basin, it need not be made transparent. Usually it is made of iron. The other
limb i.e., the narrow tube may be vertical or inclined, to make it more sensitive.



The Inclined Tube Manometer

This is an improvement over the single column manometer. In this case the manometer tube is
made inclined in order to make it more sensitive. Fig. shows this type of manometer. In this case
the displacement of the heavy liquid in the narrow tube is relatively greater and hence readings can
be taken more accurately.

The Bourdon Gauge

This device consists of a metallic tube of elliptical section closed at one end A, the other end
B being fitted to the gauge point where the pressure is to be measured. As the fluid enters the tube,
the tube tends to straighten.

By using a pinion-sector arrangement the small elastic deformation of the tube is
communicated to a pointer in an amplified manner. The pointer moves over a graduated dial. The
device is calibrated by subjecting it to various known pressures.

The Bourdon gauge is suitable for measuring not only high pressures such as those in a steam
boiler or a water main but also negative or vacuum pressures. A gauge which is so devised to
measure positive as well as negative pressures is called a compound gauge.

The Diaphragm Pressure Gauge

This device is based on the same principle as that of the Bourdon gauge. In this case a
corrugated diaphragm is provided instead of the Bourdon tube. When the device is fitted to any
gauge point, the diaphragm will undergo an elastic deformation.

This device is found suitable for measuring relatively low pressures.



What a siphon is and how it works in practice.

If, for example, you want to empty a pool by a garden hose, you only have to place one end
of the hose over the edge into the pool and the other end outside. The outside end of the hose only
has to be lower than the water level.

As long as the lower end is always held lower than the water level, the water is also carried over
larger heights, such as over the edge of the pool (to the maximum height to be overcome later
more). Such an arrangement is also called a siphon or siphon spillway.

A flexible tube is mounted on the screw cap of the bottle. If the bottle is now turned upside
down, the water will begin to flow out through the tube. The outflow of the water leads to an
increase in the volume of air inside the bottle. Since no air can inflow through the relatively small
hose, a negative pressure is created inside the bottle.

a2
—— —sucked-in" water

negative pressure

flexible tube

outilowlng water —

The resulting negative pressure in the bottle can then be used to suck water from another vessel.
With an atmospheric air pressure of 1 bar, this ambient pressure can thus push a maximum

water column of 10 meters upwards. The ambient pressure is therefore not sufficient for higher
heights.

p=p-p-9g-h

P2=po—p-g-hs

Ap=p-p2
=po—p-g-hai=(po—p-g-ha)
=P P g =P +pg-he
=p-g-hrp-g-h
=p-g- (ha—h1)
=p-g-h



Hydraulic jack

An application — industrial hydraulics
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Figure 2-8. Operation of an hydraulic lift or jack

Consider the problem shown in Figure 2-8 in which an actuator (a small cylinder with a piston in it, but probably a
pump in more modern applications) can apply a force to a fluid, and the pressure so generated is then transmitted
throughout the fluid to the other end of the fluid line where a larger cylinder and piston are placed. Use of the
hydrostatic pressure equation in the fluid between points 1 and 2 gives

p1=p2+pg(z2—21).
Now, p1 = Fi /A, with a similar result for piston 2, giving

b Fy

A—]=A—2+Pg(22—21)-

In practical cases the term involving the difference in elevation is negligible, so that the force which can be lifted
by the hydraulic jack is
F2 ~ F 1 (éz> B

Ay
For large values of A2 /A; large forces can be exerted, such as the control surfaces on a large aircraft.

Pressures in accelerating fluids
Consider equation (2.2) for the pressure gradient:

p(fw = am), 2.2)

SIS

with similar equations for y and z.

1. Fluid accelerating vertically



Let the vertical acceleration be @, upwards, the other components being zero. Equation (2.3) gives

dp Op _ Ip B
aI - a:l/ _0$ az _p(_g_(l'z) - _p(u’2+.q)‘

which are the same equations as obtained before, but with g replaced by @+ g, so that the vertical acceleration
and gravity simply combine algebraically.

Fluid accelerating horizontally

Figure 2-9. Vessel accelerating to the right, showing tilted water surface and pressure contours.

Consider the container in Figure 2-9 which is accelerating in the positive « direction with acceleration a.
Equation (2.2) gives

Ip dp dp
— =p(0—-a), — =0, d — =p(—g—0).
55— P0—a) s W o p(—g—0)
These equations may be integrated to give
p = —par—pgz+C

= —plar + gz)+ C,

where C' is a constant of integration. From this we can find the equation of surfaces on which the pressure is
constant, p; say:

2 f

p1—C

=ax + gz,

hence

a
z2=D — —z,
g

where D is a constant. Clearly, surfaces on which pressure is constant are planes, with a gradient in the
x-direction of —a/g. The free surface, on which p = p, is a special case.

2.2 Forces on submerged planar objects

Consider the submerged plate of arbitrary shape shown in Figure 2-10, inclined at an angle 6 to the horizontal. We
introduce the co-ordinate s with origin at the axis OO where the plane of the plate intersects the plane of the free
surface. The shape of the plate is defined by a specified breadth as a function of s, b(s). At any horizontal line on
the plate which is & below the surface the hydrostatic pressure equation gives,

p = pa+ pgh



Figure 2-10. Inclined underwater plane surface and axis OO where it intersects the plane of the surface

and the force on an element which is ds wide and b(s) long is

dF = pdA,where dA is the area of the element,
= pb(s)ds
= (p.+pgh)b(s)ds.
Now, i = s sin#, therefore
dF = p,b(s)ds + pgsinf s b(s) ds. (2.10)

Integrating over the whole plate to find the total force on one side gives

= /(115’ — pa/b(s)(l,ﬁ +pgsin()/b(s)s ds,

where the first integral is simply the area of the plate, A, while the second is its first moment of area Moo about
the intersection line OO of the plane of the plate and the free surface, which has be written as My, = As, where
5 is the co-ordinate of the centroid C, giving

F =p,A+ pgsinf As. (2.11)
However the depth of the centroid / = §sin 0, so force can be written quite simply as
F = p, A+ pgAh, 2.12)

which is often able to be simply calculated without taking moments, if the plate is a simple shape. As the pressure
at the centroid is pc = p, + pgh, the result can be simply stated

Force on plate = Area x Pressure at centroid.

In design calculations it is ofien necessary to know the position of Centre of Pressure (CP), the point at which the
total force can be considered to act. Taking moments about OO, substituting equation (2.10), and integrating:

Moment of force about O = /sd!’ =Py /b(s) sds+ pg sinO/b(s) s2ds
= p,AS+ pgsinb o, (2.13)

where Iy is the Second Moment of Area of the plate about the axis QO. If s¢p is , By definition, scp, the s
co-ordinate of the centre of pressure is such that the moment of the force is equal to /7 scp, and so, substituting
equation (2.11) into that and setting equal to the result of equation (2.13), we have

_ pAs+ pgsind loo

= 2.14
paA + pgAh (219

Scp



Almost always the atmospheric pressure is ignored, as calculating the force on one side of a plate usually means
that the other side of the plate also is subject to atmospheric pressure, e.g. the side of a ship shown in Figure 2-11,
or the interior of a submarine.

pa Puet | Pa

Figure 2-11. Situation, such as the side of a ship, where the atmospheric pressure contributes equally on both sides such that 1t
can be ignored.

Substituting p, = 0 into equation (2.14) and using h = s sin @ gives the expressions

Sillo[()o iy 1()()
Ah A5

Note: although the force can be calculated by using the depth of the centroid of the plate, it does not act through
the centroid, i.e. scp # .

(2.15)

S(-p =

In some cases, for simple shapes such as rectangles and circles, the second moment of area /c¢ of the plane about
an axis through its centroid is already known and does not have to be determined by integration. It is convenient
to use the Parallel Axis Theorem, which in this case is

Too = Iec + AT, (2.16)
to calculate the distance of the centre of pressure from the centroid. Substituting this into equation (2.15)

Ic +A5® _ Iec .
As T

This formula can be re-written to give the expression for the distance of the centre of pressure from the centroid in
the plane of the plate:

(2.17)

Scp =

e 2nd Moment of arca about axis at the centroid
A5 1st Moment of area about axis at the surface

o —F (2.18)
In the limit where the plate is much smaller than the distance from the axis, this will tend to zero, where the relative
variation of pressure over the plate is small.

Example 2.2 A circular cover 125 cm in diameter is immersed in water so that the deepest part is 150 cm below
the surface, and the shallowest part 60 cm below the surface. Find the total force due to water acting on one side
of the cover, and the distance of the centre of pressure from the centroid. You may assume that the second moment
of arca of a circle of diameter 1 about a diameter is I = wD*/64.

= A - 2"

150 cm

125 cm



Circle:

Depth to centroid h:
Force: equation (2.12):
Simple trigonometry:
Simple trigonometry:
Formula given:

Position of Centre of Pressure (equation 2.18):

Arca A =  x 1.25% = 1.228m?,

By symmetry: & = 0.5(0.6 + 1.5) = 1.05m,

F = pgAh = 1000 x 9.8 x 1.228 x 1.05 = 12.6 kN (4ns.)
sinf = (150 — 60)/125 = 0.72,

§=h/sinf =1.05/0.72 = 1.458 m,

Iec = wD4/64 = 0.120m?,

scp — 5 = lec /A5 = 0.120/ (1.228 x 1.458) = 0.067 m,
Centre of pressure is 6.7 cm from centroid



2.3 Forces on submerged boundaries of general shape

Figure 2-12. Projection of boundary element onto two planes: (a) the free surface, to calculate the vertical force, and (b) a
vertical plane perpendicular to the desired horizontal force direction

Forces on submerged boundaries of general shape can be calculated surprisingly simply. Consider the underwater
boundary in figure 2-12, with an element of area dA. Consider also the two clemental prisms constructed from dA,
one to the free surface, which has a volume dV/, and one in a horizontal direction, denoted by =, in which direction
we require the force, with elemental cross-sectional area dA, when projected onto a plane perpendicular to that
direction. The results we obtain for this prism will be valid for all horizontal directions, so it will not be necessary
to consider separately here another direction perpendicular to this.

2.3.1 Horizontal

The horizontal element has a vertical force on it due to the weight force of the fluid in it, but for it we are only
concerned with horizontal forces in the direction along the element, and so, as there are no other horizontal forces
on the prism, this means that the z-component of the force of the fluid on the curved surface is equal to dF, the
force of fluid on the projection dA, onto a vertical plane. This holds for all elements of the surface, and so we can
write for the whole surface:

Any horizontal component of force on a submerged surface is equal to the force on a
projection of that surface onto a vertical plane perpendicular to the component.

For such a calculation, we can use all the results of §2.2 for the forces on a planar surface, for the special case of a
vertical plane ¢ = 7/2. Equations (2.12) and (2.18) give,

_ 2 i
F, = pgAhy and  hep — hy = 4“,5 . (2.19)
e 1.7?

where we have used the notation /. for the depth of the centroid of the projected area A,.

Example 2.3 A tank attached to the side wall of an underwater structure is of the shape of half a sphere, a
hemisphere. It has a diameter D and its centre is o below the surface. Calculate the horizontal force and its
position.

By symmetry, the net force will be normal to the side wall, and there is no force to left or right in the plane of the



wall. To calculate the force we have simply (o use equation (2.19), where the projected area of the hemisphere is a
circle, with centroid at its centre, d below the surface:

ﬁD“d

/

by = /’!]Axil.t =pg

To obtain the position of its resultant point of application, we use the fact that for a circle, Ioc = wD* /64,

I.e =«D* 4 D?

Ad - 64 nD%d _ 16d

Note that if we re-express this to calculate the distance between centre of pressure and centroid relative to the
radius (half the diameter) we find

h(*p —d=

hcp —d _ D
D/2 — 8d’
showing that for large submergence, /d — 0, and the centre of pressure will approach the centroid, which holds
for all submerged surfaces. in the deep water limit

Example 2.4 A mixing tank is a vertical cylinder of height H and diameter D filled with fluid of density p.

(a) Calculate the total horizontal force /' on one half of the tank? (this would be used to design the tank walls,
which must carry forces of F'/2 as shown).

(b) How far above the base of the tank does it act?

- __D Sm—m—
I »
# eris % X pig

Answer: (a) The force on the semi-circular cylinder is equal to that on its projected area, which is the rectangle
across its centre, with dimensions H x 1. The centroid of the area is at its geometric centre, such that h = H /2.

B = pgAwhI
— pgHD x H/2
= LpgH®D.

(b) The distance between centre of pressure and centroid:

Icc
Ah,

hep — }_lr =

For the rectangle, the second moment of area /.. about a horizontal axis through the centroid is, Ioc = DIT*/12,
hence

DI? 1 -
12 HDx Hf2 6’

below the centroid, so the distance of the centre of pressure above the base is H/2 — H/6 = H /3.

I7’CP = h.(: —

2.3.2 Vertical

Considering the vertical element of fluid, there are only two vertical forces acting on it: one is the weight force of
the fluid pg dV', and the other is the vertical component of the element on the fluid. For equilibrium of the element,
the two must be equal. This holds for all elements of the boundary, and so we can write that the vertical force on
the whole boundary is equal to pgV, the weight force on the fluid between the boundary and the plane of the free



surface.

Now, however, there is an important generalisation, and that is if any or all of the region between the boundary and
the surface is not occupied by fluid, for example if there were another body in the fluid, breaking up the prismatic
volume. In fact, this has no effect on the results, for the pressure on the boundary is the same, whether or not
part of the volume is unoccupied by fluid, and the force on the boundary is the same as if all the region between
boundary and surface were occupied by fluid. Hence we can write the relatively simple and powerful result:

The force component in the direction of gravity on a submerged boundary is equal to the
weight force on the fluid in the volume bounded by:

1. the boundary itself, and

2. its projection onto a plane at the level of the firee surface.
Contributions are (downwards/upwards) if the surface is (below/above) the local fluid.

To locate the position of the resultant vertical force, the body force of the vertical prismatic element is at the centre
of the prism, and integrating over all such prisms to form the body, the resultant acts through the centre of volume
of the body, giving

The vertical force component acts through the centre of gravity of the volume between the
submerged boundary and the water surface.

Example 2.5 The corner of a tank is bevelled by cqual dimensions d as shown in the figure. It is filled to A
above the top of the bevel. What is the force on the triangular corner?

diz

Force in z direction = Force on projection OYZ
= pgAovzhoyz
= pgx 3d* x (h+3d) = % (3h + 2d)
= Force in y direction by symmetry

Force in z direction = Weight force on prism above XYZ
pg % Volume

12
= pg x % X %(h,+d+h+d+h,)

qgd? )
pJT (3h + 2d).
Thus, each of the force components is the same. This is what we would expect for such a surface whose direction
cosines are the same for all 3 directions.



2.3.3 Horizontal force on a vertical wall with the water level at the top

The force on a straight vertical wall with water level at the top is a very common problem, such as sea walls, tanks,
and retaining walls. The answer has been provided in Example 2.4 above, originally for the force on a curved wall,
which we saw was the same as for a rectangular wall. We replace the diameter of the tank by the length L of the
wall and the results immediately follow:

- . F
= %pgl'l 2L, orforce per unit length T = % pgH?®.
: H 2H
Height of resultant force above the base = 35T from the surface.

Buoyancy is the force directed against gravity that an object experiences when submerged in a fluid
(liquid or gas).

Everyone may have tried to lift another person and found that this requires a lot of strength.
However, if you try to lift this person in water, it is much easier. The reason for this is due to the so-
called buoyancy, which an object experiences as soon as it is submerged in a liquid. This buoyant
force is also responsible for the fact that even steel ships weighing tons do not sink but float on the
water. The cause of the buoyancy will be discussed in more detail in this part.

buoyancy Fj,

G

weight F,

szAm-g

FbZAV-pl'g




2.4 The buoyancy and stability of submerged and floating bodies

The methods used above to calculate the force on a surface can be used to calculate the buoyancy forces on totally
or partially submerged bodies, that is, surfaces which are closed within the fluid or closed by a plane surface at the
level of the free surface.

2.4.1 Totally-submerged body
(a) (b)

Figure 2-15. Submerged body showing arbitrary points for force calculations

Consider the submerged body in Figure 2-15(a) intersected by an arbitrary vertical plane AC, which is the projected
area of each of the two surfaces closed by the plane, AB, C and AB,C, so that the forces on each of the two surfaces
are equal (and opposite), hence there is no resultant force on the body. Consider how human development might
have progressed had it been possible for an irregularly-shaped object to propel itself!

Now consider the body intersected by an arbitrary horizontal plane G, G» as in Figure 2-15(b), where S; and S»
are points in the free surface where the intersection of the plane and the body are projected to the surface. The
vertical (downwards as sketched) force on G1DGs is equal to the weight of fluid in G;DG2S>S;G; while the
vertical force (almost all of it upwards here) on G1FGs is equal to the weight of fluid which would occupy the
volume G1FG2S2S,G;. Hence, the net huoyancy force, the net upwards force, is the weight of fluid which would
occupy the difference between the two volumes, namely the volume of the body.

That is, the buoyancy force is upwards and is equal to the gravity force on the volume of fluid displaced. This is

Archimedes’ Principle, and is easily extended to the case where the body is floating. In this case the body floats at

such a level in the water that the weight of the whole body equals that of the weight of fluid displaced by that part

of the body beneath the waterline.

The buoyancy: The Archimedes’ principle

The scientist Archimedes experimented with the phenomenon buoyancy already 250 years B.C. He
was able to show that the buoyant force by which a submerged body appears to become lighter
corresponds to the weight of the displaced liquid.
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weight of the
displaced liquid
(buoyancy!) - .

__ _—=displaced volume AV

displaced mass Am

Derivation of the buoyant force
The buoyancy is due to the different hydrostatic pressures at the top and bottom of a
submerged body.

liquid surface "
i Y

Pi=prghy el &

F’I:F27Fl
Fy=pi-g-hy-A-pi-g-h -A
Fy=pi-g-A-(hy—h)

Fb-_—AVpl.g

Derivation of the buoyancy for partial immersion of the body in a liquid

pP=prgh



242 Centre of buoyancy

The centre of buoyancy is the position in space where the buoyant force may be considered to act for the purposes
of taking moments. It is at the centre of mass of the fluid displaced by the body, whether submerged or floating.

(a) ) (b)

Figure 2-16. Ilustration of the centre of buoyancy of a regular body which is (a) submerged, or (b) floating.

Consider two solid rectangular blocks of the same size, but different densities. The one in (a) is heavier than the
liquid, it does not float, and if it is homogeneous the centres of buoyancy B and gravity G will coincide. In case (b)
the block is lighter than the fluid, it floats, and the displaced volume is less than its total volume, and G is above B
as shown.

243  Stability of submerged bodies

Consider the balloon in the illustration. Its centre of buoyancy is close to the centre of the envelope, while its centre
of gravity is near the gondola. It has been given a small positive (anti-clockwise) displacement by a gust of wind.
Consider the lines of action of the equal and opposite weight and buoyancy forces — it is clear that the moment set
up by the displacement is negative and acts so as to reduce the displacement. In this case, and for any submerged
body, as long as B is above G, the configuration is stable.

Now consider Figure 2-16(b) for the floating block, where G is above B. Do we expect that configuration to be
unstable? If not, why not? The explanation and limits for stability will be given in the following section.

2.44 Stability of floating bodies

For most floating bodies, the centre of gravity is above the centre of buoyancy, and from the above we might expect
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Figure 2-17. Forces acting on a submerged body
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Figure 2-18. (a) Floating body with the common potentially-unstable situation where the centre of gravity is above the centre
of buoyancy, and (b) showing how for an angle of rotation the displaced fluid is now a trapezoidal shape and the centre of
buoyancy has moved sideways, enough in this case for there to be a restoring force on the body.

the system to be unstable. However, if the body rotates, the shape of the displaced volume changes, such that the
centre of buoyancy moves laterally. Hence we have to calculate how much movement there is for a particular body
or ship to determine whether it is stable or otherwise. Figure 2-18 shows a stable situation where the centre of
buoyancy for an angle of roll # has moved from B to B, cnough that a restoring force has been set up. The amount
of movement depends on ¢/, so that a more fundamental quantity is the distance BM, where M is as shown in the
figure, such that for a small angle of rotation # the distance that the centre of buoyancy moves is

BB’ = BM . (2.20)
The condition that the body be stable is that M be above G, such that the Metacentric Height GM is positive.

We can calculate the distance BB’ by taking moments of volume about the axis of rotation of the body at the
walterline, as the centre of buoyancy is at the centre of the mass of fluid displaced. After a rotation @, the change of
first moment of volume is due to the change of first moment of volume just of the wedge-shaped regions shown in
Figure 2-19, as the displaced volume below them is unchanged. Hence,

Displaced volume x BB’ = Change of first moment of volume in the region
between the unperturbed and rotated states.



3. Fluid kinematics

3.1 Kinematic definitions

Fluids in motion are rather more complicated: the motion varies from place to place and from time to time. In
this section we are concerned with common terminology and descriptions of the flow, and the specification of fluid
motion.

Steady/unsteady flow:  where the flow at each place (does not change / does change) with fime.
Uniform/nonuniform flow:  where the flow (does not vary / does vary) with position.

Laminar flow: where fluid particles move along smooth paths in laminas or layers. This occurs where
velocities are small or viscosity is large or if the size of the flow is small, e.g. the flow of honey, the motion around
a dust particle in air. In civil and environmental engineering flows flow is almost never laminar, but is furbulent.

Turbulent flow: where the fluid flow fluctuates in time, apparently randomly, about some mean condition,
e.g. the flow of wind. water in pipes, water in a river. In practice we tend to work with mean flow properties,
however in this course we will adopt empirical means of incorporating some of the effects of turbulence. Consider
the 2z component of velocity at « a point written as a sum of steady (iz) and fluctuating («") components:

u="ua+u
Let us compute the time mean value of « at a point by integrating over a long period of time 7°:

T

8 i
1 1 1 -
—T/Ldt 7/ w4+ dt—u+7./u dt,
0

0 0

and we see that by definition, the mean of the fluctuations, which we write as u’, is

T
1
=T/u'd{,=0. (3.1)
0

Now let us compute the mean value of the square of the velocity, such as we might find in computing the mean
pressure on an object in the flow:

+ u')?

wl

= u? 4 2uw + u'?, expanding,

+2uu +u'? considering each term in turn,

u =

|=

Il
al
LS}

)
W+ 2uw +u? . but, as »/ = 0 from(3.1),
w + u2, (3.2)



hence we see that the mean of the square of the fluctuating velocity is not equal to the square of the mean of the
fluctuating velocity, but that there is also a component «/2, the mean of the fluctuating components.

Eulerian and Lagrangian descriptions: Lagrangian descriptions use the motion of fluid particles.
Eulerian descriptions study the motion at points in space, each point being occupied by different fluid particles at
different times.

The fluid properties we usually need to specify a flow at all points and times are:

1. Fluid velocity u = (u, v, w) a vector quantity, in terms of components in (=, y, z) co-ordinates,
2. Pressure p, a scalar, which in compressible flow will determine the density at a point, and

3. For flow with a free surface the height of that surface is also important.

Flow lines

Streamlines: a streamline is a line in space such that everywhere the local velocity vector is tangential to it,
whether unsteady or not, whether in three dimensions or not.
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Figure 3-1. Typical streamlines showing how the velocity vectors are tangential

Figure 3-1 shows typical streamlines and velocity vectors. As the velocity vector is tangential at all points of a
streamline, there is no flow across a streamline, and in steady 2-D flow, the mass rate of flow between any two
streamlines is constant. Where streamlines converge, as shown in the figure, the velocity must increase as shown to
maintain that flow. Hence, a plot of streamlines implicitly shows us the direction and magnitude of the velocities.

Streamtubes:  In 3-D flows the equivalent is a streamtube, which is a closed surface made up of streamlines,
as shown in Figure 3-2. There is no flow through a streamtube surface, hence the mass rate of flow through the
streamtube is constant at all sections.

Pathlines:  a pathline is the path followed by an individual particle, which is a more Lagrangian concept. For
steady flow streamlines and pathlines coincide.

Streaklines: a streakline is a line joining the positions of all particles which have passed through a certain
point. They also coincide with streamlines and pathlines for steady flow.

3.2 Flux of volume, mass, momentum and energy across a surface

It is necessary for us to be able to calculate the total quantity of fluid and integral quantitics such as mass, mo-
mentum, and energy flowing across an arbitrary surface in space, which we will then apply to the rather more
simple case of control surfaces. Consider an clement of an arbitrary surface shown in Figure 3-3 through which
fluid flows at velocity u. The velocity component perpendicular to the surface is |u|cos = u-n. In a time dt
the volume of fluid which passes across the surface is u - ndt dA, or, the rate of volume transport is u - i dA.
Other quantities casily follow from this: multiplying by density p gives the rate of mass transport, multiplying by
velocity u gives the rate of transport of momenfum due to fluid inertia (there is another contribution due to pressure



Figure 3-3. Element of surface d.A with local velocity vector u showing how the velocity component normal to the surface is
u-n

for total momentum), and if e is the energy per unit mass, multiplying by e gives the rate of energy transport across
the element. By integrating over the whole surface A, not necessarily closed, gives the transport of each of the
quantities, so that we can write

volume 1
mass 0 £
Rateof { . . transport across surface A = F u-ndA. (3.3)
inertial momentum pu
cnergy 4 | pe
‘ \. >
| ———> u=un

f

Figure 3-4. Pipe flow, showing a transverse section such that u and f are parallel. Note that the magnitude of the velocity
varies over the section.

Note that as u - 11 is a scalar there is no problem in multiplying this simply by either a vector or a scalar. In
hydraulic practice such integrals are usually evaluated more easily. For example, across a pipe or channel which is
locally straight, to calculate the rates of transport we choose a surface perpendicular to the flow, as in Figure 3-4,
as is described below.

Flux across solid boundaries:  There can be no velocity component normal to a solid boundary, such that



every solid boundary satisfies the boundary condition
u-h=0 (34)

and so from equation (3.3) there can be no volume, mass, momentum, or energy transfer across solid boundaries.

3.3 Control volume, control surface
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Figure 3-5. Typical control volume for a problem where one pipe joins another.

A control volume refers to a fixed region in space through which fluid flows, forming an open system. The
boundary of this system is its confrol surface. A typical control surface is shown in Figure 3-5. The control
volume for a particular problem is chosen for reasons of convenience. The control surface will usually follow solid
boundaries where these are present and will not cut through solid boundaries, as sometimes we have to calculate
all the forces on a control surface, which is difficult to do with solid boundaries. Where the control surface cuts
the flow direction it will usually be chosen so as to do so at right angles. Problems where control surfaces are most
useful are those where the fluid enters or leaves via pipes or channels whose cross-sectional area is relatively small,
which fortunately, is usually the case. The reasons for this will be made obvious below.

4. Conservation of mass — the continuity equation

Now we consider successively conservation of mass, momentum, and energy, for steady flows, although the ef-
fects of turbulence will be incorporated. Each conservation principle helps us to solve a variety of problems in
hydromechanics.

For steady flow, the mass conservation equation for a fluid within a control surface (CS) can be written

/pu-ﬁdA:O, “4.1)
cs
such that the integral over the control surface of the mass rate of flow is zero, so that matter does not accumulate

within the control volume. This is the mass conservation equation. Equation (3.4) states that u-n = 0 on solid
boundaries, and so for practical problems we have

pu-ndA =0, 4.2)

Flow boundaries

where we only have to consider those parts of the control surface through which fluid flows. In most hydraulics
the density of water varies very little and so p can be assumed to be a constant, so that it can be taken outside the
integral sign, and as it is a common factor, it can be neglected altogether.

If the flow through each flow boundary cuts the boundary at right angles, we can write the velocity as u = *u i,
such that u - n = £u, where the plus/minus sign is taken when the flow leaves/enters the control volume. Then
across any section of area A we have the contribution [,u-#adA = =+ [, udA, which is =Q, the volume flow rate
or discharge across the section. Sometimes it is convenient (o express this in terms of U/, the mean velocity, such
that

Rate of volume transport across surface = / udA =Q =UA.
A



The mass conservation equation now becomes, for a control surface through which an incompressible fluid crosses
each boundary at right angles,

Ly kil ok T e e Ul b 4.3)

which is the continuity equation, where the sign in each case is chosen according as to whether the velocity or
discharge is assumed to be leaving or entering the control volume. For the velocities as shown in Figure 3-5, this
would become

Q3—Q1—Q2=U3A3—-U1A1 — U342 =0.

Example 4.1 Fluid flows down a circular pipe of diameter D at speed U;. It passes through a contraction to a
smaller diameter /-, as shown in Figure 4-1. What is the mean velocity in the second pipe?
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Figure 4-1. Control volume for example

Note that the control surface follows the solid boundaries or crosses the flow direction at right-angles. We have the
convention that flows out of the control volume are positive and those in are negative, hence

Ay +Ugdy = 0,
—U.%D‘;’H@%Dg = i,
B \*
s Th = T{=] .
Hence Us 1(D2>

5. Conservation of momentum and forces on bodies

Formulation: Newton'’s second law states that the net rate of change of momentum is equal to the force
applied. In equation (3.3) we obtained

Momentum transport across a surface = / puu-ndA, (5.1)
A

hence for a closed control surface CS we have to add all such contributions, so that

Net rate of change of momentum transport across control surface = / puu-hdA.
cs

There are two main contributions to the force applied. One is due to surface forces, the pressure p over the surface.
On an element of the control surface with area d A and outwardly-directed normal fi the pressure force on the fluid
in the control surface has a magnitude of p dA (simply pressure multiplied by area) and a direction —1, because
the pressure acts normal to the surface and the direction of the force on the fluid is directed inwards to the control
volume.

The other contribution is the sum of all the body forces, which will be usually duc to gravity. We let these
be denoted by Fyy. In many problems the body force is relatively unimportant. Equating the rate of change
of momentum to the applicd forces and taking the pressure force over to the other side we obtain the integral



momentum theorem for steady flow

/puu -ndA 4+ /pﬁllA = Fiogy- (5.2)

cs cs

This form cnables us to solve a number of problems yiclding the force of fluid on objects and structures .Now the
integrals in equation (5.2) will be separated into those over surfaces through which fluid flows and solid surfaces:

Z /(puu-ﬁ+pﬁ) dA | + Z /puu-ﬁdA+ /pﬁdA = Fiogy-
Fluid 3 Salid bs X
sufaces  \A surfaces A A

However, as u - n = 0 on all solid surfaces, there are no contributions. Also on the solid surfaces, unless we know
all details of the flow ficld, we do not know the pressure p. However the sum of all those contributions is the
total force P of the fluid on the surrounding structure. Hence we have the theorem in a more practical form for
calculating the force on objects:

Total force on solid surfaces = P = — Z /(puu ‘D+pn) dA | + Fuey- (5.3)

Fluid
surfaces

b

-
Momentum flux

Note the usc of the term momentum flux for the integral shown — it includes contributions from the inertial momen-
tum flux and from pressure.

J=1 j=4
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Figure 5-1. Control surface with fluid which is entering or leaving everywhere crossing the control surface (long dashes) at
right angles, but where velocity may vary across the element, as shown with short dashes.

Inertial momentum flux: Here we evaluate the integral describing the transport of momentum by fluid
velocity. In many situations we can choose the confrol surface such that on each part where the fluid crosses if,
the local surface element is planar, and the velocity crosses it at right angles, as shown in Figure 5-1. We write
for one control surface element, denoted by j, u; = d-u;f; where w; is the fluid speed, whose magnitude might
vary over that part of the control surface through which it passes, but whose direction is perpendicular either in the
direction of the unit normal or opposite to it. Hence, for a particular element j,

/puj u;-n;dA = /p(iujﬁj) (£ui) dA = +8; p/uf dA, (5.4)
A; A; A;

where, as (£) x (%) is always positive, the surprising result has been obtained that the contribution to momentum
flux is always in the direction of the outwardly-directed normal, whether the fluid is entering or leaving the control
volume. Also we have assumed that the area A; is planar such that ni; is constant, so that we have been able to
take the fi; outside the integral sign.

Approximation of the integral allowing for turbulence and boundary layers:  Although it has not
been written explicitly, it is understood that equation (5.4) is evaluated in a time mean sense. In equation (3.2)

we saw that if a flow is turbulent, then w2 = u’ + w2, such that the time mean of the square of the velocity is
greater than the square of the mean velocity. In this way, we should include the effects of turbulence in the inertial



momentum flux by writing the integral on the right of equation (5.4) as

/ u2 dA = / (? +u?) aa. (5.5)
A,

A;

Usually we do not know the nature of the turbulence structure, or even the actual velocity distribution across the
flow, so that we approximate this in a simple sense by recognising that the time mean velocity at any point and the
magnitude of the turbulent fluctuations are all of the scale of the mean velocity in the flow in a time and spatial
mean sense, I/; = Q;/A;, such that we write for the integral in space of the time mean of the squared velocities:

2 2
ud dA = (175’.+W) ddx 8,024 = . (L) a,-5.9% (e23)
7 _Q J (] S e R 5 T ‘J_"JA]“ -
Aj ’

J
A;

The coefficient 3 is called a Boussinesq’ coefficient, who introduced it to allow for the spatial variation of velocity.

Allowing for the effects of time variation, turbulence, has been noted recently (Fenton 2005).

The coeflicients 3; have typical values of 1.2. Almost all, if not all, textbooks introduce this quantity for open
channel flow (without turbulence) but then assume it is equal to 1. Surprisingly, for pipe flow it seems not to have
been used at all. In this course we consider it important and will include it.

We are left with the result that over the surface A; the contribution to momentum flux due to fluid velocity is
p3;U7 A, where 3 is the Boussinesq coefficient.

Momentum flux due to pressure: The contribution due to pressure at each element in equation (5.3)
is f a,P ndA. In most problems where simple momentum considerations are used, the pressure variation across
a section is not complicated. To evaluate the term a hydrostatic pressure distribution could be assumed so that
we can replace the integral by p; A; h;,where p; is the mean pressure at that section, obtained by assuming a
hydrostatic pressure distribution, or as the relative size of the section is usually not large, effects of gravity are
ignored altogether and we just assume the pressure is constant.

Combining: Collecting terms due to velocity and pressure and summing over all such surfaces we have a
simple approximation to equation (5.3) above:
P = Z (ijU]'.z +pj) Aj (—8;) + Fyy, in terms of velocity, (5.6a)
i
L@ ; ; ;
P =) P35+ +PiA; | (—1;) + Fugs, in terms of discharge. (5.6b)
R 414
J

It is a simple and surprising result that all contributions to P from the fluid are in the opposite direction to the unit
normal vector. That is, all contributions are in the direction given by —n;, whether the flow is entering or leaving
the control volume, and that is also the direction of pressure contributions. Students should remember this when
reading other textbooks, where this simplifying result has not been used.

Example 5.1 Consider a jet of water of area A; and mean velocity /; directed horizontally at a vertical plate. It
is assumed that the velocities are so great that the effects of gravity are small and can be neglected. Draw a control
surface and calculate the force on the plate, assuming that the fluid after impact travels parallel to the plate.



Jet of water striking a plate and being diverted along the plate

After impact water travels parallel to the plate. Consider the figure. On section 1, i = —i, on surface 2, A = j,
surface 3, n = —j, and so those sections play no role in horizontal momentum and force. The force on the plate is
P = Pi. There are no contributions to the horizontal (i) momentum flux on the surfaces 2 and 3, and as the whole
system can be assumed to be at constant pressure p, (except on the plate itself), substituting into the momentum
equation (5.6a) gives

Pi= ppU Ay (—(—1)) + 0i, giving P = +p3, U A;.

Example 5.2 Repeat, but where after impact, water is diverted back in the other directionNow consider Figure

P -y
-
-

1] Pa

."
- f-‘-’-'-‘

-~
\.
1
4

u—>
Pq
R
U, = e =
-l 3 [T

Figure 5-2. Case of jet being diverted back from whence it came

5-2. The crucial point is that while at 1 n; = —i as before, but at 2 and 3, now we have also ns = fz3 = —i.
Substituting into the momentum equation (5.6a) gives

Pi = pBUE A1 (— (1)) 4 pBsU3 Az (— (—1)) + pB3U3 A3 (— (—i)) + Oi.

There is no energy loss in this example, and so by conservation of energy the fluid at 2 and 3 will also have a speed
of Uy, Us = Uz = U,. By mass conservation

—UA) + Uz Az +UzA3 =0, and Ay + Az = A
As the problem is symmetrical we can assume As = A3 = A; /2. We assume 3, = 55 = 3, and so we obtain

Pi=pB Ut A1i+ 1pB,UfA i+ 1pB UL AL,



giving
P =2pB,U{ A,

twice the force in the first example (a), because the change of momentum has been twice that case. Not only was
the jet stilled in the i direction. but its momentum was completely reversed.

Now a rather more difficult example is presented.
Example 5.3 Calculation of force on a pipe bend

This is an important example, for it shows us the principles in a general sense. Fluid of density p and speed U
flows along a pipe of constant arca A which has a bend such that the flow is deviated by an angle 6. Calculate
the force of the fluid on the bend. It can be assumed that there is little pressure loss in the bend, such that p is
constant throughout, and body forces can be ignored. The arrangement is shown on Figure 5-3.1t is helpful to use
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Figure 5-3. Pipe bend
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4 Force of water on pipe
Figure 5-4. Direction of momentum fluxes and force for pipe bend.

unit vectors i and j as shown. At 1, n; = —1i, and u; = Ui, and the contribution to momentum flux in equation
(5.6a) is

(/),{3(/'2 +p) A(-i).

From the construction in the subsidiary diagram, ne = icos @ + jsin#. Hence, at 2 us = U 5, and the momen-
tum flux is

(pBU? +p) Aty = (pBU* +p) A(icos0 + jsin®).
Using equation (5.3) we have
P=—(-iA (pﬁ‘U2 +p)+A (p;3’U‘2 +p) (icos O + jsin0)) + &
Body force
from which we obtain
P = A(p+pB8U%) (i(1 — cosf) — jsind).

This‘answcr is adequate, however further insight can be obtained from the trigonometric formulac 1 — cos 8 =
2sin® (0/2) and sin @ = 2sin (0/2) cos (0/2), giving the solution

P =2A(p+pBU%) sing (isin § —jeos §)



The magnitude of the force is
P=|P|=2A(p+pB8U?) sing,

and the direction can be obtained a little more simply by considering the unit vector in the direction of the force:
isin (6/2) — jcos(6/2). This can be written as

fcos (25%) +sin (%5%)

in the classical form i cos ¢ + jsin ¢, showing that the phase angle of the force is /2 — 7 /2. Consideration of the
angles involved in Figure 5-4 shows that this seems correct, that the direction of the force of the water is outwards,
and symmetric with respect to the inflow and outflow. Other noteworthy features of the solution are that forces
on the pipe bend exist even if there is no flow, because the direction of the force due to pressure at inlet is not the
same as at outlet. For design purposes the relative contributions of pressure and “inertia” may be quite different.
Also in an unsteady state, when there might be pressure surges on the line (waterhammer) there might be large
forces. Considering the solution for different values of ¢ (a) for @ = 0, no deviation, there is no force, (b) the
maximum force is when # = 7,when the water is turned around completely, and (c) if the water does a complete
loop, 6 = 2, the net force is zero.



6. Conservation of energy

6.1 The energy equation in integral form

The energy equation in integral form can be written for a control volume CV bounded by a control surface CS,
where there is no heat added or work done on the fluid inside the control volume:

0 5 5 A—
— [ pedV + [ peun dA + pundA =0, (6.1)
ot
cv S s
| P —
Rate of change of energy inside CV Flux of energy across CS Rate of work done by pressure

where ¢ is time, p is density, dV is an element of volume, pe is the internal energy per unit volume of fluid, ignoring
nuclear, electrical, magnetic, surface tension, and intrinsic energy due to molecular spacing, leaving the sum of the
potential and kinetic energies such that the internal energy per unit mass is

e=gz+ 5 (W +1%+v?), (6.2)

where the velocity vector u = (u,v,w) in a cartesian coordinate system, the co-ordinate z is vertically upwards,
p is pressure, 11 is a unit vector with direction normal to and directed outwards from the control surface such that
u.ii is the component of velocity normal to the surface at any point, and S is the elemental area of the control
surface.

Here steady flow is considered, at least in a time-mean sense, so that the first term in equation (6.1) is zero. The
equation becomes, after dividing by density p:

/ (2 +gz+ l (w? +0* + u:"")) undA=0. (6.3)
p

cs

It is intended to consider problems such as flows in pipes and open channels where there are negligible distributed
energy contributions from lateral flows. It is only necessary to consider flow entering or leaving across finite parts
of the control surface, such as a section across a pipe or channel or in the side of the pipe or channel. To do this
there is the problem of integrating the contribution over a finite plane denoted by A; which is also used as the
symbol for the cross-sectional area. As energy (a scalar) is being considered and not momentum (a vector), it is
not necessary to take particular orientations of parts of the control surface to be vertical, especially in the case of
pipes. To this end, when the integral is evaluated over a finite plane u will be taken to be the velocity along the
pipe or channel, and v and w to be perpendicular to that.

The contribution over a section of area A; is then :f:F,‘J-, depending on whether the flow is leaving/entering the



control volume, where

. 1
B = / (2 + gz + 3 (11.2 +v2 4+ w“’)) udA,
J \»p

Aj

Now we consider the individual contributions to this integral.

The pressure distribution in a pipe or open channel (river, canal, drain, e/c.) is usually very close to hydrostatic
(streamlines are very close to all being parallel), so that p/p + gz is constant over a section through which flow
passes, and we try to ensure that at all points at which flow crosses the control surface that this is true. Hence we
can take the first two terms of the integral outside the integral sign and use the result that f Ju-ndA=Qtogive

E; = (p+pg2) Q + g/ (u? +v* +w?) udA, (6.4)
.;‘j

where p and z are the pressure and elevation at any point on a particular section.

Now, in the same spirit as for momentum, when we introduced a cocfficient 3 to allow for a non-constant velocity
distribution, we introduce a coefficient «v such that it allows for the variation of the kinetic energy term across the
section
Dt B 2 3 i
/ ('u. +v° 4w ) uwdA =aU"A = a?. (6.5)
A ‘
Textbooks, strangely, take just the first component under the integral sign and write

/u3(1A =alU3A,
A
where o is the Coriolis® coeflicient, for which a typical value is @ =~ 1.25. We think that the more general

coeflicient defined in equation (6.5) should be used, and it will be in this course. With equation (6.4) and this
definition of «:

3
PQ;

Rate of energy transport across jth part of the control surface = £ = (p; + pgz;) Q; + ek
J

This can be written in a factorised form

2
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Mass rate of flow -~
Energy per unit mass

The energy per unit mass has units of Jkg *. It is common in civil and environmental engineering problems to
factor out gravitational acceleration and to write

2

: Pj a; &5

E=pgQix | —+2z+5-75 |
s pg 7 2 A;

~ <7

(6.6)

Mean toial head of the flow

where the quantity in the brackets has units of length, corresponding to elevation, and is termed the Mean total
head of the flow H , the mean energy per unit mass divided by ¢. The three components are:

% = pressure head, the height of fluid corresponding to the pressure p,
z = clevation, and
a Q?

A = kinetic energy head, the height which a flow of mean speed @2/ A could reach.
g A~



This form is more convenient, because often in hydraulics elevations are more important and useful than actual
energies. For example, the height of a reservoir surface, or the height of a levee bank on a river might be known
and govern design calculations.

Now, evaluating the integral energy equation (6.3) using these approximations over each of the parts of the control
surface through which fluid flows, numbered 1, 2, 3, ... gives an energy equation similar to equation (4.3) for the
mass conservation equation

+E B+ Es+... = +p19Q1H1 + pagQa s £ p3gQsHs £+ ... =0, (6.7)

where the positive/negative sign is taken for fluid leaving/entering the control volume. In almost all hydraulics
problems the density can be assumed to be constant, and so dividing through by the common density and gravity,
we have the

Energy conservation equation for a control surface
+Q Hy = QoHy = Q3Hsz £ ... =0. (6.8)

We will be considering this more later when we consider systems of pipes. For the moment, however, we will
consider a length of pipe or channel in which water enters at only one point and leaves at another.

6.2 Application to simple systems

For a length of pipe or channel where there are no other entry or exit points for fluid, using equation (6.8) and the
definition of head in equation (6.6):

y @ amy :
Q,..( P A) + Qo (p et o A m“—O.‘ (6.9)

and the continuity equation (4.3) gives — Qi + Qow = 0, 50 Qi = Qo = @, so that the discharge is a common
factor in equation (6.9), and we can divide through by Q:

2 . (‘2

In this form the equation is very useful and we can solve a number of useful hydraulic problems. However, to
give more accurate practical results, an empirical allowance can be made for friction, and in many applications the
equation is used in the form

IIiu o= qul + AH,

where A/ is a head loss. In many situations it is given as an empirical coefficient times the kinetic head, as will
be seen below.

6.2.1 Hydrostatic case

Notice that if there is no flow, @ = 0, the energy equation becomes

(ﬂ—i-z) =(£+z> ;
P9 1 P9 2

which is the Hydrostatic Pressure Equation.

6.2.2 A physical deduction

Note that as the quantity p/pg + z + U?/2g, where U = /A, is conserved, then for the same clevation, a region
of high/low velocity actually has a low/high pressure. This may come as a surprise, as we associate fast-flowing air
with larger pressures. In fact, what we feel in a strong wind as high pressure is actually caused by our body bringing
the wind to a low velocity locally. We will use this principle later to describe the Venturi meter for measuring flow
in pipes.



Example 6.1 A Siphon
Consider the tank shown. On the left side is a pipe with one end under the water and the other end below the level

of the water surface. However the pipe is not full of water, and no flow can occur, The pipe on the right has been
filled with water (possibly by submerging it, closing an end, and quickly bringing that end out of the tank and
below the surface level). Flow is possible, even though part of the pipe is above the water surface. This is a siphon.

(a) Calculate the velocity of flow at 3 in terms of the elevations of points 1 and 3. Ignore friction losses.
(b) calculate the pressure at 2 in terms also of its elevation.

(a) We consider a control volume made up of the solid surfaces through which no flow can pass, an open face that
of the free surface in the tank, and the other open face that at 3. As the velocity with which the surface at 1 drops
we will ignore it. Equation (6.10) gives:

Pg 2g A?
0 o
—+21 40 = — 42z +—U3,
] Py 29
which gives
2
Uz = i (z1 — z3)
(&)

Note that the factor « does play a role. The velocity of flow is reduced by a factor 1//cr, which if o &~ 1.3 is 0.88.

(b) Now consider the control volume with the entry face across the pipe at 2. Equation (6.10) gives:

P a Q?
<P9 T T ,12)3

2 (1 S 0 Q5
— 4z +=—=Uy = —+42z3+—U;3,
. A Py 29 °

now solving the equation and using the fact that if the pipe has the same cross-sectional area, then mass conserva-
tion gives us Uy = Us,

p2 = pg (23 —22).

As z3 — zp is negative, so is this pressure, relative to atmospheric. Flow is possible provided that point 2 is
not too high. If p, drops to the vapour pressure of the water, then the water boils, vapour pockets develop in
it, and the flow will stop. At 20°C the vapour pressure of water is 2.5 kPa, i.e. a gauge pressure of roughly
—100 + 2.5 = —97.5kPa, corresponding (0 z3 — zp = ps/pg = —97.5 x 10*/1000/9.8 ~ —10m, or point
2 being about 10 m above point 3. Of course, near 100°C the vapour pressure of water is close to atmospheric
pressure, so that practically no elevation difference is possible without the water boiling.



6.3 Bernoulli’s equation along a streamline

Most presentations of the energy principle in hydraulics actually use Bernoulli’s' equation, which is an energy-
like result obtained from non-trivial momentum considerations for flow through an infinitesimal streamtube (see,
for example, §3.7 of White 2003). The result that / is constant along a streamline. This is not as useful as widely
believed, as in general this Bernoulli “constant™ varies across streamlines, a point that is not always emphasised.
Nevertheless, it is in the Bernoulli form that many tutorial and practical problems involving pipes and channels are
analysed, and almost all of them ignore the fact that the kinetic energy density varies across a flow. In this course
we consider primarily the energy equation in integral form, which allows for cross-stream variation.

There are, however, certain local problems where using Bernoulli’s equation is easier than the energy conservation
equation. It can be stated:

9

In steady, frictionless, incompressible flow, the head H = 2 +z+4+ 2— is constant along a streamline,
Py g

where V is the fluid speed such that V2 = u? 4+ v? + w?. As it is written for frictionless flow along a streamline
only, Bernoulli’s equation is often not particularly useful for hydraulic engineering, as in both pipes and open
channel flows we have to consider the situation where the energy per unit mass varies across the section. Tt does,
however, give simple answers to some simple problems. Nevertheless in many textbooks the application of energy
conservation is often described as being application of Bernoulli’s equation.



Example 6.3 The surface of a tank is / above a hole in the side. Calculate the velocity of flow through the hole.

h

Datum

The situation is substantially friction-free. We apply Bernoulli’s theorem between two points on any streamline:

Point 1 which is on the surface, where the elevation relative to an arbitrary datum is zo + h, the pressure is
atmospheric, and where we ignore the small velocity at which the surface drops as water flows out, and

Point 2 just outside the hole, where the elevation is z2, the streamlines are parallel and the pressure is atmospheric,
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from which V5 = /2gh is quickly obtained. Note that this is the same velocity that a particle dropped from that
height would achieve. Also notice that the atmospheric pressure cancelled, so we may as well take it to be zero,
and the z cancelled, so that we may as well take the datum at one of the points considered.

Example 6.4 The Do-It-Yourself Velocity Meter

h

One simple way of measuring the flow velocity in a stream — or from a boat —is to put your finger in the water, and
estimate the height & to which the diverted water rises until it has a velocity close to zero. Applying Bernoulli’s
theorem along the streamline between a point on the surface of the water where the velocity to be measured is U,
and the highest point to which the water rises, both of which are at atmospheric pressure, gives

0 2 0 0?

P9 29 pg 29

giving U = +/2gh.



7.4.1 Reynolds number

The number was first proposed by Reynolds in 1883.In any problem involving viscosity, with a discharge ) and
length scale D such that there is a velocity scale U7 = /D?, a dimensionless viscosity number appears as in the
preceding examples:

which is the ratio of viscosity to inertial forces. In most hydraulics literature this quantity is written upside down
and is called the Reynolds number:
v

It would have been more satisfying if the number quantifying the relative importance of viscosity had been directly
proportional to viscosity! With the traditional definition, high Reynolds number flows are those which are large
and/or fast such that the effects of viscosity are small. In hydraulics problems, with, say, a typical length scale of
1m, a velocity scale of 1ms ', and a typical value for water at 20° of » = 1 x 10 “m?s !, a typical value of
R = 10° is obtained. Flows which may be laminar for small Reynolds number become turbulent at a Reynolds
number of the order of 10?, so it can be seen that nearly all flows in hydraulic engineering are turbulent, and the
efTects of viscosity are not so important. However, we will see that, for example, the resistance coeflicient for pipe
flows shows significant variation with Reynolds number in commonly-experienced conditions.

8. Flow in pipes
The main problem in studying flow in pipes is to obtain the relationship between flow rate and energy loss, so

that if frictional characteristics arc known, then flow rates can be calculated, given the available head difference
between two points.

8.1 The resistance to flow

8.1.1  Weisbach’s equation

for the head loss AH in a pipe of length L and diameter D with a flow rate ), where the roughness size on the
pipe wall is d, and the physical quantities g. j, and p are as usual. This is the basis for Weisbach'*’s equation for
pipes, introduced in the 1840s, which states

ag =32 (.0

T D2g’ ’
where U is the mean velocity, and A is a dimensionless friction cocfficient, for which the symbol f or 4f is
sometimes used, which is a function of relative roughness = = d/D and pipe Reynolds number UD /. The

equation is widely used to calculate friction in pipes, and was at the core of hydraulics research in the first half
of the 20th century. Often the equation is called the Darcy-Weisbach equation; some authors do not bother with a
name for the equation or for the coefficient A. For pipes the gravitational acceleration g plays no role other than
that of multiplying A7 to give the energy loss per unit mass. The total power loss in the pipe is pgQAH.

8.2 Practical single pipeline design problems

Case Known To find

A Discharge @@ and diameter 72 known Head loss AH
Head loss AH and diameter D known | Discharge Q@
C Head loss AH and discharge () known | Diameter D

jos]

Table 8-2. Three cases of pipeline design problems



Here we consider the three types of simple pipe problems, so-called because they are problems where pipe friction
is the only loss. Six variables are involved: ), L, D, AH, v, and d. In general the quantities which are known are:
length L, the temperature and hence the viscosity », and d the roughness of the pipe material being considered.
the simple pipe problems may then be treated as three types, as shown in Table 8-2.We also have the Weisbach
equation (8.1) in terms of more practical quantities

LU? | 8LQ?

AH = A—— = 2
D 2g gr2D5

(8.8)

8.3 Minor losses

Losses which occur in pipelines because of bends, elbows, joints, valves, efc. are called minor losses, although

they are just as important as the friction losses we have considered. In almost all cases the minor loss is determined
by experiment. A significant exception is the head loss due to a sudden expansion which we will treat below. All
such losses are taken to be proportional to the square of the velocity and arc expressed as a cocfficient times the
kinetic head:

U2
Al =K. (8.14)

8.3.1  Pipeline fittings

Values of A for various pipeline fittings are given in Table 8-3, taken from Streeter & Wylie (1981, p245).

Filting K

Globe valve (fully open) 10.0
Angle valve (fully-open) 5.0
Swing check valve (fully open) 1.0
Gate valve (fully open) 0.2
Close return bend 22
Standard T 1.8
Standard elbow 0.9
Medium sweep elbow 0.8
Long sweep elbow 0.6

Table 8-3. Head-loss coeflicients K for various fittings

Minor losses may be neglected when they comprise 5% or less of the head losses due to pipe friction. The friction
factor, at best, is known to about 5% error, and it is meaningless to try to specify great accuracy. In general, minor
losses may be ignored when there is a length of some 1000 diameters between each minor loss.



8.3.3 Sudden contraction

The head loss at the entrance to a pipeline from a tank or reservoir is usually taken as K = 0.5 if the opening
is square edged. For well-rounded entrances A = 0.01 to 0.05 and may usually be neglected. For re-entrant
openings, such as when the pipe extends into the tank beyond the wall, K = 1.

8.4 Pipeline systems

8.4.1 Introduction

One of the most common problems faced by an hydraulic engineer is the analysis and/or design of pipeline systems.
In this section we will bring together some sections considered above and apply them to practical problems. In
particular, Section 6, the energy equation; Section 8, flow in pipes; and Section 11, fluid machinery. Complex flow
problems will be investigated, including systems that incorporate different clements such as pumps and multiple
pipeline networks.

There are some warnings to make here:

e Somec American books still use the Hazen-Williams equation for pipe friction. It was superseded in the 1930s
by the work of the German school.

e For the Weisbach friction factor American books usc the symbol f. British books tend to use 4 f instead. To
overcome the ambiguity, in this course we have used the European symbol A and Weisbach’s formula in the
form AH = AL/D x U?/2g, with no factor of 4 in front of it.

8.4.2 Summary of useful results from above for calculating pipe friction
Continuity equation: For a control surface, equation (4.3) is
01 @5 L. =0, (8.17)

where the (); are the discharges crossing the control surface, where the positive/negative sign is taken for fluid
leaving/entering the control volume.

Integral energy theorem: The integral ecnergy theorem (equation 6.8) can be written
iQ]H[iQQH‘ZZtQ,’}H,}:t...:O. (8.18)
where the 7/, are the corresponding fotal head of the flow, the mean energy per unit mass divided by g¢:

p 4 P
- . i
20 +z+ 2 A2

Simple pipe or channel: For a length of pipe or channel where there are no other entry or exit points for fluid,
equation (6.10), explicitly including head loss A7, gives:

Bopn BN  (E L BEY e (8.19)
Pyg 29 A% ) Pg 28 )

Head loss formulae: Weisbach’s equation is

L U?
AH = S (8.20)

where AH is the head loss in a pipe of length 1 and diameter D, U is the mean velocity, and A is a dimensionless
friction coefficient.

Minor losses: Losses which occur in pipelines because of bends, clbows, joints, valves, efc. were described in



#8.3. All such losses are taken to be proportional to the square of the velocity and are expressed as a coefficient
times the kinetic head:

P
AH = K—. (8.23)
29
Values of K for various pipeline fittings and situations are given in Table 8-5.

Fitting/Situation K

Globe valve (fully open) 10.0

Angle valve (fully-open) 5.0

Close return bend 2.2

Standard T 1.8

Elbows 0.6-09

Gate valve (fully open) 0.2

2

Expansion (1 — —;i-)

Sharp contraction 0.5

Re-entrant contraction 1.0

Rounded contraction 0.05-0.1

Table 8-5. Head-loss coefficients /K™ for various fittings and expansions and contractions
8.5 Total head, piezometric head, and potential cavitation lines
8.5.1 General considerations
Consider the mean total head at a section across a pipe:
2
Bt g B8 (8.24)

— z -
Pg 2g A2

The pressure p and elevation z will usually vary linearly over the section, such that the piezometric head h =
p/pg + z is a constant over the section, and hence so is /1. This total head is usually known at control points such
as the surface of reservoirs. The amounts lost due to friction and local losses in the system can be calculated.

If p, is the absolute vapour pressure of the water in the pipe, cavitation will nor occur if the absolute pressure
P + pa = pu, Where p, is the atmospheric pressure. Hence, from equation (8.24), for no cavitation

] pg 29 A% 7 pg
giving the condition
z < H + Ahe, (8.25)

where A/, might be called the cavitation height

2
bt =T B0 B (8.26)

That is, as z is the elevation of any part of the cross-section, no part of the pipe can have an elevation larger than
the magnitude of the local head plus a distance Ah,. The limiting condition is for the highest fluid in the pipe at
any section, which is just below the soffit (the top of the inside) of the pipeline, such that we can write

Cavitation will not occur at a section if the soffit of the pipe is lower
than a point Ah, above the local total head elevation.

Now consider the quantities which make up the cavitation height A/, in equation (8.26):

e Atmospheric pressure head p,/pg — typical atmospheric pressures are roughly 990 — 1010 m bar, and the
density of fresh water is 1000 kg m > at 5° and 958 kg m ™~ at 100°, so that p, /pg will vary between 10.1



and 10.8 m. The standard atmosphere of 760 mm of mercury with a value of 10.34 m of water could be
assumed without much error.

e Vapour pressure — this shows rather more variation, primarily with temperature. As shown in Figure 8-5 for
atmospheric temperatures it is always less than a metre, and for moderate temperatures could be ignored,
however as the temperature approaches 100°C it approaches 10.33 m, and p, — p,, goes to zero such that
boiling occurs at atmospheric pressure.

10 t ' ' ' '
9t
8 L
Vapour A
pressure 6l
head 5
po/pg (m) 4t
3 L
2k
L
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Temperature 7°C

Figure 8-5. Vapour pressure head and its variation with temperature

e Kinetic head — this varies from situation to situation and from pipe to pipe in the same network. For this to
be as much as 1 m, the mean fluid velocity in the pipe would be roughly /2 x 9.8/1.2 ~ 4.0ms ™!, which
is large.

The manner in which a pipeline is examined for the possibility of cavitation is essentially to plot a graph of
H + Ah, (equation 8.25) against horizontal distance along the pipe. If the soffit of the pipe were found to pass
above that line, then the absolute pressure in the water would be equal to the vapour pressure there, and it would
start to cavitate and disrupt the flow. The calculation is usually done in three stages, giving three lines which are
significant to the problem:

Total head line or “energy grade line”:  First calculate the total head /7 at points such as reservoirs from knowl-
edge of the elevation, then at other points from knowledge of both friction and local losses due to structures,
pumps, expansions or contractions. Plotting this line often reveals details of the flow, such as where energy
might be reduced due to turbulent mixing and losses destroying kinetic energy. After plotting the total head
points, the total head line can be plotted by connecting the known points with straight lines.

Piezometric head line or ”hydraulic grade line”: This is ofien calculated and plotted, which often helps un-
derstanding a problem, but it is not strictly necessary to do so to calculate /7 + Ah.. The piezometric head
line joins a series of points showing the piczometric head for each point along a pipe, plotted against horizontal
distance. As can be obtained from equation (8.24), the piezometric head A:

aQ2

h=H-———,
3 2g A2

showing that it is simply plotted a vertical distance equal to the kinetic head /29 x Q*/A? below the total head
line. The piezometric head line is parallel to the total head line for each pipe element.

Potential cavitation line:  Equation (8.25) shows that for no cavitation, z < H + Ah,,, where z refers to the
soffit of the pipe. This condition can be written

Piezomeiric head Almost constant on any one day



This shows that where points and joining lines are drawn, displaced vertically a distance (p, — p,) /pg above the
piezometric head ling, then if the soffit of the pipe ever passes above this “potential cavitation line”, cavitation
will occur. The additive quantity is a function of atmospheric pressure and water temperature, but for most
hydraulic engineering problems varies little.

8.5.2  Entry and exit points

Entry point:  Immediately the flow enters a pipe the total head reduces by an amount K U /2g (above we saw

-2 L _
Y Kawy /26%0° 1 £
\ a/2gx 0%/ 4> ~~ Total head line T s
Y.a _‘?XQ_ »(_l /“2ng2 / A2 ‘l_\
Piezometric head line T YA v
(@) Entry topipe (b) Exit from pipe to reservoir

Figure 8-6. Behaviour of total and piezometric head lines at entry and exit from pipe into a reservoir

that the head loss coefficient for a square-edged inlet was K = 0.5). The pressure will further drop by an amount
a U?/2g, as the kinetic contribution to the head has increased by this amount. This means that the local total head
line and piczometric head lines look as in 8-6(a).

Exit point: As the flow leaves the pipe and enters a much larger body of water such as a reservoir, all the
kinetic energy is destroyed. This can be explained by the theory above leading to equation (8.16) for the case
Ay = oo or Us = 0, giving
(yl/"f

29 °
This means that the piezometric head becomes equal to the head in the reservoir at the exit, and the pressure is the
same just inside the pipe as at a point of the same elevation in the reservoir, as shown in Figure 8-6(b).

AH =

8.5.3 A typical problem

Figure 8-7 shows an example where a pipeline passes from one reservoir to another over a hill, and shows a
number of features of total and piezometric head lines. As it is drawn, cavitation will occur, and the actual pressure
distribution will be very different. Here, the example is included to demonstrate how one checks for potential
cavitation. In practice, if it were found to be likely, then a more complete analysis would be done, incorporating
its effects.

e Considering the flow just afier the entrance to the pipe, the total head line immediately shows a slight drop be-
cause of the losses associated with the sudden contraction, something like 0.1 or 0.5 times U2 /2g, according
to equation (8.14) and Table 8-1.

e The piezometric line shows an even larger sudden drop because as the fluid has been accelerated into the pipe
and now has a finite velocity, the distance between the two curves al/?/2g is finite.

e As velocity is constant along the pipe, so is the distance between the two curves.

o As the flow approaches the downstream reservoir, the piczometric head in the pipe will be the same as in the
reservoir, but the total head contains the kinetic component which is excess — the flow enters the reservoir
as a turbulent jet until all the kinetic head is destroyed, as shown in the figure, after which both total and
piezometric heads are now equal to the elevation of the still reservoir surface.

e The potential cavitation line can now be simply drawn as a line everywhere a constant distance (p, — p.,) /py above



'y

Figure 8-7. Pipeline between two reservoirs passing over a hill showing hydraulic lines and region of cavitation.

the piezometric head line.

o It can be scen that the soffit of the pipe passes above this line, and cavitation will occur wherever it is above.
The flow situation will, in fact change, in a manner to be described further below. For present purposes we
have shown that cavitation is a problem in this case.

Example 8.1 (Example #10.1 Streeter & Wylic 1981)

Consider the pipeline emerging from a tank, passing through a valve, and finally the flow emerges into the at-
mosphere via a nozzle. Determine the elevation of hydraulic and energy grade lines at points A-E. The energy loss
due to the nozzle is 0.1 x UZ/2g. In this casc we take a value of v = 1.3.

A B C D E
Total head lin,
= Piezometric hc.a?l‘(i.lin;
= e e .
T —_
‘ ~ »
. e
KE=1/2 K=10 A=0.02 D=150mm 75mm
nozzle
- 24m i 36m g

Figure 8-8. Tank, pipeline and nozzle, with total head and piezometric head lines

First we apply the integral energy equation for a control surface around all the sides of the tank, the pipe, and

across the nozzle.
2 +ern), = (544 5%)
e Z ) Sl B +AH
(pg 20 A% ), \pg 29 A% )

which gives

5 5 o
0+20+0 = o+o.,.2i Q - Q., | 2 s +0'0(')21X,60
I (mopyra)  WED\ S T D
N—— Ka Fricuon: fL/D.
Note: Diameter of nozzle
2
+0.1 % Q -
29 x (7 (D/2)* /1)
—_—

D /2 diameter of nozzle



20:%(,” 16+ 3 +10+8+0.1 x 16)
29 (nD2/4)° =

With o = 1.3, we obtain a discharge of ) = 0.0547, while with o« = 1, Q = 0.0582. The difference of 6% scems
enough to warrant using the more realistic value. Hence, our basic quantity is

A 0.0547°

=- = = 0.489,
2¢g (wD?/4) 2 x 9.8 x (70.15%2/4)"

to be used in local loss formulae, while the kinetic head term to be used is

2

a— = 1.3 x 0.489 = 0.636.
2g

Now we apply the energy equation between the surface of the tank and just after A, and then between each of the
subsequent points:

Haq=20—05x 0.489 = 19.76

Hp =19.76 — 222X21  0.489 = 18.20
He =182 — 10 x 0.489 = 13.31

Hp = 13.31 — 292236 5 (.489 = 10.96
Hp = 10.96 — 16 x 0.1 x 0.489 = 10.18

ha = 19.76 — 0.64 = 19.12
hp = 18.20 — 0.64 = 17.56
hc =13.31 — 0.64 = 12.67
hp = 10.96 — 0.64 = 10.32
hg = 10.18 — 16 x 0.64 = —0.06

The final value of the piezometric head at E should have been zero, but accumulated round-off error by working to
two places only, has caused the error. These results are plotted in Figure 8-9.
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Figure 8-9. Total and piezometric head lines for example

Example 8.2 Consider a single pipe of length - = 1000 m connecting two reservoirs with a head difference

AH = 10m. It has a diameter of ) = 300 mm, roughness height d = 0.3 mm; it has a square-edged entry,
Ky = 0.5, and with o« = 1.3 in the pipe. Calculate the flow in the pipe.

3 A
0+AH+0=0+0+0+—2 (1<0+_L+(,>
29 (xD2/1)’ D

We will solve the problem by iteration using Haaland’s approximation for A, which is a weakly-varying function
of @, so that the equation is an implicit equation for Q:

- mD*/4 V29AH, (8.27)
v Ko + AL/D + «

and we will start with the fully-rough approximation for A.

Fore =d/D = 0.3/300 = 0.001,

1 1
Ai=

= 0.0196.
1.82 001,10/9 2
(tomsa ((5579™"))




Hence from (8.27)

7w % 0.3%/4 ;
Q= ol VZx 08 x 10 = 0.121 m*s™
0.5+ 0.0196 x 1000/0.3 + 1.3

7

This is our first estimate. Here we calculate £ as a function of ()

/rD QD 4Q L €
= = "  araR Y ® ®§&

R Q
and so from Haaland, equation (8.7)
. 1 _ 3 1
T 1.82 10/9 T 1.82 10/9 3. —6\\2’
and so, using Q = 0.121 m*s~! we get A = 0.0202. Substituting again into (8.27)
7 0. 2/
f= EFHOE 4 VIX 98 x 10 = 0.119m®s !
/0.5 +0.0201 x 1000/0.3 + 1.3

9

And repeating, we get A = 0.0202, hence it has converged sufficiently. The discharge is 0.119m” s

8.5.4 Compound pipe systems

Pipes in series:

When two pipes of different sizes or roughnesses are so connected that fluid flows through
0 1 2 3

‘”K_I

5 6 7 8

Figure 8-10. Compound pipe system — in series, joining two reservoirs

one pipe and then through the other. Consider Figure 8-10, where we apply the encrgy integral equation between
the surface of the two reservoirs:

p y @ p v @ :
(pq+ +2gA°) (pg+z+2.q/12 A

) Q2/43 Le QA2 QA2
0+20+0=0+z8+0+,\1Q/1 /\2_2Q/z+._’+/\6_6Q/o Q*/A;
29 Dg 29 2g

D,
Hence we obtain

Q2 (Iﬁ] /\2[/4_)/])2 /\bl.{b/,)b
Zp) — 28 =

7\ _ @~ K
== “ae 5) - —;. 8.28
AT g et gt A:,) 2g 2 42 (8.28)

where for the friction loss in a length of pipe, K; = \;L;/D;, and usually, il the kinetic head is destroyed at the
end of the pipe, K’ = «. The Colebrook-White equation

L tot (i+—2'51 ) =0
\/X 210 e R\/X =

shows us that J\; is an implicit function of relative roughness =; = d;/D; of a pipe and the Reynolds number of the



pipe flow in the form

v vrlD;

1

Substituting gives

1 €i . i
i 2 lOglO ( : 97VD : ) = 0. (8~29)

e 37T Q VN
We now have a system of nonlinear equations to solve: equation (8.28) is an equation for () and all of the A;
(and any K; which depend on the Reynolds number), while for each pipe segment, equation (8.29) is a single
equation in the common () and a single A;. There are precisely as many equations as unknowns, and a solution
scems possible. Any one of a number of different methods such as Newton’s method for a system of equations,
or optimisation methods are possible, which might be quite complicated. In this case, however, the structure of
the system is simple, because in each of the Colebrook-White equations the term involving \; is weakly varying,
which suggests using a direct iteration method.

As noted in Section 8.2, there are three types of practical pipeline design problems:

8.5.5 Parallel pipelines

If the flow is divided among two or more pipes and then is joined again, it is a parallel-pipe system. In pipes in
series the same fluid lows through all the pipes and the head losses are cumulative, but in parallel pipes the head
losses are the same in any of the lines and the discharges are cumulative.

Two types of problem occur:

e With the heads known at the ends of the pipes, find the discharge. This is just the separate solution of simple
pipe problems for discharge, since the head loss is known for each.

e With the discharge known, find the distribution of flow and the head loss. This is more complicated, as the
losses are nonlinear, and for different flows the fraction of flow in each pipe will change.
Consider the case where there are three pipes. The equations are, from (8.28) but assuming just frictional
resistance,
Ly Qf Ly Q3 Ly Q3

H=M— =M 22 = = 22
"Dy 2gAZ T Dy 2gAT T P Dy 2g A2

cand Q = Q1 + Qo + Q3.

and adding a Colebrook-White equation for each pipe gives us a total of seven equations in the seven un-
knowns 7, A1, Q1, A2, Q2. and Az, Q3. They are nonlinear. It would seem simplest to use Solver again.

8.5.6  Branching pipelines

There are two diffcrent cases:



The dividing flow type: this is the more usual case, where a pipeline bifurcates or enters a manifold,
from which flow leaves via a number of different exits. Examples include the bifurcating nature of a water supply
system and diffusers for disposal of sewage or heated effiuents into large bodies of water. There is no reason to
expect unusual losses, and a simple energy balance cquation can be written, including conventional cocfficients
associated with bends erc. at the bifurcation.

The combining flow type: in this case where two or more pipes combine, it is possible that there will be
some finite energy losses associated with two different streams of different energies per unit mass and different
mass flow rates combining and leaving with the same energy per unit mass. This seems not to be treated in text
books, but it is possible that an analysis based on momentum might yield results.

Figure 8-12. Pipe junction, showing control surface dashed

Consider two pipes joining as in Figure 8-12, where a flow 1 and flow 2, with the assumed directions of flow
shown, join at 3, and it is assumed that in general some losses will occur before a station 4. The control surface is
shown by a dashed line. The mass conservation equation gives

—Q1—Q2+Q4=0, (8.33)

the momentum conservation equation gives, where it is assumed that at the entry to the control volume, the pressure
in both pipes is p3, and that frictional forces between 3 and 4 are negligible,

—cos ) i Al + 5101 —cosly B Ao + —32 @ + B Ayq + —'dl (@1 +@Q2)” =0,
P Ay P Ay P Ay

(8.34)

where it is been assumed that due to turbulent mixing of the streams, that 3, = 1 and v, = 1. The energy
conservation equation gives

(@) YA pe , 1[Q4\° B
-1 (-; +'§— (A]) ) - Qs (—‘; +"2— (71;> ) + Q4 (—; +§ (A,;) ) —QugAH =0, (835)

where —gAH is the change in head between 3 and 4 such that AH is a positive quantity. Eliminating p, between
equations (8.34) and (8.35) gives

s, A Ap 8, Q% B2 Q3
gAH = 8 (1 re cos 0, A (.0:50-2) —144 s cos e cosls
1 (@ +Q)? 1 763 1 103
N . = i A b A 8.36
5T A T2t A Bl

This has an important counterpart in the hydraulic jump, the turbulent phenomenon in open channels which takes a
shallow high-speed stream to a deep low-speed state with no momentum loss, but with intense turbulence causing
a loss in energy.

It is interesting that in this case, unlike losses due to fittings and bends, the pressure also plays a role.



To obtain an idea of the magnitude of the losses, consider two pipes of the same area A; = A, carrying the same
discharge 1 = (2, which enter a larger pipe at angles of £45°. From the Weisbach equation it can be shown
that, for the same head gradient, that discharge is proportional to the pipe diameter to the power 5/2, hence we can
say that Dy/ Dy = (Q4/ Q1)%° = 2%/5 or that A, /Ay = 245 As a first approximation we will set all the 7 and
7 to 1, and so substituting into equation (8.36),

5 2
3 —4/5 5—1/2 P Q7 ! 1 2Q1)“ 2 Q'i
Al = Bt~ 9 ~2 L oo =
. p( o ) “ong B A T22A7
D)
= 0.188%4—0.348 %— (8.37)
1

Now we calculate the effective local loss coefficient Kjucion SUch that AH = Kjpuerion % U3 /29, giving

o 20AH _ 2AH . gAll
e T (Qa/ A T Qu/A2E T T (@A
and substituting back into (8.37)
B =15 (0.188 pi‘l’?z +0. 348) — 02842 ( = 4-0.527,

hence for negligible pressure, we obtain a value of (.53, typical of such local losses. However the pressure
contribution might be quite large. Let us take p3/pg ~ 100m and U/} = 1ms ™', giving

9.8 x 100
Kill’llch()ll = 0.284 + + 0.527 =~ 280,

which seems a remarkably high value, and may cause a re-evaluation of the role of junctions in a network.



