Спектроскопічні методи

Загальний опис

Класифікація спектроскопічних методів

- В більшості спектроскопічних методів вимірюють залежність інтенсивності опромінення /, що пройшло через речовину або розсіяне речовиною, від частоти v, тобто визначають функцію /(v).
 - Кожна речовина поглинає електромагнітне опромінення, коливання якого мають строго визначені частоти, при цьому змінюється енергія молекули:

$$\Delta E = E_{\kappa} - E_{\eta} = hv$$

де ∆Е □- зміна енергії системи;

- E_{κ} і E_{n} енергія системи в вихідному та кінцевому стані; h – стала Планка; $v \Box$ – частота опромінення.
- Якщо енергія кінцевого стану *E*_к више за енергію початкового стану (Δ*E* □> 0), то відбувається поглинання енергії, при Δ*E* □< 0 – енергія випромінюється.
- Перший випадок відповідає спектрам поглинання, другий – спектрам випромінювання.

Підгрунтя спектроскопічних методів

Поглинання електромагнітного випромінювання пов'язано з переходом молекул речовини на більш високий енергетичний рівень.

Внутрішня енергія молекул квантована, тому кількість поглинутої енергії може мати тільки строго визначені значення. Поглинається випромінювання тільки окремої частоти і лише в тому випадку, коли квант випромінювання відповідає різниці між двома енергетичними рівнями опромінюваної речовини. Переходами між рівнями енергії Е_кі Е_п «керують» правила відбору, тому не всі переходи можливі. Область інтенсивного поглинання випромінювання називають полосою, а сукупність полос являє собою спектр поглинання.

Підгрунтя спектроскопічних методів

- Таким чином: кожен тип змін енергетичних рівней молекул відбувається в окремій області частот коливань. Для дослідження будови молекул найчастіше використовують області, які різняться енергією квантів:
- а) найбільше енергії потребує збудження електронів, ця енергія відповідає випромінюванню в ультрафіолетовій і видимій області (електронна спектроскопія);
- б) менші витрати енергії необхідні для зміни коливальних рівней молекул, пов'язаних із зміною довжини зв'язків та кутів між атомами; такі зміни викликають поглинання в інфрачервоній області (коливальна спектроскопія);
- в) ще менша енергія необхідна для переорієнтації спінів ядер, її можна викликати квантами радіочастотного випромінювання (спектроскопія ядерного магнітного резонансу).

Електронні і коливальні переходи в атомі або

молекулі

Діаграма типових рівней енергії ілюструє головні стани і перший збуджений стан в атомі або молекулі. Коливальні рівні головного стану надано тонкими горизонтальними лініями. Перехід між двома коливальними рівнями показано короткою стрілкою. Можливий перехід між нижнім рівнем основного стану і четвертим рівнем першого збужденого стану показано довгою стрілкою.

Електромагнітні коливання

Фізичні явища, що виникають при взаємодії електроного пучка з об'єктом, та схема їх реєстрації

- 1- первинний пучок електронів
- 2- детектор вторинних електронів
- З- детектор рентгенівських променів
- 4 детектор відбитих електронів
- 5- детектор світлового випромінювання
- 6- детектор електронів, які пройшли через зразок
- 7- контроль наведеного струму
- 8 реєстрація струму електронів, що пройшли зразок
- 9 реєстрація струму електронів, поглинутих зразком

Характеристики спектроскопічних методів

Випромінюван ня	Довжина хвилі λ, см	Частота v, Гц	Енергія переходу Е, еВ	Процеси, що відбуваються з частинками (метод)
Гамма промені	10 ⁻¹⁰ -10 ⁻⁸	10 ²⁰ -10 ¹⁸	~ 107	Зміни в енергетичному стані ядер (ү - резонанс)
Рентгенівське	10 ⁻⁸ -10 ⁻⁶	10 ¹⁹ -10 ¹⁶	10 ² -10 ⁵	Зміни енергетичного стану внутрішніх електронів атомів (рентгеноскопія)
Ультрафіолетове - дальнє - ближнє	10 ⁻⁶ -2·10 ⁻⁵ 2·10 ⁻⁵ -4·10 ⁻⁵	3·10 ¹⁶ -10 ¹⁵ 10 ¹⁵ -8·10 ¹⁴	~ 10 ² ~ 10	Зміна енергетичного стану зовнішніх електронів (УФ-спектроскопія)
Видиме	4·10 ⁻⁵ -8·10 ⁻⁵	8·10 ¹⁴ - 10 ¹⁴	~ 10	-//- (УФ-спектроскопія)
Інфрачервоне - ближнє - дальнє	~ 10 ⁻⁴ 10 ⁻⁴ -10 ⁻²	10 ¹⁴ -10 ¹³ 10 ¹³ -10 ¹¹	~ 10 ⁻¹ ~ 10 ⁻²	Коливання атомів у молекулі (ІЧ і КР спектроскопія)
Мікрохвильове	10 ⁻² -10 ²	10 ¹¹ -10 ¹⁰	10 ⁻⁵ -10 ⁻³	Коливання атомів у кристалічних гратках (обертальні спектри)
Короткі хвилі	10 ² -10 ⁴	10 ⁹ -10 ⁶	10 ⁻⁷ -10 ⁻⁵	Зміна енергетичного стану спінів ядер і електронів (ЯМР, ЕПР, ЯКР)

Експериментальні методи визначення структури молекул

- Для визначення структури молекул застосовують так звані "параметри молекул", до яких відносять довжину зв'язків між парами атомів АВ та кути між зв'язками.
- Важливим елементом структури молекул є наявність симетрії, сукупність характеристик якої (площа симетрії, вісь симетрії деякого порядку, дзеркально-поворотна вісь деякого порядку, центр симетрії) може мати лише визначені комбінації, які об'єднують в так звані **точкові групи** і вносять до числа необхідних елементів, що визначають тим чи іншим методом.

Метод	Параметри молекули	Симетрія молекули
Обертальні спектри	÷	÷
Коливальні спектри	-	÷
Обертальні спектри КР	÷	÷
Коливальні спектри КР	1	÷
Дифракція електронів	÷	÷
Дифракція рентгенівських променів	÷	÷
Дифракція нейтронів	÷	+
Дипольні моменти	-	÷
ЯМР	÷	+

Спектрофотометр С – 115 ПК

Електронна мікроскопія

CEM, PEM, ACM

Електронна мікроскопія

Довжина хвилі електрона залежить

від прискорюючого потенціалу

$$\lambda = \frac{12.5}{\sqrt{U}}$$

і довжина хвилі електронів, прискорених в полі 90 кV, дорівнює 0.04 Å, тобто набагато коротша, ніж довжина хвилі рентгенівских променів, тому за допомогою електронної мікроскопії можна одержати В роздільну здатність краще, ніж з дифракції рентгенівських променів.

Оптична система електронного мікроскопу

Чотири головні відміни оптичного мікроскопу (ОМ) від електронного (ЕМ)

- Електрони сильно поглинаються повітрям. Через це, на відміну від оптичного мікроскопу, зразок в ЕМ завжди повинен знаходитися в глибокому вакуумі.
- Збільшення в ЕМ може змінюватись за рахунок зміни струму, що тече через лінзи; в оптичному мікроскопі збільшення для даної лінзи є сталим.
- Через особливості будови зображення сьгодняшні електромагнітні лінзи працюють при дуже малій апертурі (0.0005), що зумовлює практичну межу розділення близько 4Å (0,4 нм).
- В електромагнітних лінзах у тій чи іншій степені в присутня аберрація

ЕЛЕКТРОННА МІКРОСКОПІЯ ВИСОКОЇ РОЗДІЛЬНОЇ ЗДАТНОСТІ

ЕМ зображення YBa₂Cu₃O_{7-х}

РАСТРОВА ЕЛЕКТРОННА МІКРОСКОПІЯ (REM)

Структура зламу поверхні композитного матеріалу на основі В-АІ сплавів. Видно волокна *B*, осадженого на тонкі волокна *W*, і структуру матриці сплаву *B-AI*. Волокно має достатньо складну структуру - в центрі розташована тонка нитка з чистого *W*, по периферії - бориди вольфраму, а на поверхні існує шар чистого *B*. Матеріал матриці щільно обіймає волокна боридів вольфраму.

ЕМ покриттів Со-Мо, осаджених імпульсним струмом густиною : 3 (*a*, б) і 8 (в) А/дм², $t_i/t_n = 2/10$ мс, T = 20-25 °С. Збільшення х2000

a

Co - 99,7Mo - 0,3

б Склад покриттів (ат. %) Co - 87,1Co - 90,5Mo - 12,9Mo - 9,5

B

Атомно-силова мікроскопія (AFM)

Атомно-силова мікроскопія поверхні сплавів Со-W

Атомно-силова мікроскопія поверхні сплавів Со-W

Z,nm

Атомно-силова мікроскопія поверхні сплавів Co-W

SEM сплаву Ni-Pd

30

Контроль вмісту речовин в хімічних середовищах

Рентгенівський мікроаналіз. Витоки

Іван Павлович Пулюй 1845 — 1918

Вільгельм Конрад Рентген 1845 - 1923

РЕНТГЕНІВСЬКИЙ МІКРОАНАЛІЗ

• В основі ренгеноспектрального аналізу лежить рівняння Мозлі

 $\sqrt{(v/R_c)} = (Z-S_n)/n,$

де v – частота характеристичного рентгенівського випромінювання атома, R_c – стала Рідберга, Z – атомний номер елемента, S_n – стала екранування електрона іншими електронами, n – головне квантове число.

 В основі кількісного рентгеноспектрального мікроанализу лежить уявлення, сформульоване *Р.Кастеном* про те, що інтенсивність характеристичного випромінювання I_A, що емітують атоми елемента A, пропорційна концентрації C_A цього елемента у зразку. При використанні еталону з чистого елемента A, можна записати

$$C_A = \frac{I_A}{I_A^E}$$

Рентгенівський мікроаналіз

Блок-схема енерго-дисперсійного рентгенівського спектрометра: берилієве вікно; напівпровідниковий детектор рентгенівських квантів; попередній підсилювач; кріостат; ЕОМ

Рентгенівський мікроаналіз дозволяє визначати атомний склад матеріалів в широкому інтервалі концентрацій з точністю близько 2%. Чутливість аналізу неоднорідна по всьому спектру елементів таблиці Менделєєва і суттєво залежить від атомного номеру. Так, для легких елементів, наприклад, для *Be* (*Z*=4), гранична кількість елемента, що може бути визначена, складає більш ніж 10%. Із зростанням атомного номера точність аналізу зростає і при сприятливих умовах може досягти 0.1-0.01% для *Re* (*Z*=75)

Спектроскопія ядерного магнітного резонансу

- Явище ядерного магнітного резонансу було відкрите в 1938 році Ісидором Рабі, за що він був відзначений Нобелівською премією 1944 року.
- Нобелівська премія з фізики в 1952 році була присуждена двом американцям Феліксу Блоху і Едварду Перселлу «За розвиток нових методів для точних ядерних магнітних вимірювань і пов'язані з цим відкриття». В 1946 р. їм вдалось спостерігати явище ядерного магнітного резонансу (ЯМР) в конденсованійй фазі.

В поточний час ЯМР знаходить застосування в різних галузях фізики, хімії, біології та техніки. ЯМР спостерігають в твердих, рідких і газоподібних речовинах і використовують для визначення ядерних констант (спіну ядра і магнітного моменту), встановлення структури молекул і кристалів, вивчення фазових переходів у речовині, дослідження перебігу хімічних реакцій, прецизійного вимірювання магнітних полів, створення спінових генераторів, ядерних гіроскопів і т.і.

Ісидор Ісаак Рабі (1898–1988)

Спектроскопія ядерного магнітного резонансу

- Спектроскопія ядерного магнітного резонансу – вид спектроскопії, яка реєструє переходи між магнітними енергетичнми рівнями атомних ядер, зумовлені радіочастотним опроміненням. Тільки ядра зі спіновим квантовим числом I, відмінним від «0», можуть викликати сигнал ЯМР. В прикладеному магнітному полі напруженістю H₀ ядро зі спіновим числом I може набувати 21 + 1 орієнтацій. Кількість енергії, на яку різняться ці рівні, зростає із зростанням H₀.
- Сенс експерименту ЯМР полягає в тому, щоб надати енергію ядру і перевести його з одного енергетичного рівня на інший, вищий рівень. Оскільки точне значення ΔЕ залежить від молекулярного оточення збуджуваного ядра, існує можливість зв'язати величину ΔЕ з будовою молекули і зрештою встановити структуру всієї молекули.

Феликс Блох (1905–1983)

Эдвард Миллс Перселл (1912 – 1997) ³⁶

Спектроскопія ядерного магнітного резонансу (NMR)

Спектроскопія ядерного магнітного резонансу : The Superconducting Magnet

Standard design for 300-600* MHz magnet systems

