G. V. Bezprozvannych, E. S. Moskvitin

Ageing Physical Processes and the Technical Condition Assessment of Power Cables with Paper-Impregnated Insulation

Dominating Ageing Mechanisms of Paper-Impregnated Insulation

Cross section of a PILC (PIAC) cable sample from NPP

The Limit Paper Insulation State Criteria According to Mechanical Characteristics

Double bends number integral distribution functions of the power cables phase and belt insulation of the NPP and the electric network

Individual Insulation Components Dielectric Losses Characteristics

Cumulative <i>tg</i> δ (measurements sch	(%) values eme at the f	according frequency	to the	Restored $tg\delta$ (%) values in insulation components based on the cumulative measurements results				
Scheme	Frequency measurements, kHz			Insulation	Frequency measurements, kHz			
	0,1	1	10	component	0,1	1	10	
Phase A – relative to the other two and the metal shell	0,435	0,507	1,089	Phase insulation on the phase A	0,4745	0,4927	0,9809	
Phase B – relative to the other two and the metal shell	0,444	0,449	0,818	Phase insulation on the phase B	0,4915	0,3831	0,4687	
Phase C – relative to the other two and the metal shell	0,467	0,466	0,838	Phase insulation on the phase C	0,5350	0,4152	0,5065	
Three phases –	0,423	0,507	1,088	Belt insulation	0,3337	0,8378	2,4994	

Individual Insulation Components Dielectric Losses Characteristics											
Insulation	Test voltage at a 50 Hz frequency										
component	1 k	XV	21	κV	5 kV						
	Capacity <i>C</i> , nF	<i>tg</i> δ, %	Capacity <i>C</i> , nF	<i>tg</i> δ, %	Capacity <i>C</i> , nF	<i>tg</i> δ, %					
Individual parameters of the power cable phase insulation before repair											
Phase A	636,3	1,00	616,5	0,891	840,1	1,39					
Phase B	639,9	0,99	618,4	0,896	839	1,61					
Phase C	damaged										
Individual parameters of the power cable phase insulation after repair											
Phase A	500,756	0,764	501,063	0,8341	504,2875	0,8624					
Phase B	498,256	0,777	498,163	0,8511	502,1875	0,8570					
Phase C	497,756	0,760	497,463	0,8582	501,5875	0,8830					

Correlation Between Individual Mechanical and Electrical Parameters

Linear regression equation between the double bends number and tg δ at 50 Hz frequency: Phase insulation: tg $\delta_{ph} = 1.2703541 - 0,000340764 * N, \%$ Belt insulation: tg $\delta_{bl} = 1.2932 - 0,0003 * N, \%$

Thank you for your attention!

