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The plan of the course:

Lecture 120 May 2010Q: Chapter1, Section2.2
Lecture 227 May 2010Q: Chapter3
Lecture 303 June 2010 Chapterst, 5, Sectionss.2, 6.3.2

Lecture 417 June 201¢: AppendixB
Other chapters are given for completeness.

The aim of this course is to present the basic elements ofcthitesing
matrix approach to transport phenomena in dynamical qoasgistems of non-
interacting electrons. In particular, the generation arahipulation of a flow
of separate electrons by the periodically driven mesos®mtems, which was
realized experimentally, and the energetics of such syswiihbe presented.
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Chapter 1

Landauer-Buttiker formalism

The Landauer-Blttiker approach, 2, 3, 4, 5, 6] to transport phenomena
in mesoscopicy, 8] conducting systems consists in treating of a propagation o
electrons through the system as a quantum-mechanicatisogtproblem. The
mesoscopic system is assumed to be connected to macrosoofacts playing
a role of electron reservoirs. The contacts are source dfilegum particles
which are scattered by the mesoscopic sample. After sragtelectrons return
to the same or to the fllerent contact. Thus the problem of calculating of such
transport characteristics as, for example, an electrmadiactivity or a thermal
conductivity is reduced to solving of a quantum-mecharscaltering problem
with a potential profile corresponding to a sample under icanation. All
information concerning the transport properties of a sanmplencoded in its
scattering matrixS.

We concentrate on a single-particle scattering matrixeintulti-particle
scattering matrix is also can be introduced. Thus we neglectron-electron
interactions and use the Schrodinger equation for spiriestrons as a basic
equation. In principle interactions can be easily incoaped on the mean-field
level.

1.1 Scattering matrix

Accordingly to the quantum mechanics an electron (or moeeipely its
state) is characterized by the wave functi#t, r), dependent on a timeand
on a spatial coordinate If the wave function®¥{, for an electron incident to
the scatterer is known then solving the Schrédinger equati@ can calculate
the wave function®©“, for a scattered electron. |

In principle one can prepare an electron iffehent initial states}I’ﬁ'”).
Therefore, one can ask whether we need to solve the Scheidiggiation for
each®{". The answer is no. It is enough to solve the scattering prote

electrons in any of stateg™ constituting the full orthonormal basis. After that



1.1 Scattering matrix

using the superposition principle one can find the scatjestate for an electron
in an arbitrary initial state.

To this end we expand an incident electron wave functif), into the
series in the basis functiogd™,

P =) ",y (1.1)

Then we expand a wave function for scattered electist?, into the series in
the basis functiong©,

POl =% "y (1.2)
B

The set of functiong/(" andwgo‘“) constitutes the full orthonormal basis.

The problem is to find the cdigcientsbg if the set of cofficientsa, is
known. First we consider an auxiliary problem: Scatterih@melectron with
initial state®!™ = ™. In this case the set of cigients in Eq. {.1) is the
following: (1,0,0,...). The solution for this scattering problem we write as
Eq. (1.2) with codticientsSg;,

PP = " Sput. (1.3)
B

The codficientSg; is a quantum-mechanical transition amplitude from the ini-

tial statey{" to the final statey;*. Note if the initial wave function is mul-
tiplied by the some constant factérthen the wave function for the scattered
state is also multiplied by the same factor,

W S WA S
B

After solving the scattering problem with initial staté™ = y{" we find the
codficientsSg,,

PO = " S, . (1.5)
B



1 Landauer-Bilittiker formalism

With codficientsS,; we can solve the scattering problem with arbitrary
initial state. Formally the corresponding algorithm is thkowing:

1. The wave function for an initial state is expanded intodbees in basis
functionsy(", Eq. (1.1).

2. The scattered state wave functidf°", is represented as the sum of
partial contributions¥©", due to scattering of partial initial wave¥{(" =

2. Y,
\P(out) — Z \Pgout),

1.6
out) _ (oup) ( )
plouy — %}j&m .

3. The codicients b for the scattered state of interesy(u
Z a, Z Spa w3 = Z bsw§™, are the following,

bﬁ = ZSﬂaaa. (17)

The equation.7) solves the problem: It expresses theftioceentsb, for
scattered wave function in terms of the ffomentsa, for incident wave func-
tion. It is convenient to treat the quantitiesy,, entering Eq. 1.7) as elements
of some matrixS, which is referred to athe scattering matrix

If the codficientsa, andb; are collected into the vector-columns,

b= b2 |, a=| a |, (1.8)

then the corresponding relations becomes short,

b=35a. (1.9)

As we already mentioned, the scattering matrix elemefg, are

10



1.1 Scattering matrix

guantum-mechanical amplitudes for a particle in the s,ié?éto pass into the

statey/ . The order of indices is important. We use such a conventiatithe
first index (for the elemen,; it is an indexa) corresponds to the final state
while the second index corresponds to the initial state.

1.1.1 Scattering matrix properties
The general physical principles put some constraints dmostattering
matrix elements.

1.1.1.1 Unitarity

The particle number conservation during scattering regttine scattering
matrix to be unitary,

S'§=8S"=1. (1.10)

Herel is a unit matrix of the same dimension&s

100...
~ 010...

| = 001.. . |- (1.11)

The elements of the matr@T are related to the elements of the scattering matrix
S in the following way: (ST)QB = (S);a. Therefore, the expanded equation
(1.10 reads,

Nr
> SisSay = Gy, (1.12)
a=1
Nr
> SesSis = s (1.13)
B=1

To prove the unitarity, for instance, in the case if the waweaction is

11



1 Landauer-Bilittiker formalism

normalized, i.e., it corresponds to scattering of a singldige, we use the
integral over the space for both the initial wave functiod #éme scattered wave
function:

/ d®r (VP2 = / d®r PO = 1. (1.14)

Then we use Eqs1(1) and (L.2). For instance, fow("™ we get,

f dBr |\P(|n)|2 f dBr Z a, w(m) < % az;) wgn)>

=Y a g [l (uf?) =Y a g, (L19)
a B a B

= laf =
Here we took into account that the functiqﬁﬁ%‘) are orthonormal,
/ dr ¢<'”> ('”) = 6op» (1.16)
whereé,z is the Kronecker symbol,
1, a=p4,
Sop = (1.17)
0, a#p.
By analogy we find forp©u :
> b =1. (1.18)

0%

Therefore, from Eqs.1(15 and (.18 it follows that,

D el =) b (1.19)

12



1.1 Scattering matrix

Representing the cfiicientsa, andb, as vector-columnsa and b, we
write,

Mlag?=4a'a,
a

o (1.20)
S by? = b b.

Next we take into account that= Sa and, correspondinglhyp’ = &' S and
finally calculate,

~

bfb=a'S'Sa=4a"a. (1.21)

From the last equality the required relation, Ef1(), follows directly.

Note, however, that for the particles with continuous spawat which we
will consider, the wave function is normalized on the Diratta-function rather
than on a unity. In such a case scattering of particles wittdfincoming flow
is a more natural problem. For instance, a plane vé$¥&orresponds to a flow
of particles with intensity = 7zk/m rather than to a single particle. The charge
conservation in this case (under the stationary conditiomglies a current con-
servation. Therefore, it is convenient to choose the basistions normalized
to carry unit flux, see, e.g9[ 5]. Then we can say more precisely:

The equation 1.9) defines the scattering matr& if the vectord anda are
calculated using the unit flux basis.

The square of modulus of a scattering matrix element definestansity of a
scattered flow if the intensity of an incident flow is unity. éifhthe unitarity of
the scattering matrix reflects the particle flow conservatio

1.1.1.2 Micro-reversibility

The micro-reversibility is an invariance of the equatiofisnmtion under
the time-reversal. Neither the classical physics nor trentum physics makes
distinction between the forward time and the backward time.

13



1 Landauer-Bilittiker formalism

If to change simultaneously,— -t andv — —v, then the classical equa-
tions of motion predict that the particle will move along Same trajectory but
in opposite direction. From the scattering theory pointiefwthe movement in
opposite direction means that the scattered particle besancoming and the
incoming particle becomes scattered.

The quantum-mechanical formalism deals with states raftiaerwith par-
ticles. The additional complication comes from the fact tha wave function
is complex. To analyze the micro-reversibility in the quantmechanics1(]
we consider the Schrddinger equation,

ih— = HP, (1.22)

whereXH is the Hamiltonian dependent on a momentpraf a particle. The
velocity reversal within the classical physics is equinali® a momentum re-
versal within the quantum physics. The Hamiltonian [andyespondingly,
Eg. (1.22)] is invariant under the momentum revers#i(p) = H(-p). While
under the time-reversal the sign on the left hand side (LHE®p (1.22) is
changed. On the other hand if simultaneously with it we go tvéhe complex
conjugate equation and take into account that the Hamators Hermitian,
H* = H, then we find that the transformed equation for the complefugate
wave function¥*(-t) is identical to the original equation f&f(t),

in 88((\:) - %(‘P) . (1.23)

We conclude: If the evolution in a forward time is describgdle wave func-
tion ¥(t) then the evolution in a backward time is described by thepiem
conjugate function?*(—t). For the scattering theory it means the following. If
initially the incident particle is in the stat#("(t) and the scattered particle is

in the stateP©(t) then under the time-reversal the stéﬂé("“t)(—t)> is for an

incident particle and the sta(éP““’(—t)) is for a scattered particle.

Such a symmetry results in some properties of the scattenaigix. To
clarify them we consider scattering in forward and backwarees in detalil.

14



1.1 Scattering matrix

The initial scattering process¥("(t) = > a,yi"(t) is an incident wave
and POU(t) = > by wg’“t)(t) is a scattered wave. The deientsa, and by

B
are related through Ed.(9. The scattering process after the time-reversal:
<‘P(°“°(—t)> _ Zb*( P40 t)) is an incident wave anc(‘l’('”)( t)) _
B

>ak <¢g”)(—t)> IS a scattered wave. Under both the time-reversal and the
a

complex conjugation the basis functions for incident arattecer states replace
each other<¢(°”t)( t)) SV(t). Therefore, we can write,

(\}l(out)(_t))* _ <Zﬁ: b,B lﬁéouo(_t))* _ zﬂ: b;} ('n)(t) ( |
1.24
(‘P(in)(_t)> C ( ; a, Qﬁgn)(—t)) L ; a yeu(t) .

Since the Hamiltonian and the basis functions remain iavéthe scatter-
ing matrix is invariant as well. Therefore, the éb@entsa;, andbj; in Eq. (1.24
are related in the same way as the correspondinfficeats s anda,) in
Egs. (L.1) and (L.2),
a=Sb". (1.25)

Thus the sets of cdicientsa andb have to fulfill two equations,1(9) and
(1.25. From Eq. (.9 we find,

a=S"b, (1.26)
whereS1is an inverse matrixSS1 = S71S = [. Comparing Egs.1(.26) and
(1.25 we conclude that* = S, Further from the unitarity, Eq1(10), it
follows that,

S'S=1
. = St=s1 (1.27)
SIS =

15



1 Landauer-Bilittiker formalism

Finally we arrive at the following. The micro-reversibylitequires the scatter-
ing matrix to be invariant under the transposition operatia other words, the
scattering matrix elements are symmetric in their indices,

S=ST = S, =Su. (1.28)

Note the presence of a magnetic fidit slightly changes the micro-
reversibility condition: In addition to a time and a momeantteversal we need
to inverse a magnetic field directiod, - —H. Itis clear, for instance, from the
Hamiltonian of a free particle with massand charges propagating along the
axisx in the presence of a magnetic field,

(px — eA)?

H =
2m

b

where Ay is a vector-potential projection onto the axis Note that it isH =
rotA. Thus in the presence of a magnetic field Bg2) is transformed,J]

S(H)=ST(-H) = Sus(H) = Sg(-H). (1.29)

In particlar, the reflection amplitude, = 8, is an even function of a magnetic
field.

1.2 Current operator

Now we consider how the scattering matrix formalism can haia@ to
transport phenomena in mesoscopic samples. The scatteati relies on
the single-electron approximatiokVithin this approximation the separate elec-
trons are considered as independent particles whoseactitaravith other elec-
trons, nuclei, impurities, quasi-particles, etc. can becdbed via the fective
potential energyes¢(t,r). Such an approach allows a simple and physically
transparent descriptions of transport phenomena on thaajive level and in
many cases even on the quantitative level.

16



1.2 Current operator

a =N,

l

a=1

Figure 1.1: Mesoscopic sample with scattering mariThe indexa = 1,2,...,N;
numbers electron reservoirs. The arrows directed to (frihr@)scatterer show a
propagation direction for incident (scattered) electrofss electron flow is calcu-
lated at the surface shown as a dashed line.

Let us consider a mesoscopic sample connected to seWgtramacro-
scopic contacts playing role of electrons reservoirs, Eif. Electrons, prop-
agating from some reservoir to the sample, enter it, aréesedtinside it, and
at the end leave it to the same or any other reservoirs. Talesdca current
flowing between the sample and the reservoirs we do not negdtth what is
happening with an electron inside the sample. It is enoudbaio at incoming
and outgoing electron flows. To this end we enclose a sampke fititious
surfaceX, see Fig.l.1, and consider electron flows crossing this surface in the
direction to the sample or back. In this case we, in fact, aedidg with the scat-
tering problem: Electrons propagating to the sample andemt, or in-coming,
particles [we denote them via an upper indey]( while electrons propagating
from the sample are scattered, or out-going, particlesdupmex put)]. We
emphasize that we consider only elastic, i.e., energy coimgg scattering. To
neglect inelastic scattering we assume enough low tempesaivhen the phase
coherence length,,, is much larger than the size of a samplg(T) > L.

17



1 Landauer-Bilittiker formalism

It is convenient to choose the eigen-wave-functions foctebas in leads
connecting a scatterer to the reservoirs as the basis dmsctor defining the
scattering matrix elements. These wave functions can besepted as the
product of longitudinal and transverse terms. For the sdkanaoplicity we
assume the leads having only one conducting sub-band. foherd¢here is
only one type of transverse wave functions in each lead. Addhgitudinal
wave functions we choose plane waves propagating to theessafthe wave
number—Kk) or from the scatterer (the wave numlbgr The former (latter) wave
functions comprise the basis for incideaf™, (scatteredy©") electrons.

To calculate a current flowing between the scatterer andetbervoirs we
use the second quantization formalism. This formalismdeath operators
creatingannihilating particles in some quantum state. We usiemint oper-
ators corresponding to incident electroa$(E)/a,(E), and to scatterer elec-
trons, b} (E)/b,(E). The operatog(E) creates one electron in the state with
wave functionyW(E)/ \W,(E), while the operatobT(E) creates one electron
in the state with wave functlomg’“t)(E)/ W, (E). The factor ¥ vV,(E) takes
account of a unit flux normalization. Note the indexan be composite, i.e.,
it can include, apart from the reservoir’'s number, the aolda sub-indices, for
instance, the number of a sub-band, an electron spin, etc.

Introduced fermionic operators are subject to the follagyvianti-
commutation relations:

&,(E) (E') + 8(E") &,(E) = 64 8(E - E),
(1.30)
b (E) by(E") + by(E") bi(E) = 6.,46(E - E).
Next we introduce the field operators for electrons in lead
- r _iEt (m)( r) (out)(E r)}
Yo l(t, = T = 'h E ba E .
a \/_0/ {rees 00 %
(1.31)
NN B {AT YED) o wg°“t>*(E,r)}
Pl (t,r) \/EO/dE (E) +——~ ) +b' (E) S |

18



1.2 Current operator

Herev,(E) = 7ik,(E)/mis an electrons velocity, = (x,r.), with x longitudinal
andr, tranverse spatial coordinates in the leadNote that J(hv,(E)) is the
density of states, (& 'dk/dE, for a one-dimensional conductor.

Using the field operators we write the operatgr,for a current flowing in
the leady,

- ine OV (t,r) ~ - OV, (t,r)
| =— [dr,{ — ¥ (t,r) - P (t,r) —=22 % . 1.32
(0= [ar { P 00 - e ok (1.32)
Here the positive direction is from the scatterer to themase

Next we represent the basis wave functions as the producaie$verse
and longitudinal parts,

lﬁ(m)(E, I’) — fE(rJ_) e—ik(E)x,
1.33
YOO(E, 1) = &e(r,) €O, 3

and take into account that the transverse wave functionsaralized,

/Huwauﬁ=1. (1.34)

In what follows we are interested in currents flowing undex thas much
smaller that the Fermi energyp. Therefore, in all the equations we use the
main contribution comes from energies within the intervalchn smaller that
the energy itself,

IE-E|< E~ ug. (1.35)

The last inequality allows us to simplify strongly the eqoatfor a current.
We can put,v(E) ~ v(E’) andk(E) ~ k(E’). Moreover, within the same
sub-band the transverse wave functions are the sgme, ¢e.. Note if the
functionség and &g are from diferent sub-bands then they are orthogonal,
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1 Landauer-Bilittiker formalism

[dry &e(ry) <§E/(rL)>* = 0. That allows us to split the total current into the

sum of contributions from dierent sub-bands. Remind that we assume each
lead having only one sub-band.

Substituting Eqg. 1.3]) into Eqg. (L.32 and taking into account Eql 35
we calculate,

(LX) = 2 [f dEdES o ’gE) Jdriléeq(r)P

% {a% [é‘(‘;(E)eik(,(E)x + BE(E)e—ik(,(E)x] <éa(E/)e—ik(,(E)x + Ba(E/)eik(,(E)x>

_ <é.:;(E)eikd(E)X LB (E)e—ika(E)X> 9 [éa(E/)e—ik”(E)x N Ba(Ef)eik(,(E)x]}.

Differentiating ovewx and combining the similar terms we finally arrive at the
following equation for the current operatdi|

I, (t) = E // dE dE &5 {b{(E) by(E") - &(E) &.(E")} . (1.36)

In what follows we use this equation and calculate, in paldic a measur-
able current],, = (), flowing into the leadv. Here(...) stands for quantum-
statistical averaging over the state of incoming electrofs calculate such
an average for the products af&"andb'b we take into account the follow-
ing. The creation and annihilation operatasahdd,, correspond to particles
propagating from the reservoir. We suppose that the presaine mesoscopic
scatterer does noffact the equilibrium properties of reservoirs. Therefdne, t
in-coming particles are equilibrium particles of macrgacaeservoirs. And
for them we can use the standard rules for calculating thatquastatistical
average of the product of creation and annihilation opesattn addition we
suppose that electrons afférent reservoirsy # B, are not correlated. Then
we can write,
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1.2 Current operator

<éZy(E) éﬁ(E,» = 6&,8 5(E - E’) fa(E) s
(1.37)
(8.(E) 8(E")) = 6,5 6(E - E) {1- f,(E)},

wheref,(E) is the Fermi distribution functiorifl] for electrons in the reservoir
a,

1
E—pa *

1+ ek’

fa/(E) =

(1.38)

Herekg is the Boltzmann constant, is the Fermi energy (the electro-chemical
potential) andr,, is the temperature of the reservair

In contrast the operatofﬁ andb, correspond to scattered particles which,
In general, are non-equilibrium particles. To calculate guantum-statistical
average for (the product of) them we need to express thennstef the opera-
tors for in-coming particles for which we know how to caldela corresponding
average. To this end we consider both the field operdé?, corresponding to
In-coming wave,

N .
' (in)
\P(In) — Z éa/ 2 ,
a=1 \/V—a

and the field operato¥©", corresponding to scattered wave,
(out)

N, ’7[/
{I‘;(out) _ 6,8 B .
2

These equations are similar to Eg$.1j and (L.2) excepting the cd&cients
being the second quantization operators now. Thus eacleafgbratordy is
expressed in terms of all the operatagghrough the elements of the scattering
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1 Landauer-Bilittiker formalism

matrix beingN; x N; unitary matrix. By analogy with Eq1(7) we write, [5]

Ny
ba/ = Z Sa/,B éﬂ s
p=1
(1.39)

Ny

~ o

b = > s:.a).
p=1

The equations1(.36 - (1.39 constitute the basis of the scattering matrix
approach to transport phenomena in mesoscopics.

1.3 DC current and the distribution function

Let us calculate a currerntt,,

lo =(la), (1.40)

flowing into the leady under the dc biashAV,; = V, — V;. In this case the
different reservoirs haveftierent electro-chemical potentials,

Uo = o + €V,. (1.41)

Note we include the potential energy, into theu,. Then the energf means
a total (kinetic plus potential) energy of an electron. Tke of a total energy
(instead of a kinetic on) is convenient since it is conser{redhe stationary
case) while an electron propagates from one reservoir gfrtloe scatterer to
another reservoir.

The current operator|,(t), is given in Eqg. {.36. After averaging
Eg. (1.40 reads,

l, = E / dE{ Flou(E) f§n>(E)}, (1.42)
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1.3 DC current and the distribution function

where we have introduced the distribution functions foideat electronsf (",
and for scattered electronf°",

(A(E) &.(E) = 6(E - E) f"(E),
o (1.43)
(bi(E) ba(E")) = 6(E - E") f(E).

The physical meaning for introduced distribution functas the following:
The quantity4E f("/°u(E) defines the average number of electrons with energy
within the intervaldE nearE crossing the cross-section of the leadn unit
time to/from the scatterer. The dc current is obviously théedence of flows
times an electron charge

Accordingly to Eq. (.37 the distribution function for in-coming electrons
Is the Fermi function for a corresponding reservoir,

fI(E) = f,(E). (1.44)

To calculate the distribution function for scattered aleas, f(°“9(E), we use
Egs. (.39, (1.37) and find,

S(E - E') fPU(E) = (b (E) b,(E")) =

N, N
=YD Si(E) S (ENEYE) &, (E) =
B=1 y=1
N, N,
=33 " Si4(E) S5, (E) 6(E - E') 65, T4(E).
p=1 y=1

Therefore, the distribution functiorf,®“9(E), for electrons scattered into the
lead @ depends on the Fermi functiongs;(E), for all the reservoirsg =
1,2,..., N :

Ny
FOOE) = Y [Sus(B)[ H(E). (1.45)
B=1
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1 Landauer-Bilittiker formalism

ffoun

1

H1 2 E

Figure 1.2: The distribution function for electrons scagtkinto the contact
a = 1. The height of a step i$15/°>. The scatterer is connected to two
electron reservoirs being at zero temperatde= T, = 0, and having
chemical potentialg; andgs,.

Note if all the reservoirs have the same electro-chemictnimls and tem-
peratures (hence the same Fermi functiorig): fo, V3, then the distribution
function for scattered electrons is the Fermi function al,we., the scattered
elections are equilibrium. To show it we use the unitarityhef scattering ma-
trix,

A A

Ny
8§ =1 = Y |suE) =1, (1.46)
=1

S(,[;(E)\2 = fo(E). In contrast, if the potentials

Ny
and find, fOW(E) = fo(E) 3
p=1

andor temperatures of fferent reservoirs are fiierent then the scattered elec-
trons are characterized by the non-equilibrium distrinufunction, Fig.1.2

Substituting Eqsi(44) and (.49 into Eq.(L.42 and using Eq.X.46 we
finally calculate a dc current,

e N 2
=T / dE; Sus(E)| {fﬁ(E)— fa(E)}. (1.47)

We see that the current flowing into the leadepends on the fierence of the
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1.3 DC current and the distribution function

Fermi functions times the corresponding square of theestiadt matrix element
modulus. If all the reservoirs have the same potentials amgpératures then
the current is zero. Otherwise there is a current througlsdneple.

1.3.1 DC current conservation

Let us check whether Eql @7) fulfills a dc current conservation law,
i
> =0, (1.48)
a=1

which is a direct consequence of no charge accumulatioderiee mesoscopic
sample. This equation tells as that the sum of current flowitgyall the leads
is zero. To avoid misunderstanding we stress that in eaah tlea positive
direction is chosen from the scatterer to the correspondiservoir. Therefore,
the current has a sign+” or “ —" if it is directed from or to the scatterer.

First of all we derive Eq.X.48. To this end we use the electrical charge
continuity equation,

dp

Vj +— = 1.4
d|VJ+at 0, (1.49)

wherej is a current density vectop, is a charge density. We integrate it over
the volume enclosed by the surfaEqsee, Fig.1.1). Then transforming the
volume integral of a current density divergence into thdasa integral of a
current density and taking into account that the currentdlmto the leads only
we arrive at the following,

N, aQ
; () + -5 =0. (1.50)

Here Q is the charge onto the scatterer. In the stationary caser wosid-
eration there are only dc currents in the leads and the ch@rigeconstant.
Then Eq. (.50 results in Eqg. {.49. In the non-stationary case we should av-
erage Eq.1.50 over the time. With the following definition of a dc current,
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1 Landauer-Bilittiker formalism

l, = Iim%m%foth l,(t), and assuming that the char@%t) is bounded we
again conclude that EqL {48 is a consequence of EdL.60.

Now we check whether Eql(47) does satisfy to Eq.1(48. We use the
unitarity of the scattering matrix in the form slightlyftérent but still equivalent
to Eq. (L.46),

~

= ) [Ss(B)| =1. (1.51)
Then from Eq. {.47) we get,

N

N Ny 2
1o = [AEY S [SuE) {K(E) - L)} =
1 a=1p8=1

a=

NI’ Nr 2 Nr NI‘ 2
=5 de{ > 16(E) 2 |Sap(E)|” = 32 fa(E) 2 [Sus(E)| }
p=1 a=1 a=1 p=1

N, Nr
- gde{ S R(E) - fa(E)} =0,
p=1 a=1

as expected. Therefore, we illustrated the earlier meati@onnection between
the unitarity and the current conservation. Further we upgXE47) and calcu-
late a current in two simple but generic cases.

1.3.2 Potential dierence

Let the reservoirs havefiierent potentials but the same temperatures,
ﬁhy::ﬁ“)+'e\6a eV, < Mo,
(1.52)
T& ='T0, YVa.

If leV,| < kgTp we can expand,
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1.3 DC current and the distribution function

of
f,o=fy— ev"a_é +O(V?),

where fy is the Fermi function with a chemical potentja) and a temperature
To. Using this expansion in Eql(47) we calculate a current,

Ny
lo = Gup{Vs - Va}. (1.53)
B=1
where we introduce the elements of the conductance matrix,

Gag = GO/dE <—Z—E’) SB[, (1.54)

with Gy = €/h the conductance quantum (for spinless electrons). Takitog i
account an electron spin the conductance quantum shoulouisedi.
At zero temperaturéel = 0, it s,

dfo

_70 _ S(E—
9E O(E — o),

and the integration over energy in Eq.%4 becomes trivial. In this case the
conductance matrix elements become especially sinflle, [

2
Gop = Go saﬂ(,lo)‘ . (1.55)

Itis clear that the linear dependence of a current on thenpatalifference
Is kept at a relatively small bias. The corresponding scaldigtated by the
energy dependence of the scattering matrix elem&gg¢k). To illustrate it we
calculate a dc current at zero temperatidies 0, but finite potentialsgV,, # 0.
In this case we can not expand the Fermi function in powers pdbtantial,
therefore, Eq.1.47) becomes,
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1 Landauer-Bilittiker formalism

N, Hot+€Vs

|a=%z / dE |S.(E)|° . (1.56)

ﬂ:1y0+eVa

If the quantityG,z changes only a little within the energy intervaleV; — eV,
near the Fermi energy, then we can us8,4(E) ~ S.s(uo) in Eq. (1.56 that
results in a lineat — V characteristics, Eq1(53.

On the other hand if one can not ignore the energy dependériig(d)
then the current becomes a non-linear function of a bias. éimple example
we consider a sample with two leads £ 1, 2) whose scattering properties are
governed by the resonance level of a willttocated at the enerdy;:

FZ
2 _

For simplicity suppose thdE; = ug. Then substituting equation above into
Eg. (1.59 we find a current,

I, = HF{arctg( = ) arctg( = )} (1.58)

If the potentials are small compared to the resonance ledthweV,|, eV, <«
I, we recover the Ohm lawa, = Go (V1 — V). While in the opposite case,
leVi], |eV,| > T, the current is an essentially non-linear function of po&ts,

I, = (T%/h) (Vl‘l - V2‘1>. Therefore, we see that in this problem the level width
I' is a relevant energy scale.

1.3.3 Temperature flerence

The temperature fference also can result in a current. This is so called
the thermoelectric currentTo calculate it we suppose that the reservoirs have
the same potentials but their temperatures diergint,
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1.3 DC current and the distribution function

l’ta’ = l’t07 va,
(1.59)
T,=To+7,, T,<TpH.

Expanding the Fermi functions in EdL.&7) in powers ofJ,,

d ,
f,=fo+ T, a—T+O(‘J'a),

and taking into account that,

81‘0 __E—,uo 0fo
T Ty OE’

we calculate the thermoelectric current flowing into thellea
Ny
_ (T)
lo=> G {Ts-Ta}. (1.60)
B=1

Here we have introduced the thermoelectric conductancexhedements,

ey 1 1Sus(B)[°

GY(E) =5 e

(1.61)

and used the following integral,

Epo

eksTo E - uo 2 n?
dE = —kgT
/ Ecug < ksTo ) 30

1 + ekBTo

From Eq. (.6]) it follows that if the conductance is energy independent,
G,3(E) = const then the thermoelectric conductance (and the thermoielect
current) is zero.
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1 Landauer-Bilittiker formalism

Figure 1.3: Single-channel scatterea.is an amplitude of an incoming
wave; b is an amplitude of a reflected wave. The wave line denotes an
electron reservoir.

1.4 Examples

Now we consider several examples to clarify the physicalmmepof the
scattering matrix elements. The scattering matrix is a oaatrix N, x N,
whereN; is a number of one-dimensional conducting sub-bands ihallgads,
connecting a mesoscopic sample to the reservoirs. WeNegals a number of
the scattering channels

1.4.1 Scattering matrix ¥ 1

Such a matrix has only one eleme8t,;, and it describes a sample con-
nected to a single reservoirs via a one-dimensional leagl, FB. Some-
times such a sample is referred toasesoscopic capacitdr The unitarity,
Eg. (1.10, requires|S14? = 1. Therefore, quite generally the scattering matrix
1x 1 reads:

S=¢”, (1.62)

wherei is an imaginary unityy is real. Scattering in this case is reduced to a
total reflection of an incident wave. Therefore, the elengnts the reflection
cogficient Generally speaking any diagonal eleme®f,, of the scattering
matrix of a higher dimension is a reflection ¢@&ent, since it defines both the

IMore precisely it is one of the capacitor’s plates.
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1.4 Examples

Figure 1.4: Two-channel scatterea, (b,) are amplitudes of incoming
(scattered) waves, = 1, 2.

amplitude and the phase of a wave coming back to the sameo@sghere the
incident wave is originated from. In the case under consitt@an (1x 1) the
amplitude of a wave remains the same, while the phase is eldamgy which
only the quantity encoding information about the propsrti a mesoscopic
sample. For instance, if the wave is reflected by the hard @imdte potential
well then the phase is changed py= &, while if the scatterer is a ring then
depends on the magnetic flux threading the ring, and so on.

1.4.2 Scattering matrix 2

This matrix has four in general complex elements, henceethes eight
real parameters. However the unitarity, Ef.10), puts four constraints. As a
result there are only four independent parameters. It igeuant to choose the
following independent parameters:

1) R = |S14* — a reflection probability.

2) ¥ — a phase relating to arffective chargeQ, of a scatterer via the
Friedel sum ruleQ = e/(2xi) In(detS) = ey/x.[12]

3) § — a phase characterizing the reflection asymmetfy, =
1IN (S11/S22) /2.

4) ¢ — a phase characterizing the transmission asymmetry,=
1IN (S12/S21) /2. This phase depends on an external magnetic field or on an
internal magnetic moment of a scatterer.

Therefore, the general expression for the scattering matxi 2, describ-
ing a sample connected to two electron reservoirs, Ei.can be written as
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1 Landauer-Bilittiker formalism

follows,
VRe'? iViI-Re'
S=¢” . (1.63)
iVI-Ré? VRé

Note the reflection probability is the same in both scatteanannels,

1S11% = [S2° = R. (1.64)

The same is valid with respect to the transmission proliedsili They are inde-
pendent of the direction of movement,

S19% = [So1l?. (1.65)

In addition the symmetry condition, EdL.@9, puts some restrictions onto
a possible dependence of the parameters chosen on the mdmghet Easy to
see that(H), R(H), andd(H) are even functions, whilg(H) is an odd function,
¢(H) = —¢(—H). In particular, ifH = 0 then it is¢ = 0 and, correspondingly,
the transmission amplitude is independent of a movemeettin,

S12(H = 0) = Sp1(H = 0). (1.66)

Stress that Eq.1(65 holds also in the presence of a magnetic field.
Turning to the transport properties, we say that the cordheet, G =
G112 = G231, of a sample with two leads is an even function of a magnetid, fie

G(H) = G(-H). (1.67)
As we will show this property holds also for a sample with twaeagi-one-
dimensional leads. This symmetry is a consequence of mewersibility of

guantum-mechanical equations of motion which are valithénabsence of in-
elastic interactions breaking the phase coherence.
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1.4 Examples

Figure 1.5: Three-channel scatterex, (b,) are amplitudes of incoming
(scattered) wavesg; = 1, 2, 3.

1.4.3 Scattering matrix 8 3

Such a matrix describes a scatterer connected to threeoesefFig.1.5.
It has already many, namely nine, independent real paraspetet makes it
difficult to find a general expression. Usually the particularesgions for the
scattering matrix elements are used. For instance, faligwo Ref. [L3] one
can write a one-parametric scattering matrix,

—(a+h) Ve +e
S = Ve a b |, (1.68)
Ve b a

wherea = (V1-2e - 1)/2,b = (V1-2¢ + 1)/2, and the real parameter
changes within the following interval, & ¢ < 0.5. The paramete¢ char-
acterizes a strength of coupling between the lead 1 and the scatterer. At
e = 0 this lead is decoupled completely from the scatte$ber, = —1, while
electrons freely propagate from the lead= 2 into the leadr = 3 and back,
S32 = Sy3 = 1. The limite = 0.5 corresponds to a reflectionless coupling
between the sample and the lead 1. S;; = 0.

Sometimes, solving the Schrédinger equation for the jonaif three one-
dimensional leads, the Giith boundary conditions are uset¥]. These condi-
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tions include both the continuity of a wave function and therent conservation
at crossing point. Then the scattering matrix of a type ginelag. (1.69 with
parametee = 4/9 arises. Other values of a parametefor instance, can be
understood as related to the presence of some tunnel bairdeyssing point.

It should be noted that in contrast to the two-lead case,EBBg€e(l.64), in
the case of thee leads, the reflection probabilitRs, = |S../% @ = 1,2, 3,
for different scattering channels can bffatient. Moreover the current flowing
between some two leads depends not only on the correspotrdimgmission
probability, T,z = |Sa[;|2, a # 3, but also on the transmission probabilities to the
third lead,T,, andT,z, vy # a,p.

1.4.4 Scatterer with two leads

Let us show that the conductance of a mesoscopic samplewotiqjuasi-
one-dimensional leads is an even function of a magnetic. fildeéfore we
showed it, see Eql(67), for the case of two one-dimensional leads when the
scattering matrix is a & 2 unitary matrix. Now we generalize this result onto
the case when each lead has several conducting sub-babfs. [

Let one of the leads, say left, hi\s conducting sub-bands while another
one, right, hadNg conducting sub-bands. The total number of scattering chan-
nels isN, = N_ + Ng, therefore, the scattering matrix is & x N, unitary
matrix. It is convenient to number the scattering channelsuich a way that
the firstN_ scattering channels, 4 a < N, correspond to the left lead, while
the lastNg scattering channel$y, + 1 < a < N, correspond to the right lead.
We assume that the left reservoir has a poterii&l2 while the right reservoir
has a potential//2. Note for all the sub-bands belonging to the same lead the
corresponding potentid, is the same,

—¥, 1<a <N,
V, = (1.69)
%, NLSG’SN[’

The current,l,, carried by the electrons of the sub-bamds given in

Eqg. (L.53. For simplicity we consider a zero temperature case whiecbn-
clusion remains valid at finite temperatures also. So weewrit
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1.4 Examples

Ny
lo=Go Y [Sus|* { Vs~ Va?. (1.70)
p=1

Here and below the scattering matrix elements are calclBt& = uo. To
calculate a current,, flowing within the left lead we need to sum up the con-
tributions from all the sub-bands belonging to the left leBldese are sub-bands
with numbers from 1 untiN,. Therefore, the current is,

NL
IL=>lo. (1.71)
a=1

Substituting Eq.X1.70 into Eq. (L.71), we find,

I\ N,
IL=VGo Y Y [Sul (1.72)
a=1 p=N_+1

Calculating in the same way a currdatflowing into the right lead it is easy
to check that|lgr = —I., as it should be. Note the equations for currenig
depends only on the transmission probabiliti|§@ﬁ|2, between the scattering
channels belonging to theftlerent leads. Neither intra-sub-bands reflections
nor inter-sub-bands transitions within the same leadfféra current.

The conductancé& = 1 /V, is,

I\ N,

G=Go Y Y [Sel* (1.73)

a=1 p=N_+1

Our aim is to show that this quantity is an even function of agnaic field,
G(H) = G(—H). To this end we introduce some generalized reflectiortficoe
cients to the reservoirs,

N N Ny Nr
Ri=> > ISul®, Rer= ) 1Sasl? (1.74)
a=1 =1 a=N_+18=N_+1
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and transmission cdigcients between the reservoirs,

N N, Nr NL
Tir=>_ > ISesl.  Tre= ) > ISuP. (1.75)
a=1 B=N_+1 a=N_+1 p=1

These cofficients satisfy the following identities,

N N,
R+ Tr= ZZ'Saﬁ|2+Z Z |Sapl® = ZZ|SaB| = Zl NL.,
a=1p=1 a=1B=N_+1 a=1p=1

R+ Tr = Z Z |Sapl® + Z Z |Sapl® = Z Z 1Sapl® = Z 1=N_,

a=1p=1 a=N_+15=1 p=le=1

where we used the unitarity of the scattering mat@lsaﬂ2 =1, Z |Sa/3|2
a=1 B=1

1. From given above identities it also follows that,

Tir=TrL. (1.76)

Next we use the symmetry conditions, E#.49, for the scattering matrix ele-
ments in the magnetic field and find,

N|_ Nr NL Nr

TLR(_H):Z Z |Sa,8(_H)|2:Z Z |Sﬂa(H)|2

a=1p=N_+1 a=1p8=N_+1

= Z Z 1Sge(H)I? = Tru(H).
B=N_+1a=1
Therefore, we have
Tir(=H) = Tr(H) . (1.77)

Combining together Eq<L(76 and (L.77) we finally arrive at the required rela-
tion,
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M1 = po + eVy % M2 = Ho + €V

Figure 1.6: Mesoscopic scatterer with potential lead.

Tir=TrL
= Tr(H) = Tr(=H),
Tr(=H) = Tru(H)

which shows that the conductan€g,= Gg T, g, of a sample with two quasi-
one-dimensional leads is an even function of a magnetic field

1.4.5 Current in the presence of a potential contact

The phase coherent system represents itself some entityengroperties
sometimes quite sensitive to the measurement procedurenelfattaches an
additional contact, for instance to measure an electrieri@l inside the meso-
scopic sample, then the current, flowing through the sanmgptanged. 16]

Let us consider a sample connected to three leads1FgTwo of them,
having diferent electrochemical potentials, = uo + Vi anduy = ug + eVs,
are used to let pass a current through the system. In cottieagtird lead plays
a role of a potential contact. As for any potential contalcéesdurrent, flowing
into it, is zero,l3 = 0. This condition defines the electrochemical potential,
uz = uo + eVs, of the third reservoir (which the third lead is connecteda® a
function of the bias between the first and the second ressm\i= V, — V.
One can say thafs is a potential of a mesoscopic sample at the point where the
third lead is attached to.

Now we calculate a current through the sample. Sihges 0, then it
Is I, = —I, like for the sample with two leads. Following this analogy we
would say that at a given bias the current depends only on the probability
for an electron to go from the first lead to the second lead. édewthis is not
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the case. In the presence of a potential contact (the thad) llne conductance,
G12 = I1/V, Iin addition depends on the probability for an electron tedmtered
between the current-carrying and the potential leads,

1 # GoT12V = Gqpo# GoTqo.

Using Eq. .53 we write,

11 = Go(TaalVo = V) + TaalVs = V) )
l2 = Go <T21(V1 —V32) + Ta3(Vs — V2)> :

ls = Go(Taa(Va = Vo) + Ta(Vo — Vi) ) .

From the conditioriz = 0 we find,

_ T31V1 + T32Vo
Tar+ T

V3

Note the potentia¥/z = 0 in the symmetric case, namelyMf = -V, andT3; =
T3p. Using equation fols, we can find a conductand®y, = 11/(Vo — V3) :

T13T32 }

Gio=Gg T
12 o{ 12+.|.31_|_.|.32

In the case of a weak coupling between the potential contattlae sample,
T31, T3 < T12, We recover a result for the sample with two led@s; ~ GoT1»

1.4.6 Scatterer embedded in aring

We consider two generic case: (i) the ring with a magnetic duand (ii)
the ring with scatterer having fierent transmission amplitudes to the left and
to the right. For simplicity we suppose the scatterer |latatex = O to be very
thin: Its width w is small compared to the lengthof a ring. Then we can
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choose a wave function on a ring threaded by the magneticlfjixg. 1.7, as
follows,

w(x) = (AdKCD 4 Be™X)d? s 0<x<L. (1.78)
The scattering matrix is,
& S Si2
S = . 1.79
( Sa1 S22 ) (1.79)

The scatterer introduces the following boundary condgi@n= 1 forx — L-0
anda = 2 for x - +0),

Be kldd — Aé¢511+ BSi2,
(1.80)
Ae ™t = Ad?S,; + BS,,.

Here we have introducegl = 27®/®,. We see that the magnetic flux can be
fully incorporated into the non-diagonal scattering ma#iements,

Si,=Sne", ShH =Sue’. (1.81)

Therefore, in what follow we will ignore any magnetic flux ametre consider
the scattering matrix, Eq1(79, with S;», — S7, andSy; — S5;.

1.4.6.1 Spectrum

Now we consider the spectrum of free electrons in a ring wititbedded
scatterer. The dispersion equation is defined by the cenmsigtcondition for
Eq. (1.80. We rewrite this equation as follows (note that we incogted ¢
into Sj5, @ # B),

ASll—B(e_"‘L— ,12) = 0,
(1.82)
Ale™ - S%) —BS;, = 0.
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1 Landauer-Bilittiker formalism

Figure 1.7: One-dimensional ring with scatterer.

The consistency condition means that the correspondiregrdetant is zero,
det= (e - S} (6™ - S,) — S11S22 = 0. (1.83)
To solve it we make the following substitution,
,=te, S, =te?. (1.84)

Next we divide Eq. {.83 by S/,S;; = t? and use the equality1,S5; =
-S1,S5,, following from the unitarity of the scattering matrix. Timeve arrive

at the following,
—ikL _ —ikL _ 2
(B ) () - L85
t t 1S54

Note the amplitudé can be complex.

Further, since the right hand side (RHS) of E.8§ is definitely real
the left hand side (LHS) of the same equation has to be realefls fter
decoupling of the real part from the imaginary part we obtaio equations,
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1.4 Examples

i 2 i 2
[Re(eTkL> - cos@)} + sirf(¢) — [Im(eTkLH = —?, (1.86a)

Im<%ikL) [Re(%ikL) - cos@)] - 0. (1.86b)

where we introduce{,7?> = R > 0, |S7,? = [t = T > 0. From Eq. {.869
we conclude thatm (e”%-/t) # 0 otherwise the LHS of Eq1(863 would be
positively defined but the RHS is strictly negative. Therefdrom Eq. (.86H
we conclude that the dispersion equation is the following,

—ikL

Re<eT) = COS), (1.87)

as it is well known from the literaturelf, 18]
One can check directly that EdL.869 does consistent with EqL(87).

1.4.6.2 Circulating current

The current carried by an electron in the state with a wavetfon given
in Eq. (1.78 is the following,

enk
== (A" - 1Bf). (1.88)
Note the magnetic flu® does not enter this equation. Therefore, this equation
can be used no matter whether there is a magnetic flux thrawggtirtg or the
scattering matrix is merely asymmetrs;, # S5;.

To calculate a current, EdL 88, we use both the normalization condition,

L
/dxum2 =|A%+|Bf =1, (1.89)
0

and one of the equations of the systen8@), say, the second one,
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1 Landauer-Bilittiker formalism

e -85 _ Ae‘ikL —te? (1.90)

B=A
S22 S22

Substituting Eqgs.1(.89 and (.90 into Eq. (L.89 we find,
et a9 i
t

k1-|F2 T
_€h |F| FR =~

_ &K _ 1.91
mL1+|F]2° R (1.91)

Note at¢ = O, i.e., in a symmetric cas®}, = S5;, the current, Eq.1(.91),
is identically zero, becaug€|?> = 1. The latter follows from Eqs.1(86) and
(1.87). The dispersion equation, EdL.87), gives,Re(e”*-/t) = 1. Then at

¢ = 0 we find from Eq. (.863, [Im (e™¥-/t)]° = R/T. Therefore|F|2 =

T [Im (e /t)]*/R=TR/(TR = 1.

If the scatterer is not symmetri&;, # S5, (i.e.,¢ # 0), then the current
is not zero. Using the dispersion equatidng(?), Re(e”*-/t) = cosg), we
calculatelF|?:

i 2 i
$|F|2 _ [Im <eTkL)] + sir(¢) — 2Im (eTkL> sin() . (1.92)
Then from Egqs .86 we find,

—ikL\ 72
[lm(%)] =sin2(¢)+$,

Substituting equation above into E4.92 and then into Eq.1(.91) we calculate
a current,

enk T sin(gp)
mL — . R
Tsin@) + sin@) — Im ()

If we denotet = itoé¥ then the dispersion equation gives: &in@ y) =

(1.93)
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—tp cos). We write a solution as follows,L +y = nn+(-1)" arcsinf, cos@)].
In this case we calculatém (et /t) = — cosf,L + x)/to. Then the current,
Eqg. .93, reads,

_ eiky VT sin(g)
ML T sing) +

In =

= : (1.94)

VT sin(@) + coskiL + x)

where we usé, = VT.

Note in equation above is either an enclosed magnetic flux or an asym-
metry in transmission to the left and to the right, EQ8¢), caused, for instance,
by the internal magnetic moment. In geneRendT = 1 — R can depend on

Kn.
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Chapter 2

Current noise

One of the manifestations of a change quantization is flticiyi@f a cur-
rent, that is a deviation of an instant value of a currertom its average value,
(I). The magnitude of fluctuations, or the noise value, is chiaraed by the
mean square fluctuations,

@12 ={(1-1)%). (2.1)

On the other hand this quantity can be represented asftieeattice between the
average square currefit?), and the square of an average current,

612y = (1%) = (1)?. (2.2)

Below we concentrate on two sources of noise in mesoscdpist, it is a
thermal noise, or the Nyquist-Johnson noise, due to finrtgperature Ty > O,
of reservoirs, see e.g.11, 19]. This noise exists even in equilibrium. If the
sample is connected to the reservoirs with the same poletiien the average
current through such a sample is zgflg,= 0. Nevertheless there is a fluctuat-
ing current with non-zero mean square fluctuations,

<6| 2>(th)
Ay

= 2kg TG, (2.3)

whereG is the conductance of a sample; is a frequency band-width within
which the current fluctuations are measured. This noiseastddluctuations
of the occupation numbers of quantum states in the macrascegervoirs,
see e.g., Ref.1[1], that results in fluctuating of electron flows incident t@ th
scatterer. At zero temperature the quantum state occupatiolbers do not
fluctuate and, therefore, the thermal noise is absent.
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2.1 Nature of a current noise

Second, it is a shot noise, see R&0|[ As it was first shown by Schot-
tky [21], who investigated the current flow in electronic lamps,gh&babilistic
character of a propagation of electrons through the sysemmlts in current
fluctuations. In mesoscopics samples the shot noise arisggodquantum-
mechanical probabilistic nature of scattering. The shasenarises only in
non-equilibrium case, if the current flows through the sangf the biasV
Is applied to the sample then the average currentljs= GV. While this
current fluctuates even at zero temperature,

512)(sh)
O eI (- T, (2.4)

The termTq,, a probability for an electron came from one reservoir tods-s
tered into another one, reflects the probabilistic natutb@thot noise. More-
over, taking into account that) = VG andG ~ Ti,, one can easily show
that the shot noise is maximum if the reflection and the trasson probabil-
ities are equalRy; = T2 = 1/2. Then we conclude: The larger uncertainty in
the scattering outcome the larger the shot noise is. If theomwe of scatter-
Ing is definite, i.e., an electron is always either transdithrough the sample,
T12 = 1, or reflected from the sampli;; = 1, the shot noise is zer@2).

We stress the two mentioned sources of noise are not independhe
presence of a current changes a thermal noise and the sketiaanodified at
finite temperatures. This fact points out that the physiakedying the thermal
noise and the shot noise is of the same nature. Before we pradermal
theory of current fluctuations we give simple physical arguats illustrating
appearance of a current noise in mesoscopic systems.

2.1 Nature of a current noise

We consider the extremely simplified model, a sample trattisigionly
electrons with energ¥e. To clarify physics we first consider separately cases
with either thermal or shot noise present.
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2 Current noise

2.1.1 Thermal noise

Let the sample be a channel connecting two reservoirs. raletwith
energyE propagate ballisticallyT12(E) = T21(E) = 1, while electrons with any
other energy do not propagate at dlfp(E’) = T»1(E’) = 0, VE’ # E. Then the
electrons propagating in a channel, say, from the first vessrto the second
one, carry a current,

4.y =1gP.,, (2.5)

wherelg = ev/L is a current supporting by the staie,(E) of an electron
with energyE in the channele is an electron charge,is an electron velocity,
L~1is an electron density for a unite lengf,, is a probability that the state
Y_,(E) is occupied. Since in the ballistic case any electron pyapag to the
second reservoir came from the first reservoir, the proitalil, is equal to
the occupation probability for electrons with eneigyvithin the first reservoir.
The latter is given by the Fermi distribution functidia(E), see Eq.1.39,

P, = fi(E). (2.6)

The occupation probability can be defined as the ratio of a,tt,, when
the statel_,(E) is occupied and the total time (the observation tifie}y oo,

At
Po=lim —. 2.7
= 2.7)

T—o0

Using this definition we can say that during a tire, there is a current, (t) =

lo ina channel, while during the rest timg;-ot_, , there is no current,, (t) =
Therefore, the current varies in time. With EQ.%) we calculate the mean
current,

loAL,
(1) = lim = /dtl lim === = 1oP. (2.8)
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2.1 Nature of a current noise

that coincides with Eq.A'5). The mean square current is,

(1%) = lim = /dtl ! th* = 13P_,. (2.9)

And finally, using Eq. 2.2), we calculate the mean square current fluctuations,

012y = 1P (1-P). (2.10)

We see the current fluctuations are abséiit,) = 0, in those cases when the
state of interest¥_,(E), is either always occupied®_, = 1, or always empty,
P_, = 0. In contrast if the presence of an electron in a currentyoag state has
a probabilistic character, @ P_, < 1, the current fluctuates.

Let us expres$sl?), Eq. 2.10), in terms of a temperatur, of a reser-
voirs where electrons come from. To this end we use Ed) @nd take into
account the following identity for the Fermi function,

WE(1- @) = (-8 ) k. 2.11)
As a result we get,
12y =13 <—%> kgTs. (2.12)

Thus the fluctuations under consideration vanish at zerpeeature T, = O, as
it should be for the thermal noise, see Eg 3.

Next we take into account electrons propagating in oppasigetion, i.e.,
from the second reservoir to the first one. Then we calculaentean total
current,{l), and current fluctuationgg1?) of the total current)(t) = I1_(t) —

I (1),
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2 Current noise

() =(15) =) = lo { fa(E) - f(B)},

(612 = (512) + (512 ) (2.13)

=12 [fl(E){l - f1(E)} + f(E){1- fz(E)}] ,

wheref,(E) is the Fermi distribution function for electrons in the sed reser-
voir. Calculating(s1?) we took into account that in the ballistic case electrons
propagating from the first reservoir to the second one anil baginate from
different reservoirs, which are assumed to be uncorrelatedefbine, the corre-
sponding fluctuating currentk,, (t) andl _(t), are statistically independent and
have to be averaged independently, ()l ._(t)) = <1 ©))1_(t)).

If both reservoirs have the same temperatuigs= T, = Tp, and po-
tentials, then the corresponding distribution functions the same as well,
f1(E) = fo(E) = fo(E). In this case Eq.4.13 gives,

(Iy=0.
Of(E (2.14)
612y = 212 G%) keTo.

We see that current is zero, as it should be without bias. &thé mean square
current fluctuations is not zero due to fluctuations of octiopaof quantum
states in the macroscopic reservoirs with finite tempeeafiyr> O.

2.1.2 Shot noise

Now we analyze a zero temperature case when the thermalvarshes.
However additionally we assume that there is scatteremmtherwise ballistic
channel, see Figl.4. This scatterer is characterized by the same probabili-
ties to transmit electrons with enerdy from one side to another and back,
T12(E) = T21(E). Let us assume also that the reservoirs hatfemint poten-
tials. More precisely, we assume that electrons with enErgye present in the
first reservoir onlyu, + eVb < E < up + eV = f1(E) = 1, f(E) = 0.
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2.1 Nature of a current noise

From the first reservoirs electrons with velocityand linear density AC
fall onto the scatterer. They hit the scatterer with frequyerf L. Each electron
can be either transmitted or reflected. In the former casdemtren reaches
the second reservoir and causes a current pulge) = lo. While there is no
current in the latter case,.(t) = 0, since an electron returns to original reser-
voir. The quantity;T,1(E), being a probability for electron to tunnel through the
scatterer, defines a relative time periad,,, when the current flows between
the reservoirs,

. AL
T21: I|m T (215)

T—oc0

Repeating reasoning of Sez.1.1we can calculate a mean current and a
mean square current fluctuations, see EgS) € (2.10:

(I =1oT2(E),
(2.16)
612y = 1o(1) {1 = T2(E) } .

Comparing Eqg. .10 with Eg. 2.16 we conclude that the structure of
expressions for the thermal noise and for the shot noiseisdme. The dier-
ence is only in the source of stochasticity: In the formeeaasomes from the
distribution function of electrons in macroscopic resasjowhile in the latter
case it comes from the quantum-mechanical scattering psese

2.1.3 Mixed noise

Finally we consider a case when both the thermal noise anshibtenoise
are present. We assume that the channel with a scatterenmected to the
reservoirs having non-zero temperatures artkiknt potentials. In this case
the probability,P_,, that an electron, moving from the first reservoir to the sec-
ond one, does contribute to a current, is a product of twafactnamely, a
probability, f;(E), that the state with enerdyis occupied in the first reservoirs
and a probabilityT,1(E), that an electron tunnel through the scatterer,

P_, = To1(E) f1(E). (2.17)
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2 Current noise

In the same way, itis,

P. = T12(E) f2(E). (2.18)

Thus the total current)) = (1) — (I.), flowing through the channel is equal
o

(1) = 1o T12(E) { fu(E) - f2(E) }, (2.19)

where we usedl15(E) = T,1(E).

Next we consider current fluctuations. If the currdnift) andl _(t) would
be statistically independent then we could say, seeEf3y that(s1?) is equal
to the sum of512,) and(s12 ), where

612y = 1§ P_, (1 - P,) = 15 T1o(E) f(E){1 - T12(E) f1(E) },

(2.20)
(612) = 15P_ (1= P.) = IET1o(E) f2(E){1 - T1o(E) f2(E) } .
However, as we show, this is not the case,
812y £ (512)) + (51%) . (2.21)

This is because the currents(t) andl_(t) are correlated. These correlations
arising between the scattered electrons are a manifastaitithe Pauli exclu-
sion principle. Due to this principle two electrons can netilnthe same state.
Let us consider the state corresponding to an electron padipg from the
scatterer to the first reservoir. There are two ways to aaivéis state: Either
an electron incident from the first reservoir is reflectedamelectron incident
from the second reservoir is transmitted. Since this statenot be occupied
by two electrons we conclude that the result of scatteringnoélectron came
from the first reservoir depends on the result of scatterfrancelectron came
from the second reservoir. Therefore, the initially unetated electrons at two
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2.1 Nature of a current noise

reservoirs after scattering at the same obstacle becomelated. Hence the
currents carrying scattered electrons are correlatedatticplar, these correla-
tions result in vanishing of the shot noise in the case ifdalage equal electrons
flow falling upon the scatterer from both sides.

To take into account mentioned correlations due the Paulticipie
we should describe electrons quantum-mechanically. Wethisesecond-
quantization formalism and introduce creafamihilation operators7a,, for
electrons with energ¥ incident from the reservoir = 1, 2, and operators
6:;/61 for electrons scattered into the reserwwir The reflection and transmis-
sion at the obstacle we describe with the help of the unitary22scattering
matrix S. As we showed before, the operators for scattered and fadent
electrons are related as follows,

2 2
bo =) Suds. bj=) S8l (2.22)

For definiteness we calculate a current and its fluctuatiarth® left from
the scatterer. As positive we choose a direction from théesea to the first
reservoir. Then the current operathr, reads,

1 = lo(blb; — &lay). (2.23)

The measured currentt;, and its mean square fluctuatiorl?), are the fol-
lowing,

li=(1), (612 =12 - (Ip?. (2.24)

where(...) stands for a quantum-statistical average over the incorsiatp
with energyE we consider. To calculate it we take into account that thelpro
ucti, = &4, is a particle number density operator. Averaging guantum-
mechanicallyn, over the state with enerdy we get a particle number density,
n, in this state in the reservair. While after statistical averaging of the particle
number density we arrive at the Fermi distribution functidpn of the reser-
voir a = 1,2, where an incident electron (describing by the operatbcame
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2 Current noise

from. Taking into account that electrons affdrent reservoirs are statistically
independent, i.e(aas) = 0, @ # B, we have,

@l8g) = 0opfe, fo=—F—, a@=12. (2.25)

(0%

Also we take into account the anti-commutation relationtf@ Fermi particle
operators,

285 + B8] = Oop. (2.26)

First, we calculate a current,
[ AR _ afa 2 At 2 A _ ata
(I1) = |0<b1b1 — a1a1> =g ﬁZlS*lﬁaﬁ lelyay —a a1
= ’)/:

2 2 2
= lo {Z Z S*lﬁsly<égé7> - <éj_él>} =g {Z |81,3|2flg — fl} .
p=1ly=1 =1

Using the unitarity of the scattering matri§:1> + |S12°> = 1, and introducing
the transmission probabilitf;1» = |S1?, we finally find,

(I1) = 1oT1a(f2 = ). (2.27)

This equation is dierent form the current in a ballistic case, E3.1Q, by the
evident factofT1» < 1, which reduces a current due to a partial reflection of an
electron flow from the scatterer.

Next we calculate the mean square current fluctuati@g). To simplify
calculations we write the current operatbrdirectly in terms of operators for
incident electrons,

b1 = 81131 + Slzéz R b; = ilé; + Sizé; ,
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2.1 Nature of a current noise

[1/lo = Biby — &4 = (s;la’g + s;za;) (S11du + SpoBy) — Al =
= T12(8)8, — &l4y) + S},S1,8i8, + S;,S114}4; .
Note the last two term do not contribute to a measured cyrkent (i1), since

after averaging they give zero, see E§j26. However namely these terms are
responsible for current fluctuations.

. . ~AN2
The square of the current operator is the followifg= (I1)
(212 ata _ afa s o afa s o ata )’
|1/|0 = (Tlg(azaz — alal) + Sllslgalaz + 8128118281) =
2;\;\;\;\ ATA ATA ATA ATA ATA AT A
=T2, (a;azagaz +alaala - ajaala; - a}alaf;az)
+R11T12(a§aza;al + a;alajaz)
+les;1512(a;aza§az T alaala, — AlaAla - a}aza§a1>
+les;2311(a;aza;a1 T AbAala, — AlAnAa — a;alajaQ
2% A Ata 2, %A Ata
+( LSlg) a}azaiaz + (Silel) aZalaZal.
Here the reflection cdicient, R;; = |Sq1/%, was introduced. Note the terms
In the last three lines give zero after averaging since thelude a diferent

number of creation and annihilation operators with the siautiees. To average
remaining terms we use EQ.g6),

(ala.aj85) = (A1 a, a8 = fufs, @ #p,
@ aaia,) = @) (1- a8 )a.) = @) - @ alaa) =
= f, — (812,858 = f, — (AlaXa8) = f.(1- fp), @ # .

53



2 Current noise

With these equations we calculate,
<|A]2_>/|g = sz(fz + f]_ — 2f1 f2) + R]_]_le{ fl(l — f2) + f2(1 — f]_)} .

And finally we find the mean square current fluctuations,

G115 = ADHNG - (11)?/1§
= sz( fz + f]_ — 2f1 f2) + R]_]_T]_g{ f]_(l — f2) + fz(l - f]_)} - sz( fz - f]_)z

=T4{fi(1- f) + fo(1 - f2)} + RuT{ fi(1— f2) + f(1 - f1) }.
(2.28)

Let us analyze where theftBrent terms in this equation originate from.

First we consider the term with squared transmission prdbab
TZ{fi(1 - f) + f2(1 - f,)}. This term originates from averaging those pairs
of creation and annihilation operators which do contriliateurrent. Since the
current is due to electrons transmitted from one resereoanother one, we
can attribute this part of a noise to fluctuations in incidelettron flows. The
effect of scattering in this case is rather trivial: It reduceskectron flow by
the factorT1, and, correspondingly, it reduces a noise (a squared clubgthe
factor T%,. This is evident for electrons flowing from the second resirand
transmitted through the scatterer before we calculated ¢batribution to the
currentl,. However the same is also true for electrons flowing from trst fi
reservoir, since their current is reduced by the fa€tqr= T1» = 1 - Ry; due to
reflection at the scatterer. As a result the (part of the) nsealare current fluc-
tuations due to fluctuating of the occupation numbers oéstat the reservoirs
are proportional to the transmission probability squar@cé&these fluctua-
tions are present at non-zero temperature only, this pattidee considered as
the thermal noise in the system under consideration (théeseaconnected to
reservoirs). Comparing it to EqR (13 we see that these two results are consis-
tent atT,», = 1. However afl 1, < 1 this part of a noise is @ferent from what we
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2.1 Nature of a current noise

called as the thermal noise, EQ.J), since the conductancg is proportional
to the transmission probabilitg = GgT;,, not its square.

To resolve a seemingly contradiction and to find a correctesgion for
the thermal noise, i.e., for the part of a noise vanishingeat temperature, we
should consider the remaining part in Eg.49 due to reflection at the scat-
terer,Ri1 T1o{ f1(1 - f5) + fo(1 - 1) }. This part originates from averaging those
operators which do not contribute to a current and, theeefirey do not cor-
respond to any real single-particle processes. While toesespond to some
two-particle processes. To clarify them we introduce aamtf a hole whose
distribution function is 1- f,. Then one can say that there are two kind of
particles incident to the scatterer: There is incomingegigm electrons (with
probability f,) or a hole (with probability - f,). Then the corresponding part
of a noise is due to following two-particle processes: Arcet@yhole incoming
from the first reservoir is reflected (with probabili1) while a holgelectron
incoming from the second reservoir is transmitted (withbadality T15). Ap-
parently these processes do not contribute to currentcéldtie fluctuations in
reservoirs and fluctuations due to scattering are statltimdependent, there-
fore, they contribute additively into the mean square curfleictuations. This
fact justifies splitting present in EQR 9. On the other hand one can rearrange
these terms in another way,

OIDNG = To{ (1 - f1) + fo(1- f)}
+RuTia{ fi(l = fi+ f1— fo) + fo(1— Fo+ fo— F1)} =
= (Th+ RuTi) { fi(1 - f1) + f2(1 - f2)}

+ RuTiof fi(fr — o) + fo(fo - f1) } =
= Tio{ f(1 = f1) + f2(1 = )} + RuuTao(fo = f1)2.

One can see that the first terms vanishes at zero tempertuerefore, we call
it as the thermal noise. The second term vanishes with viaugisif a current,
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2 Current noise

Eq. (2.27), flowing through the scatterer. Therefore, following tdh8itky one
can attribute it to the stochasticity in scattering of insiivle particles at the
obstacle. We call such a noise as the shot noise. Thus we write

G12)/1§ = @I1HM 15+ (1DHEV /18, (2.29)

where
GIHM/1 = T fa(1 - f2) + f1(1 - f1)},

(12N /12 = Ry Tao(fr — 1)2.

Notice the given above equation for the thermal noise is gntagmal to
the fist power of a transmission probabilifl,, in agreement with Eq.2(3).
The shot noise equation is proportional to the product ofaasimission and
reflection probabilities, that by virtue of EQ2.@7) is consistent with Eq.2.4).
Moreover, the equatior2(29 reproduces correctly equations for the thermal
noise and for the shot noise in all particular cases we censtbearlier.

2.2 Sample with continuous spectrum

Now using the scattering matrix approach we present a fotineglry for
current fluctuations in mesoscopic sample connected viadonensional leads
to N, reservoirs. The essentialiirence from a simple model considered above
Is that the incident electrons are particles with contirsuspiectrum. This fact
complicates calculations but qualitatively the answeramsmthe same.
2.2.1 Current correlator

The mathematical quantity which is usually considered mn&ztion with
noise is a correlation function of currents,

Pus(ty, t2) = % (Al (t)Al(t2) + Alp(t) Al (1)) . (2.30)

The operaton\l, = [, — {I,) describes a deviation of an instant curreipt,
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2.2 Sample with continuous spectrum

from its mean value(l,,). The quantityP,, is referred to ashe current auto-
correlator, while the quantityP.s, @ # g, is referred to ashe current cross-
correlator.

At t; = t, anda = B the equationZ.30 defines the mean square fluctua-
tions of a current within a lead, P, (t, t1) = (Al2), which strictly speaking
diverges due to quantum fluctuations in the system with nantis unbounded
spectrum. To overcome thisfiiculty usually in an experiments the fluctuations
are measured within some frequency windéuw.

To calculate the spectral contents of fluctuations we go fveen the real-
time to the frequency representation,

Paﬁ(wl, a)z) = /dt]_eiwltl/dtzeiwztzpalg(tl,tz), (231)
Paﬁ(tl,tz) da)l —Ia)ltl/d 2 _IMZtZPQIB(wl,U)Z)- (232)

Note in the stationary case the correlation function depamdthe difer-

ence of times onlyP.4(t1, t2) = Pys(ts — t2), that reads in frequency representa-
tion as follows:

Pos(w1, w2) = 21 6(w1 + w2) Pep(wi), (2.33)

whered(X) is the Dirac delta-function. The spectral noise povigl(w1), is
related to the correlatd?,s(t; — t) = Pys(t) in the following way:

Pop(w) = / dt €' P(t), (2.34)
[ do griot
Pos(t) = 5.8  Pap(w) . (2.35)

—00
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2 Current noise

As we already mentioned the quantRy, (t = 0), defining the mean square
current fluctuations, diverges. However if we restrict thegtiency interval,
+Aw/2, where the current fluctuations are measured, then wenoaténite
guantity,

Aw/2 q
(612) = Z‘“ P oa(w). (2.36)
—Aw/2
Further simplification arises if the scattering propertéa sample depend on

energy only a little. In this case the spectral noise poWgs(w), depends
weakly on frequencyP,z(w) = Pq(0), and we can evaluate EQ.86),

(612)
Av

= Pue(0), (2.37)

whereAv = Aw/(2r). In the same way the cross-correlator of currents flowing
into the leadsr andB measured within the frequency windavw becomes,

(51a615)
—, = Pas0), (2.38)

We see that the mean square current fluctuations is defindeelzaeto fre-
quency noise power. Below we calculatgz(0) and confirm announced earlier
Egs. .3 and @.4).

2.2.2 Current correlator in frequency domain

Let us calculate a quantity,z(w1, w2) and show that indeed it can be rep-
resented as Eg2(33.
Substituting Eq.Z.30 into Eqg. €.31) we get,

Pupln,w2) = 5 (Alu(w)Al(ws) + Aly(wAl,(wn)) . (2:39)
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2.2 Sample with continuous spectrum

whereAl,(w) = l4(w) - {4(w)), andl,(w) is a current operator in frequency
representation. To calculate it we apply the Fourier trarmsétion to Eq.1.36
and find the following,

l(w) =e / dE {b}(E)b,(E + w) — & (E)a,(E + hw)} . (2.40)
0

For convenience we represent a current as the sum of twoilmatiins.
The first one is due to scattered electrons, while the secoadsaue to incident
electrons. To distinguish these contributions we use tipeumdices gut) and
(in) for the former and latter contributions, respectively, e total current is,
lo(w) = 1C(w) + 11 (w), where

1C9) = e / dE Db/ (E)b,(E + hw) (2.41)
0
MNw) = —-e / dEA! (E)a,(E + hw) . (2.42)
0

Then the current correlatdP,z(w1, w»), is the sum of four terms,

Puplws, ) = Y Pl (w,w),

i,j=in,out
(2.43)
. 1 " ) » _
Pg,’BJ)(wl, (1)2) = é <A|S)(w1)AIAéJ)(a)2) + Aléj)(wz)A|g)(w1)> )

We calculate each of these terms separately.
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2 Current noise

2.2.2.1 Correlator for incoming currents

The part of a current correlation function dependent onlyneoming cur-
rents is:

Jgg’m)(El,Za wl,Z) n Jgg’m)(EZ,la w2,1)
2 ’
(2.44)

PO (w1, wp) = € // dE, dE;
0

where

W€ 012) = ({BI(ED BB+ ) - (8(En) Bu(Er + o)) |
{&(E2) 86(B2 + 11wa) — ((E2) 85(E2 + Tiwa) ) } )

X

Taking into account that the average of the product of fowragors is the sum
of products of pair correlators we finally find,

Jgg,in)(El,Z, (1)1,2) = <é:;(E1) é,B(EZ + h(l)z)> <éa(E1 + ha)]_) ég(Ez)> .
Using Eqg. (.37), we calculate pair correlators,

<a;(El) 8(E; + hw2)> = §0p 0(E1 — Eo — hiwy) Tu(Ey)

<t’3\a(E1 + hwa) él;T;(Ez)> = 0ap 0(E1 + hw1 — E2) {1 = fo(E1 + hiwn)}

and correspondingly,
JSE"”’(El,z, w12) = 0480(E1— E2 — hws) 6(E1 + hw1 — Ey)

X fo(E1) {1 - fo(E1+ hwy)} .
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2.2 Sample with continuous spectrum

In the same way we get,

Jﬁ(;i(g’in)(Ez’l, a)z,l) = 505 O(E1 + fiwr — Ep) 6(E1 — Eo — fiwy)

X fo(E1+hw1) {1 - f(E1)}.

Substituting equations above into E4.44) and integrating over enerds,, we
represent this part of a current correlation function infilwing way,

Pg/g’m)(wl, w2) = 2wé(w1+ wo) Tg/g’m)(wl) :

(2.45)
PO w) = 5" / Qs Foo(Es, Ex + ).
Here we have introduced the following short notation,
Fos(E, E') = —{f (E)[1- f5(E")] + f5(E")[1- fa(E)]}. (2.46)

As it follows from Eq. .49, the currents flowing into the filerent leads,
a # S, to the scatterer are uncorrelatéti” " = 0. This is a consequence of
our assumption that electrons affdrent reservoirs are uncorrelated.

2.2.2.2 Correlator for incoming and out-going currents

The part of a correlator dependent on an incoming currertienléada
and an out-going current in the legdeads,
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2 Current noise

JUO(E 5, w1 0) + I (Egy, wo 1)

PU w1, w) = — € // dE; dE; Jop 5

(2.47)

To calculate, for instance,

W0 (Erz12) = ({B1(ED Bu(Er + heor) - (BL(ED) Au(Er + o)) |
X {Bg(Ez) bs(Ez + hiwy) — <6;;(E2) be(Ez + hwz)>}>
<a;(El) Bs(Ez + hw2)> <éa(E1 + haws) 62(E2)> ,

we expres®—operators in terms ad—operators, see EqL 39,
N, N,
by(E) =S (B)AI(E). Bs(E) = > Sp,(E)a(E),
y=1 y=1

and calculate pair correlators,

<éZ(E1) by(E2 + hw2)> = 0(E1 — B2 — hiwy) Spo(E2 + hwy) fo(E1) ,
(8u(Ex + 10n) BY(E2) ) = 8(Ex + hews — E) S}, (E2) (1= TolEx + o)}

After that we find,

JSE»OUI)(ELZ, Cl)l,z) = 5(E1 — E2 — th) 5(E1 + hwl — EZ)

X Spa(B2 + hiw2) Sp,(E2) fo(E1) {1 — To(B1 + Tiwn)} .
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2.2 Sample with continuous spectrum

The similar calculations give us the second term in Bg}9):

J/gg”t’m)(Ez,l, w21) = O6(E1+ hwy — E2) 8(E1 — Ez — hiw))

X S;a(EZ) S,Ba(EZ + th) fa(El + hwl) {1- fa/(El)} .
Using these equations in EQ.{47) and integrating oveE,, we calculate,

Pg/g’om)(wl, wz) = 2m6(w1+ wpy) fng’om)(wl) :
(2.48)

. & [
ipgg,out)(wl) = - / dE; Fee(E1, E1 + hiw:) Sp,(E1 + iw:) Spe(E1) -
0

This equation shows us that the current carrying by the relestscattered
into the leads is correlated with a current carrying by the electrons inicgm
from the reservoire. In fact these correlations are due to electrons scattered
from the leady into the leagB. That is indicated by the corresponding scattering

matrix elementsSg,.
In the same way we calculate the third term in EQ408:

PG Wi, w2) = 216(ws + w2) PG (1),
(2.49)

| & [ :
Té%utln)(wl) = — n / dE; F,B,B(El’ E1 + 7iw,) Sa,lg(El) Sa/,B(El + hws) .
0

This term is due to correlations between electrons comioig the reservoig
and electrons scattered in the reservairs
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2 Current noise

2.2.2.3 Correlator for out-going currents

Finally we calculate the last term in EQ.43):

Pfy%utouo(wl,wz) = % // dE; dE; (2.50)
0

x {<6§(El) Bs(Ez + hw2)> <6a(E1 + hawy) B}Q(Ez)>

+ <A;;(E2) b.(E1 + hw1)> (bg(E2 + hwy) bl (E1)) } :

To calculate a pair correlator with—operators we use Eqgsl.G9, (1.37) and
obtain, for example,

<6:;(E1) by (Ez + hwz)> = 6(E1— E2 — hwy)
N,
X D Suy(E) Spy(Ez + o) 1,(En)

(Bo(Br + hon) BY(E2)) = 6(Ex +fiwn — )
Ny

X Y Sas(Ex + hwn) Sjs(E2) (1 - f5(E2)) -
o=1

Other pair correlators are calculated in the similar wayemM&q. .50 results
in the following:

PO w1, wp) = 27 6(ws + wa) PG (wi), (2.51)

(out,out)(w ) - = / dElZ Z Fy(S(El, E]_ -+ ha)]_)

v=1 6=1
X a/y(El) Sﬁy(El) Sa,(;(E]_ + ha)]_) S,B(S(El + ha)l) .

64



2.2 Sample with continuous spectrum

Note the correlator of scattered currents depends on thaiRanctions for

all the reservoirs. In addition it depends not only on ampl#s of scattering
between the leadsandg, where the currents are measured, but rather on all the
possible scattering amplitudes. It emphasizes a nonHpaaherent to phase-

coherent systems.
Summing up Egs 249, (2.49), (2.49, and @.51), we arrive at Eq.4.33),
where

oo

P op(w) = % / dE{ Foa(E, E + 10) [00p — Siu(E + hw) Spe(E)]

— Fgg(E, E + 71w) S} 4(E) Sop(E + hiw) (2.52)

N N
+ Z Z Fy&(E, E + 7iw) SZ),(E) Sﬂy(E) Sw(E + hw) SE(;(E + ha))}
vy=1 6=1

The frequency dependence of a noise is due to internal aednaktfac-
tors. The internal factor is an energy dependence of théesiwag amplitudes.
The external factors, represented by the combination ofF#reni functions,
F,s(E, E + hw), are chemical potentials and temperatures of reservding
joint effect of internal and external factors is rather sample-$igediowever
in some simple cases th&ect of bias and temperature can be analyzed.

2.2.3 Spectral noise power for energy independent saadteri

Let the reservoirs havefiierent potentials but the same temperature,

eVaﬁ = Ha — HB, T,=Tpy, Va. (253)

We assume a bias and a temperature small compared to thedterrgy,

|eVQIB| R kBTo <K Up. (254)
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2 Current noise

Suppose also that the scattering matrix varies with enendy a little within
the energy window of ordekgTo, |eV,;| near the Fermi energy,. Then the
scattering matrix elements in EQ.62 can be calculated at the Fermi energy,
E ~ E + hiw = up. The integration over energy becomes trivial,

/ dE Fos(E, E + hw) = (2.55)

eV, +h eV, +h
SVap TG g ((Sap T 10
2 2kgTo

and we calculate the spectral noise power,

Pop(w) = %{ cth (ZkBT0> [6(,[; - ‘Sﬁa(ﬂo)’Z _ ’Saﬂ(ﬂo)‘z]
(2.56)

+ Z Z o the cth <e\2/|f+Thw> Say(10) Spy(110) Sas(uo) 326('“0)}'

y=16=1

Let us consider a particular caseMf= 2. [23] Then we find,

P1(w) = {hw cth (514.) T2,
(2.57)

+R1]_T12 |:eV+ha) cth (ez\|ﬁ+_7|1_a)> + &Viw eV-Tw ha) cth (ez\li _/7_(1)):| }

whereV = Vi, = =Va1, T1o = [S1a(i0)l?, Ri1 = [S11(i0)* = 1 - T1o. Note in the
two-terminal case the calculated quantity defines all atberelation functions:
P12 =Po1 = =Pop = -P11.

The noise depends on a frequeacgt which the currentis measured, on a
biasV, and on a temperatui®. If one of these factors exceeds other ones then
we get,
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2.2 Sample with continuous spectrum

( 2kBToG R kBTo > |eV|, hw,

P11(w) = < lelIRw1, eV > fiw, kgTo, (2.58)

| S|wlT1z, fiw > keTo, [V,

whereG = (€?/h)T1, is a conductancé,= VG is a current through the sample.
The first line represents a thermal noise which is linear mperature. The
codficient 2 arises due to two reservoirs having the same temyperalf the
temperatures areftierent then we should make a replacemeig, 2 Ty + T».
Taking into account Eq.2(37) we see that this equation is exactly Eg.3.
The second line in Eq2(58 corresponds to a regime when the shot noise dom-
inates. It reproduces EqR.@). And, finally, the third line represents so called
a quantum nois@lependent on the measurement frequency[24] Namely
this last contribution is responsible for divergence of thean square current
fluctuations(l?) = P14(t = 0), see Eq.Z.35.

As it follows from Eq. .59 the frequency dependence of a noise can be
ignored if,

hw < max{kgTo,|eVsl}, VYa,B. (2.59)

In this case the quantum noise becomes negligible and the soairces of
current fluctuations are thermal and shot noisesTAt 102K andorV ~
1078V the quantum noise can be ignored up to the frequenciesL0’ Hz.

2.2.4 Zero frequency noise power

If the measurement is doing at enough small frequencies( 229, then
the value of current fluctuations is defined by the noise p@aweero frequency,
w = 0, see Eq.4.37. The quantity?,,(0) is usually referred to athe noise
power.

Let us represent a quanti,z(0), Eq. €.52), as the sum of two terms such
that one of them vanishes at zero temperature, while anotteevanishes in the
absence of a current through the sample. To this end we write,
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2 Current noise

F,s(E,E) = %{FW(E, E) + Fss(E, E) + [,(E) - f5(E)]2} '

Then in Eq. .52 in the term with factorF,,(E, E) we sum up ovep and,
taking into account Eq.1(13), find,

N, N, N,
* * 2
Z Fw Say Sﬂy Z Sas Sﬂé = 5@5 Z Fw ‘wa|
y=1 o=1 v=1
The term with factoiFss(E, E) reads exactly the same. After then we writg, |
Pop(0) = PLY + P (2.60)

where

o - € [ e {aﬁ B+ Fo(E B[S, (E) ’]
0

y=1

Foa(E. E) |Spe(E)|” - Fas(E, E) \saﬁ(E)yz}, (2.61)

NN T (E) - f5(E)]°
P - / aey > OO s 65,685,400 5,(E)

v=1 6=1
(2.62)

The quantity?™ can be referred to athe thermal noise power This
guantity vanishes at zero temperature, sincg,at O itis F,,(E,E) = 0, Va.
While the quantityPs can be called athe shot noise powesince it vanishes
in the absence of a current through the system. Remind thattient is driven
by the Fermi function dierence.

It should be noted that a&() as? depend on both the temperature
and the bias voltage. That emphasizes the universal pictabnature of a
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2.2 Sample with continuous spectrum

noise. However there is an essentidfelience between the equilibrium (ther-
mal) noise and the non-equilibrium (shot) noise. The thémosgse depends
on the probabilitie$S,sl° like the conductanc&,s, Eqg. (1.55, does. This is a
consequence of the fluctuation-dissipation theorem, geeRef. [L1]. While
the shot noise depends orffdrent combinations of the scattering matrix ele-
ments. That in general allows to extract additional infaiioraconcerning the
properties of a sample from the shot noise measurementthefuve consider
general properties of the noise power.

2.2.4.1 Noise power conservation law

The sum of the zero-frequency current correlation funcpower over
either incoming or outgoing indices is zer§] |

N, N,
D Pep(0) =) Pus(0)=0. (2.63)
a=1 p=1

These conservation laws are quite analogous to the dc ¢@waaservation law,
(1.48. They are due to particle number conservation at scatfédne to uni-
tarity of the scattering matrix).

Remarkably the thermal noise and the shot noise are subjéot¢s$e con-
servation laws separately. So using Ef5(Q) we find for the thermal noise,
Eg. (2.61),*

N, N, N,
NP~ 3 s, [FW(E, E)+Y F,(EE) ]Sw(E)H
a=1 a=1 y=1

N, Ny
~ Y FaalE.E) [Ssu(B)|* ~ Fis(E.E) Y [Sup(E)|” =
a=1 a=1

We drop an integration over energy since the conservaties kold not only integrally but also separately for
each energy
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2 Current noise

\"
= Fu(E.E)+ Y Fp(E.E)[S(E)[°
=1
N

~ " FualE.E) |Ss(E)|" - F(E.E) = 0

a=1

In the same way using EqL.46 we show thagg';l ?SE)(O) =0
In the case of a shot noise, EG.§2), we use Eq.1.12 and get,

Ny

N N 2 N,
YRS~ YN LH(E) - fé(E” Sey(E) Sis(E) S S (E) Sus(E) .
a=1

a=1 y=1 6=1

NN Tf(E fE ?
-y (B) -~ 6(E) Ss,(E) Sj»(E) 6,5 = 0

y=1 6=1

Then with Eq. (.13 we also provey_; P)(0) = 0

The conservation laws, Eq2.63, show that the auto-correlator and cross-
correlators at zero frequency are not independent from etedr. Some of
them can be calculated if other were measured.

2.2.4.2 Sign rule for noise power

The auto-correlator is positive (or zero) while the cross-lator is nega-
tive (or zero) b,

Poa(0) > 0, (2.64a)

\%

P,s0) < 0, a+p. (2.64b)

The positiveness dP,,(0) is clear, since this quantity is a mean square of
a real quantity, Eq.4.37). The negative sign of a cross-correlator is a conse-
guence, first, of an indivisibility of electrons and, secoofithe Pauli exclu-
sion principle requiring (spinless) electrons with somergg pass one by one
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2.2 Sample with continuous spectrum

through the one-dimensional lead. Therefore, we can lodcattering of a
single electron with given energy and forget about othestedas. Let us con-
sider scattering of an electron flow moving to the sample enléady. Elec-
trons from this flow can be scatterer to any leiadith probability |S;,(E)|?.
In particular some electrons will be scattered into the $aacndpB. These
electrons define the mean current)’) and{l 7) On the other hand each
particular electron can be scatterer to only one lead. Itbeaaither leady, or
B, or any other lead. In any case the current pulse due to scattering of this
particular electron arises only in one lead. Therefore, pnmluct of instant
currents in any two leads, for examplednandp, is zero, I(V)I = 0. Then
we immediately conclude that the cross-correlator of a'usrm leadsy andp
due to single electrons comlng with eneirg§yfrom the reservoily is negative,
POE) ~ AP1Y) = AN ) ~ 0= IS, (E)AISg,(E)P < 0. In different reser-
voirs and at dferent energles electrons are statistically independémtefore,
we can sum up correlation functlof}?éyﬁ(E) overy and integrate ovele. Then
we arrive at Eq.Z.640).

Let us show that the thermal noise, EQ.q1), and the shot noise,
Eqg. 2.62, do satisfy the sign rule, Eqs2.64). We will omit an integration
over energy which does noffact a sign of a current correlation function. First
we consider a thermal noise. The auto-correlator gives,

N,
PI < FolEE)+ Y Fpy(E. E) [Sey(E)|” ~ 2Fua(E. E) ISua(E)P =
v=1

Ny
= FoolE.E) [1-1Sw(ENF] + Y F,(E.E)[So,(E)[° > 0.

y#a=1

Here we took into account @ F,,(E, E) < 1 and|S,.(E)* < 1. For the cross-
correlatora # 8, we find a definitely negative expressidty); ~ —|Sg/?f,[1 -
fa] = 1Sepl?f5[1 — f5] < O.
Next we consider a shot noise. The auto-correlator is del§nfiositive,
psh o ZyN;l M1, - f5)2 ISeyI?1Sesl? = 0. To calculate a cross-correlator

we use,(f, - f(;)2 = f2+ 7 - 2f,f;, use Eq. .13, and get,
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2 Current noise

P~ LSS (24 - 20) S5, Sy S S
o=1

y=1

N N N N
1 r k r 3k 1 r * r *
=5 > S0, S5 ) SasSpst 5 > SeySer D 7 SusSis
y=1 o=1 y=1 o=1
2

N, N;
=3 1,555 > f5Su S = - Zf S.,Ss| <0
v=1 o=1

In the second line we usex; Sys Sis = 0ap = 0. Thus the sign rule for the
current correlator power at zero frequency has proven.
To illustrate given above general properties we considanple example.

2.2.4.3 Scatterer with two leads

From Eq. .63 it follows that for N, = 2 the whole noise power matrix,
33(0) Is defined by only a single element. This is true for trexal noise and
for the shot noise separately,

th th th th

PY =05 = =P = -P5) = PO,

where

oy _ ke / dE(—n% _Tzaf;(EE)> T.(E). (2.65b)

CLI % / dE[f1(E) — f2(E)]” Too(E) Ria(E). (2.65¢)
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2.2 Sample with continuous spectrum

HereT1,(E) = ]Slz(E) 2, R11(E) = 1 — T1x(E) are, respectively, transmission
and reflection probabilities for electrons with enekyWhile transforming an
expression forP™ we used the following identity for the Fermi distribution
function,

Foo(E, E) = f,(E)[1 - f.(E)] = - kBTaafgl(EE) : (2.66)

From Eqgs. 2.69 it follows that the character of a dependence of a trans-
mission coéficient on energy is crucial for the dependence of a noise dnthet
temperature and the bias voltage. For instance, if theriressson coéficient
T12(E) changes only a little within a relevant energy window (nmaxm of two,
the reservoir temperature and the bias) then the thermsém®iinear in reser-
voir temperature3q, T, and it is independent of a bia$™ = kg (T1 + T,) G,
whereG = (€?/h) T1a(uo). In contrast, the shot nois@", is a non-linear func-
tion of both the temperature and the bias. And only in thetlohia large bias,
leM > kgT1,kgT2, the shot noise becomes merely proportional to a current,
| = VG: PON = |el|Ry1(uo).

2.2.5 Fano factor

The Fano factorF, is a ratio of the shot noise to the dc current times the
charge of carriers, see e.g., R&X(];

p(sh)
F=—.
qll

(2.67)

As it was shown by Schottky2[l], for statistically independent carriers the
Fano factor is unity. In the presence of correlations/animteractions between
carriers the Fano factor is generallytdrent from unity.

In mesoscopics also one can introduce the Fano factor. Howaes it
follows from Eqgs. .47 (for N, = 2) and @.6509, in generalF # 1. Even
in the simplest casel (E) = const anceV > kgT, the Fano factoF = 1 -
T2 < 1. At T, — 0 the quantityF ~ 1, therefore, one can say that in the
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2 Current noise

case of a small conductand®/Gy = T1, < 1, the current is carried by the
statistically independent particles. While with incremstonductance the factor
Fano decreases, that is due to correlations between sarfieese correlations
are consequence of the Pauli exclusion principle forciegtebns to pass a lead
one by one.

74



Chapter 3

Non-stationary scattering theory

Applying a time-dependent bias or varying in time the prdperof a sam-
ple we create conditions when the time-dependent curremistfirough the
system. Our aim is to consider how the non-stationary tramsgan be de-
scribed within the scattering matrix formalism.

To calculate the scattering matrix elements, which are wuan
mechanical amplitudes, we need to solve the Schrodingetiequ Therefore,
we first consider the methods of solution of the non-statypr&chrodinger
equation and then analyze the properties of the scatteriugixrof a non-
stationary sample. We are interested in a particular casas e dependence
on time is periodic.

3.1 Schrodinger equations with periodic in time potential

Let us consider the Schrodinger equation for the wave fancH of a
particle with massnin the case of a time-dependent Hamiltonibit, ),

O¥(t, P)

i
ot

H(t, ©) (),
(3.1)
H(tF) = HolP) + V(L ).

Here we split Hamiltonian into the two parts, a time-indegesmt, Ho(F), and
dependent on timé&/(t, ©). The corresponding boundary conditions are assumed
to be stationary. We suppose that the solution to the sttyoproblem with
HamiltonianHg(P),

Pt = e (D),

(3.2)

Ho(Py(F) = Ey(r).
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3 Non-stationary scattering theory

and with the same boundary conditions is known. That is, wmdoall the
eigen-functionsy,(F), and eigen-energids,,

Ho(F) Yn(P) = Enyn(P). (3.3)

Note that it iSVq(t, 1) = e‘ET”twn(f). The indexn (non necessary integer) num-
bers the states belonging to both discrete and continuotsfeaspectrum.

We compare two method for solving of a non-stationary pnobl&he first
method is the perturbation theory by P.A.M. Dir&t5], see, e.g., Ref.1(],
which is applicable for a weak time-dependent potentiahvatbitrary de-
pendence on time. The second one, based on the Floquetrhesge, e.qg.,
Ref. [26, 27], is applied for periodic in time potentials with arbitrastrength.

3.1.1 Perturbation theory

Let the time-dependent potential is small,

V(t,P) — 0, (3.4)

and, therefore, can be considered as a perturbation whahgels only a little
the state of a quantum system with Hamiltonkdg(r).

We are looking for a solution to Eq3(1) as a series in stationary eigen-
wavefunctions,

W) =) an(t) ¥a(t.F). (3.5)
Substituting Eq.3.5) into Eq. (3.1) and using Eq.3.3) we find,
iyt 20 - S avie nwen. (36)

Further we multiply both parts of this equation wittj(t, ) and integrate over
space. Since the eigen-functions of the Hamiltonian ateogdnal,
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3.1 Schrédinger equations with periodic in time potential

/ At () un(P) = Onk.

we arrive at the following equation for the dGeientsay:

dadt) _

17 e

> Vin(® an(t) , (3.7)

where the perturbation matrix elements are:

Ey-

it (3.8)

Vi) = / 6B wi(F) V(L F) () €

To find the coéficientsa,(t) we need to solve the system of an infinite number
of differential equations of the first order, E§. 7).

Up to now we did not use a fact that the perturbation is weaky We use
it and solve the system of equations to the linear ordéf(ipr). To be more
precise we consider the following problem:
The perturbatioV/(t, F) is switched on at = 0. We consider a particle which
was in the stat&(t, r) with energyE, att < 0. We need to calculate its wave
function®™(t, ) att > 0.
We will use an upper indexxf) to show an initial state. So, we have a problem
with following initial conditions,

af(0) = 1,
YM(t=0,F)=¥n(t=0,F) =
am(0)=0, n#m,

where a™(t) are codficients in Eq. 8.5 for the wave function of interest,
¥vM(t, ). After the perturbation is switched on the @idgients become func-
tions of time,a(™(t), which we look for as a series in powers of a small param-
eterV(t,r). In the linear order we have,
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3 Non-stationary scattering theory

a(t) =1+afr(),
(3.9)
amt) =0+a™(t), nzm.

Substituting these equations into E§.4) and keeping only linear iv terms
we find,

dg™"(1)
dt

in = Viem(1) . (3.10)

This linear first order equation can be easily integrated out

ot
a™(t) = —'% / dt Vie(t') . (3.11)
0

Accordingly to the basic principles of the quantum mechsathe absolute
value squarel,a(km)(t)lz, defines a probability to observe a particle in the state
Yi(t, ) with energyEy at timet. Note at initial timet = 0 the particle was in the
state with energ¥,,. The change of particle’s energy is due to the interaction
with a time-dependent potenti&l(t,). The particle can either gain energy,
Ex > En, or lose it,Ex < En.

Now we clarify when the potential can be treat as small, Bg)( Let us
consider a uniform in space and periodic in time potenti@, ) = U(t) R(P),
where

U(t) = 2U cosQt) . (3.12)
Then we can solve Eq3(11),

(3.13)

ei(wkm—Qo)t -1 ei(wkm+§20)t _ 1)

(ML) — _
ak (t) = Uka ( h((l)km _ QO) + h((l)km + QO)
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3.1 Schrédinger equations with periodic in time potential

whereRgm = [ PBry(NR(AYn(Y) andiwkm = Ex— Em. The perturbation theory
Is correct if the absolute value a@%(t) Is small compared to a unity:

Vkm U ka

~ < 1. 3.14
h(wkm+ Qo)  A(wkm £ Qo) (3.14)

In this case the particle with a large probability stays sninitial state and the
effect of a time-dependent potential is really small as it wagpesed.

If the perturbation frequency)o, is close to some éerence,+(Ey, —
Em)/7, then the equatior3(14) can be easily violated and the perturbation the-
ory fails. In such a case the time-dependent potential \ailise a particle to
pass over from the initial stat¥qy(t, ) to the statet, (t, ) and back, since the
coeficientsall(t) anda(kf)”)(t) are of the same order.

Substituting Egs.3.13 and @.9) into Eqg. 8.5, written for the function
vM(t, 7), we finally calculate,

PO = ey () (3.15)

o Js U an (e—iQot _ e—ia)nmt) U an (eiQot _ e—iwnmt)
nm Ii(wnm — Qo) i(wnm + Qo) .

Thus we found that the periodic perturbation results in @alakl terms in the
expression for the wave function which correspond to ihéizergy shifted by
+71Q)y. Easy to understand that the spectral contents of the pation defines
energies of additional side-bands of a wave function.

3.1.2 Floquet functions method

This method overcomes the restrictions put by Exj14) and allows to
consider an arbitrary but periodic in time potential. Thamdea is to use the
Floguet theorem. Accordingly to this theorem the solutionthe Schrédinger
equation with periodic in time Hamiltonian,

H(t.P) =H({t+7,7), (3.16)
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3 Non-stationary scattering theory

can be written as follows,

W(t,P) = et p),
(3.17)

$(t.7) = o(t+7.7).

To outline the proof of this theorem we consider the genevhlt®n P(t, 1)

to Eq. 3.1) with Hamiltonian, Eq. 8.16. Let us shift a time by one period,
t - t+ 7. Then the wave functiol¥’(t + 7, ) is also a solution to the same
equation,

iha‘P(t+‘I,F)

o = Ht+7,N)Y(t+ 7,0

= H({t, DY+ 7T,r).

Therefore, two general solutions have to be proportioneth egher,

Y(t+7T,r)=CY({trn). (3.18)
Since the wave function is normalized,
/ dBrie, 0 = 1,
/ﬁ%wa+mmF:pF/dMT@mF: 1,
we find for the constare,

CP=1 = C=¢'". (3.19)
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3.1 Schrédinger equations with periodic in time potential

The general expression for the function subject to Bgld with codficient
given in Eq. 8.19 is the following,

W(L.7) = e (L),
(3.20)
o(t.F) = p(t+T.0).

Let us check that Eq3(18 holds,
P(t+T) = e TNyt + T) = e {e'Tp(t) } = e P(1).
Finally introducingE = fia/7 instead ofx we see that Eq.3(20 is reduced to

Eq. 3.17). The Floquet theorem has proven.
Next we expand a periodic in time functigift, ©) into the Fourier series,

¢(t,T) = i e ¥y (1), (3.21a)
g=—00
T

Yo(T) = / %téqQO‘¢(t,m, (3.21b)

0

whereQq = 27/7T. Then the Floquet wave function, E&.{7), becomes,

P(t,F) = e it f: g 9%ty (7). (3.22)

q:—OO

In the case of a stationary Hamiltonian the solution comesing to en-
ergy E has a factoe'#t. Therefore, in the stationary case in E§.22 only
the term withg = O survives. In the case of a time-dependent Hamiltonian the
energy is a quantity which is not uniquely defined. For insgaif we changé&
in Eq. 3.22 by any numbeip of energy quantaQ,, E — E + piQ)o, then we
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3 Non-stationary scattering theory

arrive at the same wave function. To show it we need only tefied functions
Yq(P) changing its indices) — g+ p. Since the quantitf is defined up to
energy quantumiQ)g, then it is referred to athe quasi-energpr the Floquet
energy In each particular problem the quantiyis fixed just as it is conve-
nient. For numerical calculations people often usg, B < 7,. On the other
hand, exploring a problem how some stationary state evaladsr the action
of a periodic potential, it is convenient to chodsequal to energy of this initial
stationary state. We will follow the latter way when we widlresider scattering
of electrons with fixed energly onto the dynamic sample.

Comparing Egs.3.15 and 3.22 we conclude that the Floquet theorem
predicts an existence of multi-photon processes when teaggrchanges by
several quanta<)q in addition to single-photon processes taking place ajread
in the case of a weak perturbation. The Floquet theorem ginessatz for the
solution to the Schrédinger equation with periodic Hanmiém. The unknown
functiony () is a solution to some stationary problem. It should be nated
general case the functiong() with differentq are not independent. Therefore,
the non-stationary problem is reduced to multi-channeicstary problem.

3.1.3 Uniform in space and oscillating in time potential

Let us consider a simple exactly solvable example to shottlleasolution
of a period problem is really of a Floquet function type and ateak perturba-
tion only single-photon processes are allowed. So we cen#ii@ Schrodinger
equation with a uniform potential, E¢3.(L2,

OW(t, 7)

i%
ot

= {Ho+ 2U cosQot) }W(t. ). (3.23)

The solution to this equation reads,
W) = e BNy, (324)

whereyg(P) is a solution to the following stationary equation,

82



3.2 Floquet scattering matrix

Hove(r) = Eye(r). (3.25)

Next we use the following Fourier series,

e—ia/Sin(Qot) — Z e—tiOth(a) , (326)
g=—00
where Jq is the Bessel function of the first kind of tlyth order, and rewrite
Eq. (3.24 as follows,

Y(t, 1) = g it Z e—tiOth (%) Ye(r). (3.27)

q:—OO

Comparing equation above with E®.22 we see that really the obtained solu-
tion is the Floquet function withyo() = Jq(2U /7Q0)ye (D).

Let us analyze Eq3(27) at small amplitudel /(7€) < 1. To this end we
expand the Bessel functions into the Tailor series in powkeasmall parameter
a = 2U/(h),

Jo(@) ~ 1—a?/4, Ju(a)~+a/2, Jyy~=a", |n>1.

Then up to linear iJ terms the solution Eq3(27) becomes,

E Ugit gt
\Pt ~ —Iﬁt 1 N .
60 ~efue {1 S-S

This equation is exactly Eg3(15 with Ry = dnmandym(f) = ye(P).

3.2 Floguet scattering matrix

The main diference of a dynamic scatterer compared to a stationary one
Is that it can change an energy of incident electrons. Werdegested in a
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3 Non-stationary scattering theory

particular case when the parameters of a scatterer vargdoegily in time.
This variation can be caused by some external (classidalgimce #&ecting the
scattering properties of a sample. For instance, it can belewtric potential
forming a barrier for propagating electrons.

We assume that the Hamiltonian describing an interacti@eatrons with
a scatterer depends periodically on time. Then the wavditimof a scattered
electron is of the Floquet function type, E§.22, having components corre-
sponding to dierent energies. It is convenient to choose an en&r@yf an
incident electron as the Floquet energy. Then the absoaltesquare of its
gth side-band integrated over space defines a probabilithsora,q > 0, or
emit,q < 0, an energygQo during scattering.

From the scattering theory point of view the fact that thetecag prop-
erties periodically vary in time results in scattering mattependent on two
energies, incident and scattered. Such a scattering matreterred to ashe
Floquet scattering matrixSg. The elemente 4 (En, E) is a photon-assisted
propagation amplitude timegk,/k, wherek, = /2mE,/#2. This amplitude
describes a process when an electron with ené&rgycident from the leag
Is scattered into the lead and its energy is changed K, = E + niQq. [28]
As in the stationary case we define scattering amplitudesessrihing tran-
sitions between the states (carrying a unit flux) with fixedrgg, which are
eigen-wavefunctions for Hamiltonian in leads assumed tstagonary.

3.2.1 Floguet scattering matrix properties

3.2.1.1 Unitarity

Since the particle flow is conserved at scattering, the Fdbguattering
matrix is unitary, R9|

Nr
> ) Stus(En. Em) Sk, (En. E) = 6o dpy - (3.28a)
n a=1
Nr
> ) Sep(Em. En) St (E . En) = 6000y - (3.28b)
n p=1
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3.2 Floquet scattering matrix

In the sum ovem we keep only those terms which correspond to current-
carrying states (witlc, > 0). Therefore, it i1 > — [E/7Qq], where [X] stands
for an integer part oK. In the case if

hQ
€= ?" <1 (3.29)

the sum oven in Eqg. 3.29 in fact runs from—oo t0 . In what follows we
assume this case.

Note the negative valueg,, < 0, correspond to the states localized on
the scatterer. These states do not contribute to currentthpispeaking the
transitions between these localized states and currentimgustatesE > 0,
are also described by the Floquet scattering matrix elesd#owever in the
steady state such transitions do not contribute to curiidrrefore, they do not
enter Egs.3.29. In below we use only a part of the Floquet scattering matrix
corresponding to transitions between delocalized staié$a shortness name
it the Floquet scattering matrix.

3.2.1.2 Micro-reversibility

The invariance of the motion equations under the time revgnst some
constraints onto the Flogquet scattering matrix elemensswé considered ear-
lier, see, Secl.1.1.2 in the stationary case the Schrodinger equation remains
invariant undet — —t if simultaneously to reverse a magnetic field direction
and to replace the wave function by its complex conjugatde i@t the incom-
ing and out-going scattering channels are interchanged.

In the case of a dynamical scattering the time reversal cangsha time-
dependent Hamiltonian. Let us assume that the Hamiltonggemds o,
parameterg;(t), i = 1,..., Np, which are all periodic in time,

pi(t) = pio + Pi.1cosQot + ¢i) . (3.30)

Then under the time reversdal— -t, the Hamiltonian remains invariant if in
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3 Non-stationary scattering theory

addition we change the signs of all the phasgss» —¢j, Vi. Thus the micro-
reversibility results in the following symmetry conditie30]

Sk (B, En; H, {¢}) = Skga (En, E; —H, {-¢}) , (3.31)

where{y} is a set of phases.

3.3 Current operator

To calculate a current operator, EG.36, one needs to express the op-
erators for scattered electrorf@(E), in terms of operators for incident elec-
trons, d,(E). These operators annihilate an electron in the state vatimite
energy. Taking into account that during scattering an edectan change its
energy by several energy quariQy, we arrive at the following generalization
of Eq. (1.39 onto the case of periodic in time scatteringg]|[

o0 Nr

b,(E) = > D Sras(E.En) 85(En) . (3.32a)
Nn=-co p=1
00 N

bl (E) = Y > St (E.En) & (En) . (3.32b)
Nn=-oo =1

Note the summation over energy scattering channels is qumdar to a
summation over orbital scattering channels. Given abovatins together
with unitarity conditions, Eqs.3(28, guarantee anti-commutation relations for
b—operators similar to ones faroperators, 1.30.

It is natural to assume that the periodic in time varying @tring prop-
erties results in periodic currents flowing in the systerfil] [This guessing
remains true even in the absence of both a bias voltage ango&tature dier-
ence. To analyze periodic currents it is convenient to go tivéhe frequency
representation,
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3.3 Current operator

o0

I, (t) = / dzwe“”tfa (W), (3.33a)
I, (w) = / dte“t, (). (3.33b)

Using Eq. (.36 we calculate,

M) :e/dE {b] (E)b, (E + hw) - &’ (E) &, (E + hw) }, (3.34)
0

where we used,

/dté%’f’“t = 2116 (E - E' + hw), (3.35)

and,
/dE’(S (E—E' +hw) X (E') = X(E + hw). (3.36)
0

with X = b,(E’), a.(E).

3.3.1 AC current

Substituting Egs.3.32) into Eq. 3.34) and averaging over the equilibrium
state of reservoirs, we calculate a current specttyt) = (l,(w)), [32]

I, (@) = f: 278 (w — 190) 1oy, (3.37a)

|=—c0
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3 Non-stationary scattering theory

oy N, 00
e k
ot =1 / dES Y > Stus(E . En) Srep (B En) f5(En) — 610 fu (E) .
0

ﬂ:l N=—o00

(3.37b)

Taking into account Eq.3(280 we rewritel, , as follows,

* N, 00
=g [AED Y Sty EnD)Sey EnB{H® - LE}.
0

ﬁ:l N=—o00

(3.38)

where we additionally replacdel, —» E andn — —n. The convenience of the
last equation containing theftkrence of the Fermi functions becomes evident
in the case of a slow variation of the scatterer paramefeys» 0, when a
current can be expanded in power< it

Substituting Eq. §.379 into Eq. 3.339 we finally arrive at a time-
dependent current,

I, (t) = i e 1ty (3.39)

I:—OO

which is really periodic in timel,(t) = |,(t + 27/Qy).

3.3.2 DC current

Of a special interest is a case when a curitg(t) has a time-independent
part. Emphasize, while an ac current is always generatetégytnamic scat-
terer, the dc current exists only under some specific camditwhich we will
discuss later on. Now we just give general expressions foraident, the term
with | = 0in Eq. 3.39.

Usingl = 0in Eq. 3.370 we find,

88



3.3 Current operator

0 00 N,
e
o= g [AEL S [Se (B BN GED - L@ . (340)
0

N=—0o0 ﬁ:l

The dc current is subject to the conservation law, Egld). To show it we
transform expression above as follows. In the part with tofafz(E,) we shift
E — E — niQg andn — —n,* [2§]

©
loo = E /dE S Z{|SF’QB(En,E)‘2fﬂ(E) - fa(E)}. (3.41)
0

N=—0o0 ﬁ:l

Then using Eq.3.2839 one can easily check thgto'j';o lo0 = 0.

Another expression for a dc current can be found if to suldstiEq.(3.280
with m = 0 anda = y into Eq. 3.41) as a unity in front off,(E) and to make a
shift E —» E — nfiQ)y and a substitution — —n: [2§]

-
o= ¢ [dE Y ﬁzl Seap (B E)P{,(B) - T, (B},  (3.42)
0 N=-co b=

From this equation it follows that (fotQQg <« w) only electrons with energy
close to the Fermi energy contribute to current. Becausefonkuch electrons
the diference of the Fermi functions is noticeablg(E) — f,(E + nai) # 0.
Note the energy window where the current flows is defined byrteimum of
the following quantities, the energy quanti®) dictated by the frequency of
a drive, a possibly present bigs/,5|, and a temperatur&gT,.

And finally an intuitively clear expression for a current danderived in
the same way as Eq3.42 was derived from Eq.341). We use Eg.%.289
instead of Eq.%.280 and replace&r —» gandB =y — a: [2§]

1The limits of integration over energy are nor changed, beeaas we already mentioned, only those elements
of the Floquet scattering matrix contribute to current férieh bothE > 0 andE,, > 0
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3 Non-stationary scattering theory

(3.43)
{1Skas B B 15 (E) = [Seg (Bn . B)* 1, (B }.

This equation represents a dc current in the tead a diference of two electron
flows. First one is composed by the flows incident from varimaglsg and

scattered with probabilitySc ,, (En , E)\2 into the leadw. And the second one

is incident from the lead and with probability\SFﬁa (En, E)|2 scattered into
various leadg.

We emphasize all the equatiors40 — (3.43 are equivalent. Which of
them to use is dictated by the convenience reasons in eattuper case.

3.4 Adiabatic approximation for the Floquet scatteringnxat

To calculate the Floquet scattering matrix elements ondsieesolve the
non-stationary Schrodinger equation, that in general as®re complicated
than to solve a stationary problem. In particular, the stetiy scattering ma-
trix S hasN; x N, elements, while the Floquet scattering masix in addition
depending on two energies, has much more eleméhts, N, x (2Nmax+ 1),
where nmax IS @ maximum number of energy quarfit®y, which an electron
can absorkemit interacting with a dynamic scatterer. Formally an et@tcan
change its energy by — oo energy quant@)y. However in practice there is
some numbenyax Such that the probability to absgemit ny.x+ 1 and more
energy quanta is negligible within a given accuracy. Fotainse, if the am-
plitude U of an oscillating potential is small comparediQg thennpyax = 1,
that is only single-photon processes are relevant. In asttiroU > 7Qg then
Nmax > 1.

In general the multi-photon processes become importaatrdmpeters of a
scatterer vary slowly. Therefore, @t — 0 we should calculate a huge number
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3.4 Adiabatic approximation for the Floquet scatteringnmat

of scattering amplitudes that can be impossible in practize the other hand

it is natural to expect that the scattering properties ofrada with parameters
varying enough slowly should be close to scattering progedf a strictly sta-
tionary sample. Because @t= 2r/Qgy — oo any finite time, spend by an elec-
tron within the scattering region, is always small compdcgd and an electron
should not feel that the scatterer is dynamic. However, ashees below, there

Is a principial diference between the properties of a dynamic scatterer and the
properties of a stationary scattere29[ 30] For instance, a dynamic scatterer
can generate a dc current in the absence of a bias applieseivoas.

3.4.1 Frozen scattering matrix

Let the stationary scattering mat$kdepends on several parametesse
{p}, I = 1,2,...,Np, which are varied periodigally in tirpe, E®.GO. jhen the
matrix S becomes a periodic function of timg(t, E) = S({p(t)}; E), S(t, E) =
S(t+7, E). We stress the matri&(t) does not describe scattering onto a dynamic
scatterer. Its physical meaning is the following. Let us fixtee parameters at
a timet = tp, and will not change them any more. Then the maS{t, E)
does describe scattering onto such a frozen scatterertinigesatimet in this
sense we can name a mat8, E) asthe frozen scattering matriEmphasize
a variablet here is a parameter, relating to a given variation of the @ntigs of
a scatterer, rather than a true dynamical time entering tit®omequation.

As we pointed out the frozen scattering mat8, E) has not a direct
relation to scattering onto a dynamic sample, since it depen a single energy
only. However af)y — 0 there exists some relation between the frozen and the
Floquet scattering matrices. It becomes more clear if t@edSe in powers
of Qo,

k= (120)°SF. (3-44)
g=0

Below we relate the first and the second terms inakligbatic expansioto the
frozen scattering matrix.
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3 Non-stationary scattering theory

3.4.2 Zeroth order approximation

To zeroth orderg = 0 in Eq. 3.44), all the terms proportional t®g (or
its higher power) should be dropped. Within this accuracynétral energy,
E, and a final energ\g&, = E + nhiQ)y, are the same. Therefore, the te@¥
depends, in fact, on only a single energy similar to the fnca=attering matrix.
To establish a connection between these two matrices wartekaccount the
following. The elememSF’aﬂ(En , E) describe a scattering process when an

electron energy is changet ") ~ S ,5(Eq, E) ¥L), with ¥{) ~ e 5" and
‘P(EOUB ~ e Enl/h — gmiBU/ReminQot O the other hand if to consider scattering onto

the frozen scatterelLs’ ~ S,4(t, E) L), and to use the following Fourier
expansion,

S(t,E) = f: e WS (E), (3.45)

N=—0o0

then one can see that the part of a wave function of a scaézetton propor-
tional to S, has a time-dependent phase faed", the same as that of due
to Sk .5(En, E). These simple arguments allow to conclude that to zeratkror
in Qo the Floquet scattering matrix elements are equal to the&orodiicients
of the Frozen scattering matrix,

SO (En.E) = Sn(E). (3.46a)

SOE Ey= S..(E). (3.46Db)

To prove that this approximation does not violate unitawy substitute
equations above into Eg3.28. Then after the inverse Fourier transformation
we find,

SKLE)S"(tL,E)= ST E)S(LE) =T, (3.47)

that is completely consistent with a unitarity condition,. Eg10), for the sta-
tionary scattering matrix.
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3.4 Adiabatic approximation for the Floquet scatteringnmat

3.4.3 First order approximation

Up to terms of the first order iR, the initial energyE, is different from
the final energyE,. The simplest generalization of Ed3.46 could be the
same relation but with frozen scattering matrix calculatethe middle energy,
(E + En)/2. However it is easy to check that such a matrix is not unitdoy
recover unitarity we need to introduce an additional tehfgA,(E), where
An(E) is a Fourier transform of some matrﬁ(t, E). Therefore, we arrive at
the following ansatz for the first order {2y corrections to the frozen scattering
matrix, the term withg = 1 in Eq. 3.44),

niQo 9Sn (E)

10:SY (E, . E) =
OSF(n, ) 2 9E

+ QAN (E) , (3.48a)

Qo 4S_, (E)
2 oE

nQSY (E L Ey) = + QoA (E) . (3.48b)

Notice the right hand side (RHS) of E.489 is calculated at the energy of an
incident electron, while the RHS of EdB.481 is calculated at the energy of a
scattered electron.

The equations 3.48 point out on the actual expansion parameter in
Eq. 3.44). This, so callechn adiabaticity parameteis

hQ
@ = 6—EO <1, (3.49)

wheredE is a characteristic energy scale over which the stationeatering
matrix changes significantly. For instance, if the eneE)yof an incident elec-
tron is close to the transmission resonance energydkes a width of a res-
onance. While ifE is far from the resonance the&i is of the order of the
distance between the resonances. In the case when theecdtes not show
a resonance transmission then, as a réftejs of orderE. Emphasize, such
a definition of adiabaticity is in generalfferent from the one usually used in
the Quantum mechanics and requiring a smallness of an egesgytumniQg
compared to the flierence between the energy levels.
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3 Non-stationary scattering theory

The matrixé in Egs. B.49 can not be expressed in terms of the frozen
scattering matris. However the unitarity of the Floquet scattering matrixdea
to some relation between these two matr9|[To find it we use

naQo S,
Srap(En. E) = Susn(E) + — 0 - Eﬁ’” + QoA + O (@?),  (3.50)
in Eq. 3.289 :
IS} N *
r * (n + m)hQO aSozy,n—m(E) "
n;o ; {Say,n_m(E) + 5 B T %% A, n-m(E)

N7 8Sa ’ (E)
X {Saﬁ,n(E) + 2 aﬂEn + hQO Aa,B,n(E) = 5,8)/5mo .

Taking into account that the matri(t, E) is unitary and omitting the terms of
orderQ2, we get

o Nr

N—m\ 0S5, nm NOSuzn .,
ZZ{SW(”_ 2 ) GE T2 g Swrnmt

N=-—o00 a’:l

[Saﬂ,n A:ly,n—m + Aaﬁ,n S:;kxy,n—m] } =0.

Next we make the inverse Fourier transformation using theviing properties,

I [ 0X I [0X*
NXy=— | — nx =—-—
-ala), "mla),

X=X, Y XaYom= (XY g

N=—o0

(3.51)
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3.4 Adiabatic approximation for the Floquet scatteringnmat

and arrive at the following matrix equation,

fi A A
SO +SataE S+S'A=0.

Qo OE ot | 20,

i 9STOS | {aZSTé ATaZS}JrATA

To simplify it we use the identityj?(S'S)/6tdE = 0, following from Eq. 8.47),
which can be rewritten as follows,
0S4 41 S 9STOS  8STOS

GOES TS BOE T THE  GE ot

Then we arrive finally at the following equation (a consedueeof the unitarity
of scattering) for the matriA, [29]

Qo [ST(t, E) A(t,E) + AT(t, E) S(t, E)| = %P {S'(t,E),St.E)} , (3.52)

whereP{S", S} is the Poisson bracket with respect to energy and time,

A 0St6S  8St oS
i —ip (292 O2 92
P{S'", S} = |h< % 9E ~ 9E at>' (3.53)
It is a self-adjoint and traceless matrix,
P{5", 8} = (P{S',8})", (3.54)
!
Tr[P{S".S}] =) P..{S".S}=0. (3.55)
a=1

To prove Eq. 8.54 we use(X'Y)" = YiX. To prove Eq. 8.5 we use a
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3 Non-stationary scattering theory

unitarity, S'S = SS' = [, its consequencépS’/0E) S = -S' (9S/IE), and a
property of the trace, TiXY] = Tr [YX]:

0ST0S  9ST 4 ~.0S] (0ST9S 4,05 0ST
- e U U T2 = e T
TPl =T 5 9e ~ 38 >° & | =" | ot ae S5 at S]
(0ST0S  0ST 4 ~.0S] [0ST0S  6ST S
= T | =2 =SS —ipTr [ =S = 2| — 0.
L e e el T I AL I = 8E] 0

Note if we start from Eqg.3.28D then we arrive at the following equation,
[30]

nQo [At, E) S'(t, E) + S(t, E) A'(t, E)| = %P {S(t.E),S'(t,E)} , (3.56)

which is equivalent to Eq:3(52). If we multiply Eq. (3.52 by S from the left
and byS' from the right we arrive at Eq3(56).

The symmetry conditions for the Floquet scattering mate, 3.31), re-
sult in some symmetry conditions for the matdgt, E). To derive them we
proceed as follows. With parameters from E§.30) we have for the frozen
scattering matrixS(t, E; H, {ph) = S(-t,E; H,{-¢}). Then from Eq. 8.59
we find, At, E; H, {¢}) = —A( —t,E; H, {- }). In terms of the Fourier coi-
cients these equatlons re&H(E; H, {¢}) = S_n(E; H, {—¢}) andAn(E; H, {¢}) =
— A_(E; H, {—¢}). Finally substituting the sum of Eqs3.46) and 3.49 into
Eqg. 3.3) and taking into account given above relations between theiér
codficients we find the following symmetry conditior8(]

Ao (L E;H {9)) = — Ago (L E; —H. {¢}) . (3.57)

The analogous condition for the frozen scattering matridofes from
Eq. (1.29),

Sap (t E; H {e}) = Spa (L E; —H, {}) . (3.58)
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3.5 Beyond the adiabatic approximation

Let us consider the case with = 0. The non-diagonal elements of the
matrix A change a sign under the reversal of incoming and out-goiagro#ls,
that is in striking diference to the behavior of the non-diagonal elements of
the frozen scattering matrix. Therefore, we name the matrasthe anoma-
lous scattering matrixSuch a sign reversal results irfférent probabilities for
direct,a — B, and reverse8 — «, transmission through the dynamic scat-
terer. The diagonal elements of the anomalous scatterimgxage zero (in the
absence of a magnetic field). Therefore, the reflection augas up to terms
of orderQg are defined entirely by the frozen scattering matrix. Thes &r-
cumstance justifies our representation for the elementsedfioquet scattering
matrix in Eq. 8.49).

3.5 Beyond the adiabatic approximation

In some simple cases the Floquet scattering matrix can lbelatdd ana-
lytically. To this end it is convenient to turn to the mixegresentation when
the scattering matrix depends on energy and time.

3.5.1 Scattering matrix in mixed energy-time represeniati

Let us introduce the following scattering matr,(t, E) andSou(E, t), in
such a way that their Fourier ciheients are related to the Floquet scattering
matrix elements as follows38]

T
~ ~ dt . ~
Se(En, E) = Sinn(E) = / fénﬂotsm(t, E), (3.59a)
0
Trol
~ ~ t . ~
Se(E, Ep) = Sout-n(E) = / ?e"”gotsout(E,t). (3.59b)

0

As we will see later on in examples, the elements of the méirjét, E)
are scattering amplitudes for particles incident with ggdt and leaving the
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3 Non-stationary scattering theory

scattering region at time The dual matrixSyu(E,t) composed of the scat-
tering amplitudes for particles incident at tihand leaving the scatterer with
energyE. Note this interpretation is consistent with the Heisegharcertainty
principle. For instance, if the time when an electron leavesatterer is defined
then its energy is not defined. In this case, in accordande kgt 3.599, an
electron energy can be one Bf = E + niQy. Similarly, if an initial time is
defined then the initial energy does not. This energy cierdrom the energy
E which an electron leaves the scatterer with. The probgpilitat an initial
energy of an electron incident from the leddnd scattered into the leadwas
Em = E + miQy, is equal to Soumﬁ,_m(E)\z.

Substituting the definition fo8;, into Eq. (3.289 and the definition for
Soutinto Eq. B.281 and making the inverse transformation we get the following
unitarity conditions, 30, 33]

T
t . ~ ~ ~
/ % ™0t ST (t, Em) Sin(t, E) = 6mol (3.60a)
0
rd
t . ~ ~ ~
/ T €Mt S Em 1) S (B 1) = Smoll (3.60b)
0

To the zeroth order in the adiabaticity parameter,— 0, as it follows
from Eq. @.46), the matricesS;, andS,,; are the same and they are equal to the
frozen scattering matrix. Already in the first orderanthese matrices become
different. From Eq.3.48 we can find, B(]

A A inn 92S (t, E) ~ )
Sin (t, E) =S (t, E) + E W + thA(t, E) + 0O (TD' ) . (361a)
A A inn 92S (t, E) - )
Sout(t, E) =S (t, E) - E W + thA(t, E) + O (@' ) , (361b)

whereO (w?) stands for the rest of order?.
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3.5 Beyond the adiabatic approximation

Despite their dterence, the matrices;,, andS,, are related due to micro-
reversibility. From Eqgs.3.31) and @.59 it follows, [33]

Sin(t, E; H, {¢)) = Sgu(E, —t; —H, (=¢)). (3.62)
Moreover, from Eq.3.59 one can find,
éin,n(E) = éout, n(En) s (3-63)

that in time representation reads,

T
5 2 fdt o A
Sn(t.E)= ) / ?é”%“ I Sou(En, t') (3.64a)
I’1=—OOO
A — [dt _ow-na
SoulEt) = Y o €St By). (3.64b)
I’1=—000

For the sake of completeness we give a current in tern,offo this end

we use Eqg.3.599 in Eq. (3.39 and then in Eq.3.39 and finally calculate,
[41]

9 N, 00
e
L0 = ¢ [dEY S {5(E) - L(E)
0 p=1 n=—oc0
(3.65)
T
dt inQo(t-t") * ’
x [ €IS (4 NSyl ).
0

We transform this equation to exclude a reference to thegieity of a
driving potential. To this end we use the following corresgences,
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3 Non-stationary scattering theory

np — w,

- %/dw, (3.66)

N=—o0

T 00
/ dt/ einQot’ — / dt/ eia)t’ ‘
0 —00

which in fact means a passage from the discrete Fourierftnanation to the
continuous Fourier transformation. After that the curmeaids,

e 1 r N
l,(t) = h/dEZn/ dw ;:1 [fﬁ(E)— fa(E+ha))}
(3.67)

X / dt @S o(t, E)Sh os(t'. E) -

Thus we derived an expression which can be used to calculateea
dependent current in terms of the scattering matrix elesiarthe case of driv-
ing with arbitrary (not necessarily periodic) dependentéme. In a particular
case of a drive with period = 27/Qy we have,

/ dte's; (t,E)= D 216(w— NQ0)S; 4sn(E)- (3.68)

N=—o0
The use of this equation transforms E8.67) into Eq. 3.65 as expected.

Further we consider several simple examples and calcutalgtecally the
elements of the scattering matiSx,.

100



3.5 Beyond the adiabatic approximation

3.5.2 Point-like scattering potential

Let us consider a one-dimensional Schrédinger equation,

¥ h? 0
Ihﬁ = {_%W + V(t, X)} \P, (369)

with point-like potentiaN(t, X) whose strength oscillates in time,

V(t, X) =6(X)V(), V() =Vo+ 2VicosQot + ¢). (3.70)

Accordingly to the Floquet theorem the solution to E§60 with periodic in
time potential, Eq.3.70 is of the following form,

Wt X) = el Y ey, (x), (3.71)

N=—o0

wherey, (X) is a general solution of the corresponding stationary @mblin
all the places bux = 0 the potential is zero. Therefore, as a funciigr{x # 0)
we can take a general solution to the Schrédinger equatramfiee particle,

a0 4 pOex | x <0,

Yn(X) = , , (3.72)
a$]+)e|knx + b§]+)e—|knx’ X > 0,

with k, = vV2m(E + nkQo) /.

To match the wave function on the left and on the right froe O we use
the following. Atx = 0 the wave function should be continuous. To relate it’s
derivative we integrate out Eq3.69 over an infinitesimal vicinity of a point
x = 0. We find that the derivative has a jump at this point. Theeefare have
the following boundary conditions,
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3 Non-stationary scattering theory

Y(t,x=-0 = Y, x=+0),
(3.73)
2m

- ﬁ V(t)\P (t, X = O) N
x=-0

oY (t, X)
OX

_ 0¥ (t, X)
OX

X=+0

which connect unknown céigcients of the wave function, Eg3(7/2 atx > 0
and atx < 0.

Now we formulate a proper scattering problem, which in gatér in-
cludes the boundary conditions xat— +co. The codicientsal”) andb(" in
Eq. (3.72 correspond to incident waves, while the fiogentsal”) andb{”) cor-
respond to out-going (scattered) waves. So we can write,

Un () = ¢V () + ¢ (%), (3.74)
where _
aldkx x <0,
I (x) = (3.75a)
bHeknx x>0,
and

be kX - x <0,
U (%) = | (3.75b)
adx | x>0,

Correspondingly the wave function, Ed3.{1) can be written as the sum,
Y(t,x) = PV (t,x) + PO (t,x). Note the cofficientsal”) andb(") are de-
fined by a given incident wave. In contrast the ffiogentsal” andb(”) should
be calculated.

First we consider scattering of a wave with unit amplitiderresponding
to a particle with energi£ incident from the left, Fig3.1,

gkx  x <0,
P (t, x) = et (3.76)
0, x>0.

2This wave is not normalized on unite flux. Hence there is aofaglk,/k = Vvn/vin Eq. 3.79.

102



3.5 Beyond the adiabatic approximation

b, al)

Figure 3.1: Scattering of a wave with unit amplitude onto plent-like potential
barrier. Arrows and letters show the propagation direcdod the amplitude of
corresponding waves: 1 is an amplitude of an incoming Wb&?réis an amplitude

of a reflected wave{") is an amplitude of a transmitted wave. Only a singiéa)
component of the Fquuet wave function for a scattered sgatisown.

Comparing it with Egs. 3. 7]) and 6 759 we find, &) = 6no andbf’) =
To calculate the ccfﬁmentsaln, b . of the scattered Wavé’("”t) we use the
boundary conditions, Eq3(73, and collect the cd&cients havmg the same

- E+nhQ)

dependence on time; e~ 't. As a result we arrive at the following set of
linear equations) = 0, +1, +2, ...,

S0+ B) = 2’
(3.77)
(ko +ipo) oy = koo — i (Praaliys + Paalihy)

where pg = mVp/#? and p.1 = mVhe™¢/i? are the Fourier cdicients for
p(t) = mV (1) /7.

The coéﬁmentsb(1 3/3 Y define the corresponding Floquet scattering ma-
trix elements for a point- Ilke potential barrléi‘f;l)(En, E), and, correspondingly,
the elements of a matri®(E),

/kn
(1)1(Ena E) = |(r::-)1],n (E) = (13 , (3.78a)

103



3 Non-stationary scattering theory

Kn v
S21(En. E) = Sioia (B) = /1 @iy (3.78b)

Here the lower indices 1 and 2 correspond to lefi{ —co) and right K — +c0)
reservoirs, respectively. The square rofi,/k appeared because the absolute
value square of the scattering matrix element is defined asi@ of the cur-

rent of scattered particles; kn| \ 2, to the current of incident particles,
iny |2
~ ko
Substituting Eq.§.79 into Eqg. 3.77) we find,

( Ono + Sm 11ln (E) = Si(r},)ZLn (E) >

J (kn+ipo) Siv1n (E) = Koo (3.79)

\ _ip+1\/ knkn S(l)zln 1(E) ip-1 14/ knkn S(l)ZLn+1(E)

Let us solve this system of equations with accuracy to thé dirder in the
parametek = 7Qo/E introduced in Eq.%.29. Notice in the problem under
consideration the enerdy only is a characteristic energy. Therefore, in this
case the parametercoincides with the adiabaticity parameter .

To the first order ire we can approximate,

kn = k+”TQ°+o() o 1_£+o() (3.80)

kn:ul 2vk

wherev = iik/mis a velocity of an electron with enerdy. Using these ex-
pansions in Eq.3.79 and omitting terms of ordes® we find after the inverse
Fourier transformation,
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3.5 Beyond the adiabatic approximation

1+ S(1)11 (t.E) = S(l)Zl(t E).

(1)

Si(r::-,)Z:L (ta E) ’
(3.81)

Since these equations are derived to the first orderirfy, we can solve them
by iterations in those terms which have a time derivative.it@my such terms
we get a zero-order solution, i.e., the elements of the frezattering matrix,

Heo= iy SBeO= g G

Using this solution in Eq.3.81) we calculate the elemenéﬂ) up to the first
order ine terms, BQ]

—-ip(t) 1dp(t) k-ip(t)

st (¢, : :
1utE) = k+ip(t) 2v dt [k+|p(t)}3
(3.83)
S(l) (LE) = k 1 dp(t) k—ip(t)
n.z1 k+ip(t) 2v dt [k+|p(t)}3
With Eq. 3.82 we show that,
02 (t, E) _ 92S% (t, E) _ i dp(t) k-ip(t)
AtoE OtoE Avodt (i ip(t)]sl
Therefore, Eq.3.83 can be rewritten as follows,
in 92s%Y (t,E
s E) = s B+ 2 T LE)
(3.84)

m 02S5 (t, E)

) (LE) =SS (L E
Sinz21(t E) = Sy (L E) + StIE
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3 Non-stationary scattering theory

Solving the same problem but with a wave incident from thatrig

. [0 x<0,
i (t, x) = 7't | (3.85)
e kX x>0,

(or just using the symmetry reasons), we calculate,
SHLE) =SHE) ., SHtE) =SHLE),

(3.86)
Si(r},)zz (tLE) = Si(r},)ll (t.E), Si(r},)12 (tLE) = Si(r},)21(t’ E) .

Thus using Eqg.3.84 we can write down the following relation between the
scattering matri>8i(r}) (t, E) and the frozen scattering mati$«(t, E):

in 92SM (t, E)

a(1) _aw o
Si (t,E) = SW(t,E) + > T aEE (3.87)
with 1 b Kk
a(1) _ —Ip t
SO, E) = i@ ( " _ip(t)> . (3.88)

Remind the equatior3(87) is derived with accuracy of orderwhich, in
the case under consideration, is of the same order as thieadidigy param-
eterw. Comparing Eqgs.3.87) and @3.619 we conclude that the anomalous
scattering matrix is identically zero for a point-like deaér,

AY (t,E) = 0. (3.89)

Therefore, the dynamic point-like scatterer does not beeskmmetry of scat-
tering with respect to a spatial direction reversal inheterstationary scatter-
ing. To break such a symmetry dynamically it is necessaratieser of a finite
size which is able to keep an electron for a finite tir@4, 35, 36, 37, 38] com-
parable with a period] = 27/, of a drive.
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3.5 Beyond the adiabatic approximation

In conclusion we give relations between thef@i@énts of a scattered wave
and the elements of the Floquet scattering matrix in thew#hencident waves
from both the left and the right,

alld*, x<o0,
pln) (¢ x) = gt (3.90)
b{Pek* x>0.

Because of the superposition principle if the incident wigve = gl plm
b{PWi™ then the scatterer wave BOW = gl)plow o pDglW — ysing
Eqgs. 3.7 for the codficients of‘I’(f”t) and the analogous relations between

the codficients of¥5" andS¥), (E,, E), j = 1,2 we find the cofiicients of the
scattered wave,

bekx - x <0,

\P(out) t X —j= '[ —ont 3.91
9= n—z—;o alDgkx x>0 290
as follows,
k _ k
b = ’/E S (EnE) a5 + ’/E SY,(En E) b, (3.92a)
k . k
a =/ . S, (EnE) &) + ’/E SY,(En, E) bYY. (3.92b)

Thus if the scattering matrix is known, then the solutionite boundary prob-
lem (3.73 with a wave function? (t, x) = ¥ (t, x) + ¥ (t, x), Egs. 8.90
and (3.91), can be written down using the Floquet scattering matmemants

as it is given in Eq. §.92. These equations can be written more compactly if
to introduce a vector- cqumr\P , for codticients of an incident wave with
energyE and a vector- columrHJ(O“t) for codtficients of a scattered wave with

energyk,
o ) R b(-)
‘1’8”) = < z?+) > ) Pl = < a((r;+) > : (3.93)
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3 Non-stationary scattering theory

Then the equatior3(92 becomes,

~ k ~ ~ g
louy — ’/ESF (En, E) 9" (3.94)

In the case if the incident wave is also of the Floquet fumctigpe having
side-bands with dierent energiek,

oo al)lgknx - x <0,
pln) (¢, x) = it Z g imat | (3.95)
e bHeknx x>0,

we introduce corresponding vector-columns,
p(in) agr?)
¥’ = o) | - (3.96)

and, using the superposition principle, generalize B4 as follows,

IR 1/k—k':éF (En, Em) P (3.97)
M=—o0

This equation we need to consider a system comprising a sediot-like dy-
namic scatterers.

3.5.3 Double-barrier potential

Let the potentiaV (t, X), in the Schrédinger equatior3.69, consists of
two oscillating in time point-like potential¥/; (t), j = L, R, located at a distance
d from each other and a uniform oscillating in time potentiglt) between the
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3.5 Beyond the adiabatic approximation

(-) (+)
<b—n a b| aﬂ—»

Figure 3.2: Two point-like potentials separated by a biadliwire of lengthd. Ar-
rows and letters indicate propagation direction and annbditcorresponding waves.

first two, Fig.3.2,
VX)) = VLD +VrR®)d(x=-d)+ U®)o()o(d-x),
Vj(t) = Vjo+2Vjicos(Qt+¢j), j=LR, (3.98)
U(() = 2U cos(Qot + ¢u) ,

where the Heaviside step functiéifx) = 1 atx > 0 andfd (x) = 0 atx < 0. Our

aim is to calculate the Floquet scattering maﬁi_%) (En, E) for such a potential.
[33]

To calculate the elemen&Y); (En, E) and SE, (En, E) we consider the

scattering problem for a particle with energyincident from the left. Its wave
function is,

| . ekx  x <0,
Pl (t, x) = et (3.99)
0, x>0.

The scattered wave is of the Floquet function type,
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3 Non-stationary scattering theory

o0 bOe kX x <0,
pOu (1, x) = g7t Y e (3.100)
() gl d
=—00 aﬂ R X > s

where the coficientsb(~) anda{?) define the elements of the Floquet scattering
matrix,

Kn

SEZZ,)ll(En’ E) = Si(r?,)lj,n (E) = M bﬁ ), (3.101a)
kn .

SF21(En E) = Sty (B) = 1/ @l . (3.101b)

Notice in the case of a finite-size structure the transmmsarmplitude includes
a factor with corresponding propagation phase. In our dase'fd.

The wave function inside the scattering region<Ox < d, is also can
be represented as the Floquet function, Bg7). To find the corresponding
functionsy,, (x) we take into account the follows. In Sécl.3we calculated the
general solution to the Schrodinger equation with unifostiltating potential,
Eg. 3.29). In a one-dimensional case for the potentigl), Eq. (3.99), it reads
as follows,

‘“PE(t, X) _ e—i{%t+% Sin(QotHDU)} (aE eikX n bE e—ikX) , (3102)

whereag andbg are constants (independenttodnd x). This wave function
corresponds to a particle with ener§yand wave numbet = V2mE/7 in the
region with a uniform oscillating in time potentiél (t). We useWg(t, X) as

a basis for calculating of a wave function at<Ox < d. In should be noted
that interacting with a potentid, (t) an incident electron can change its initial
energyE and, correspondingly, its initial wave number In such a case an
electron enters a region with potential(t) having energyg, = E + 171Q and
wave numbek;. Therefore, the most general solution within the regicn ¥ <

d is the following,
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3.5 Beyond the adiabatic approximation

P (1 x) = > " CPE (. X) - (3.103)

|=—0c0

Next in Eqg. 3.102 we expand a function,

T (1) = g i SNQot+eu) (3.104)
into the Fourier series( (t) = ", €'%%" Ty, with
2U -
Ta=Jy [ — ) e 1
q=Jq <h§20>e , (3.105)

(Jq is the Bessel function of the first kind of tlygh order). Then collecting
together all the terms with the same dependence on time i{E&P3 and

introducing the following notatiorgy = C; ag, andby = C, bg,, we finally get a
required equation,

(LX) = ey e MMy (9 (3.106)

N=—0o0

Un(®) = > Yoy (@€ +be™), 0<x<d,

|:—OO

which was suggested in ReB9, 4(Q].
The sum of Egs.3.99, (3.100, and 3.1069 determines an electron wave
function,

P (t,x) = P (t, x) + PO (1, x) + PMD (£, x) | (3.107)

at all the points buk = 0 andx = d. In these two points we should use the
boundary conditions similar to ones given in Eg§.13:
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3 Non-stationary scattering theory

Y, x=-0 = ¥(t,x=+0),

(3.108)
% ¥ -
oY (t, X) _ a¥ (t, X) _ _T VL ()Y (t,x=0),
0X X=+0 OX x=-0 h
Y(tx=d-0) = ¥(tx=d+0),
(3.109)
W (t P (t 2
Y (t, X) _ 0¥ (LX) = VR (tx = d) .
0X x=0+0 OX x=d-0 h

Collecting terms having the same dependence on time wenohtainfinite
system of equations for cigientsb(”), alt), a andb.

The same system of equations can be derive in another wayheitielp of
scattering matrices for constituting potentials. We desig ad_r the Floquet
scattering matrix for a potenti, (t). CorrespondinglyR¢ is the Floquet scat-
tering matrix for a potentiaVr(t). Further reasoning is quite analogous to what
we used deriving Eq.3(97) from the boundary conditions given in EQ.73.

First we consider Eq.3(109. Nearx = 0 the wave function can be rep-
resented as followsy (t,x) = ¥ (t, x) + ¥ (t, x), where®!"™ (t, x) corre-
sponds to a wave incident to the barngr(t), while ‘P(L‘)“t) (t, X) corresponds to
a wave scattered by it. From Eg8.99, (3.100, and 3.109 we find,

. Sno €%, x<0,
\Pl(_in) (t,x) = et Z it . | (3.110)
N=-—o0 Z Tn—l b| e—lk|X ’ X > O’
|=—00
bi(]—)e—iknx , X < O ,
\{,(Lout) (t,X) = oint Z g inQt . _ (3.111)
N=—o0 Z Tn_| a.l e|klx 5 X > O 5

|=—c0
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3.5 Beyond the adiabatic approximation

Collecting all the wave function amplitudes correspondmghe same energy
E, into the vector-columns,

| 0o X bf”
Pl _ 00 , gl — 0 : (3.112)

and using Eq.3.97) we obtain the following matrix equation,

b|(,]_) 00 /km ~ 5mO
Z ‘rn_l al = m_z E LF (En, Em) Tm_l b| s (3.113)
——00 [

=—00

which is completely equivalent to the boundary conditionegin Eq. 3.109
for the wave function given in Eq3(1079).

The second pair of boundary conditions, E§.109, relate the cogéi-
cients of the wave function, Eq3(107, atx = d. Near this point the incident,
¢ (t, x), and scattered?©™ (t, x), waves are,

. ‘E = . Z tY’I’1—|aleiklx’ X<d’
w (¢ x) = e ift Z g inQot ) 1=—co (3.114)

n=—
* 0, x>d,

. 00 . Z Tho by e‘ik'x, x<d,
WO (1 ) = aitt Z g inQot ) 1=—co (3.115)

e alekox, x> d.

The corresponding vector-columns are,

113



3 Non-stationary scattering theory

. S e g dkd ) Sy ek
G = [ 2 T @) gow _ (2 T BETET ) g )
0 al?) gkt

Applying Eq. 3.97) to the right point-like potential, we get an equation,

Sy e © T S g dkid
|:Zoo - _ ! = Z % RF (En, Em) |:Zoo - al 5
ar(1+) e|knd e —oo 0

(3.117)

which is equivalent to Eq.3(109 for the wave function given in EqQ3(107%).

Let us solve the system of equatior&s1(13 and (3.117) with accuracy
of the zeroth order in the parameter= 71Qy/E <« 1, Eq. 8.29. Notice, in
contrast to the case with a point-like scatterer, when thebaticity parameter
w coincides with a parametes, in the case of a finite-size scatterer, whose
lengthd is much larger than the de-Broglie wave lengik, = h/ v2mE, of
an electron with energi, the adiabaticity parameter is larger compared:to
w ~ ed/Ag > €. This fact allows us to analyze both adiabatic,<« 1, and
non-adiabaticir > 1, regimes within the approach used.

So, to the zeroth order inwe write,

Km
— = 1+0(e),
. (€)
(3.118)
gtikd  _  gikd §i|907[1+0(e)],

wherer = L/vis a time of flight between the barriers for an electron witargy
E. Further simplification is related to the following. As weosled earlier, the
Flogquet scattering matrix elements for a point-like banwethe zeroth order in
€ are the Fourier cd&cients for the frozen scattering matrix, see, EGs/®
and 3.82. Designating the frozen scattering matrices for left agtrbarriers
asL (t, E) andR(t, E), respectively, we have,
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3.5 Beyond the adiabatic approximation

Xe (En, Em) = Xom(E) + O (6), X =L,R. (3.119)

Then using Eqgs.3(119, (3.119, and @3.10) we can rewrite the system of
equations§.113 and @.117 in the following way,

Si(r?,)an(E) ©. Omo
> Toaa | m;)oL”‘m(E) > Tmiby |

|=—00 |=—c0

(3.120)

I e o gkdS~ep o gl
( Izz—:oo - ) = ZRn—m(E) ( |:Z—:oo -1 8 .
M=—oc0

Si(r?,)ZLn (E) 0

Next we use the following trick. We assume that the quastdjeandb,
are the Fourier cdicients for some periodic in time functioagt) = a(t + 7)
andb(t) = b(t+ 7). With these functions we can apply the inverse Fourier
transformation to Eqs3(120 and calculate,

s (tLE)\ _ -~ 1
< T a0 ) - L(t’E)<'r(t)b(t))’

—ide t) b (t R eikd —
(“ e ") - Rea (T,

(3.121)

where we took into account that the quantites " and a €% are the
Fourier codicients forb (t + 7) anda(t — 7), respectively. It is easy to check.
For instance,

J T
b(t + T) = d_t ei|Qot b(t + T) — d_t ei|Qo(t'_7-) b(t) = bl e—ilQoT ‘
| T T
0 0
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3 Non-stationary scattering theory

Note the system of equation3.{2]) contains only four equations, while
initially we have an infinite system of equations, E§.120. The first and
the fourth equations in3(127) define the quantities of intereS{), (t, E) and
S, (t, E), while the second and the third equations allow us to calealét)
andb (t). Substituting the third equation into the second one welgetdllow-
ing (for shortness we omk),

a(t) =7 (t) Lo1 (t) + eiZKLng (t) Ri1 (t - T) a(t - 2‘1') . (3122)

In addition here we used1(t) = T*(t), because it igY (t)> = 1 for the
functionr (t) introduced in Eg.%.109. Since the absolute value of quantities
entering Eqg. 8.129 is less than unity, we can write down the solution for this
equation as the following series,

a(t) = ) 2N 1)1 (t - 207) Loy (t - 207).
g=0
(3.123)
g-1
/l(q>0) (t) = |_22 (t - 2]T) R]_]_ (t - [2] + 1} T) ,
=0

—

291 =

=

This series can be found if to consider formally the seconah ten the right
hand side of Eq.3.129 as a perturbation and to sum up the terms in all the
orders of the perturbation theory.

Using Eq. 8.123 in Eqg. 3.12]) we calculateb (t) and then the Floquet
scattering matrix elements3J]

o

SP tE) =Y e2kds Dt E), a=12. (3.124)
g=0
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3.5 Beyond the adiabatic approximation

where 2},; = 29+ 1 - 6,1 and

SUHE) = e tE), (3.125)
1 t
O, = 7 / dr U (t) . (3.126)
t—2q[,17
M = Lu®), (3.127)

o (1q1>0) (t) = Lia(t)Rug(t—7) Log(t — 207) A9V (t - 27) ,

o (1) = Roa () Loa (t - [29+ 1] 7) AP (t - 7) . (3.128)

For shortness in Eqs3(127 and 3.1289 we do not show an argumeik.
Note the time-dependent phase factor in Bgl29 can be written as follows,
g% = 7 () T (t — 20417).

Let us analyze Eq.3(124. The scattering matrix eleme& ﬁ)al (t,E) is
the sum of partial amplitudegi2%:kd @ (t E). Each such an amplitude cor-

in,al

responds to some pamf,ql) inside the scattering region. An electron with en-
ergy E enters the system through the lead 1, follows along this padlergoing
20,1 — 1 reflections, and leaves the system through the deaich time moment

t. The trajectory&éql) consists of 8,; segments of lengtd. The partial scatter-
ing amplitudeg? @89 (¢, E) is the product of some number of amplitudes
L.. andR,,, corresponding to an instant reflection from the point-bkeriers,
amplitudesl,.; andR,.s, corresponding to an instant tunneling through the

. t
point-like barriers, and amplitud&kd_hilf‘i]" dw(t')}, corresponding to a prop-
agation (starting at timg—r and lasting a time periotl= d/v) between the two
barriers in a uniform oscillating potentidl(t). The time momentg; = t—jr, at
which the instantaneous reflectitmnsmission amplitudes are calculated, are
counted backwards along the palﬁ‘l) in a descending order starting from the
time moment when the particle leaves the system through the left¢fer 1)
or right (fora = 2) barrier.
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3 Non-stationary scattering theory

SinceSéql) (t, E) depends on scattering amplitudes calculated férdint
times, the scattering matr&? (t, E) is non-local in time, in contrast to the (lo-
cal in time) frozen scattering matr& (t, E). This non-locality arises as a con-
sequence of a finite (minimal) timespent by an electron inside the scattering
region. If the period becomes as small aghe system enters a non-adiabatic
scattering regime. Therefore, a natural adiabaticity rpatar for the system
under consideration is the produgty = Qq7/(27).

To calculate remaining elemerfﬁéz,gyz(En, E), « = 1,2, and, correspond-

ingly, s  we have to consider scattering of an electron with en&rgyci-

in,a2,n?

dent from the right. Then the corresponding elements of taétering matrix
8B, E) are given by equations analogous to E§s124 — (3.126 with

? = Lia® R (t-[20+1] 7)o@ (t-7) (3.129)

o) = Raa(t), (3.130)
o (2q2>0) = Ro1(t) Lao (t — 7) Rya (t — 207) o9V (t - 27) .

Here the quantity@ (t) is,

PO = é_l Rus(t-2j7) Loz (t- 2] + 1] 1),
o0 = J1O (3.131)
Thus, we have calculated the scattering matrix,
S@(t,E) = f: d20ikdg(@ (t ) (3.132)

6=0

allowing a description of the transport through the dynadauable-barrier as in
adiabatic as in non-adiabatic regimes.
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3.5 Beyond the adiabatic approximation

3.5.3.1 Adiabatic approximation

Let us consider the limitzg — 0, and calculate the anomalous scatter-
ing matrix, see, Eq.3.49, for the double-barrier structure. We denote it as
A@(t, E). Remind this matrix is responsible for a chiral asymmefrgaatter-
ing at slow driving.

To the zeroth order ino the matrixéi(ﬁ)(t, E) coincides with the frozen
scattering matrix, which we denote &&)(t, E) for the double-barrier under
consideration. To calculate it we use E§.1329 where we ignore a change of
all the quantities during a time periad Then in Egs.$.123, (3.127 - (3.13))
all the quantities are calculated at a time montemthile the equation3.129
(for 8 = 1) and an analogous one = 2, becomes,

Dg,, ~ UMThH(20 + 1 — Gup).

As a result we get,

SAtE) = > SUE),
g=0
(3.133)
§g}3) (t,E) = gkd-UOm/m@a+1-6,) (;Eng (t,E).

Here the elements of a mataX?(t, E) are given in Eqs.3.127 - (3.130 where
we putr = 0.

To calculate the matriA®@(t, E) we calculateS\?(t, E) in the first order in
w. To this end we expand the right hand side of Bg182 up to the linear inr
terms. Then we use Ed3.(L33 for the frozen scattering matrix and E§-§19
to extract the anomalous scattering matrix. Calculatirgttime and energy
derivatives we take into account the following. The frozeatnin S@ depends
on time via the potentidl (t) and the matrice&(t) andR(t). The energy de-
pendence o§@, within the approximations used, Eg8.119 and 3.119, is
defined by the phase facte??? only.® Then after the simple algebra we find,

3The energy dependence of the scattering matficasdR results in corrections of orderwhich we ignore.
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3 Non-stationary scattering theory

HQAL, E) = ZS(q)(t E)AS(t 1), (3.134a)
g=0
where
L
A(lql)—Toq In< 12) (3.134b)
o1
@_ _To9+1)o (lai) 7099 (Ru
A7 > e n Rot > ot n L) (3.134c)
2q + 1) 0 R12 709 0 L22
AQ - _T2ar Do, (Ria) 190, (La 134
- 2 ot '\l 20 \Ry/’ (3.134d)
8 (R
A9 = 00 In< 21) (3.134€)
Ri>

The equations above show that the anomalous scatterinixmé& pos-
sesses symmetry properties with respect to interchangeadfihdices which
are diterent from those of the frozen scatterir@f]. The symmetry of thed®@
matrix depends on fierences between the matrix elements oflttedR ma-
trices. The main point is that the symmetry of the anomalcasiasring matrix
Is fundamentally dferent from the frozen scattering matrix symmetry.

3.5.4 Unitarity and the sum over trajectories

One can expect that the scattering matrix elements for angtate com-
prising point-like scatterers connected via ballisticreegts can be represented
as the sum over trajectories similar to Eg.1(32. On the other hand, as we saw,
the use of the unitarity conditions allows us to simplifyatdations. Therefore,
it seems to be useful to formulate the unitarity conditiomsatly in terms of
the partial scattering amplitude?éa,‘}g (t, E), corresponding to the propagation of
an electron along one of trajectories.
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3.5 Beyond the adiabatic approximation

To this end we substitute EQ.(L32 into Eq. 3.280) and make the inverse
Fourier transformation. Then we use an expansion given ifEH18 and get,

> 84, E)SWi(t, E) +
g=0

+> 0N e Ak E)SPHIT(t + 25, E) (3.135)
p=0 s=1
+3 ) kRS E)SOT(t - 2sr,E) = .
g=0 s=1

This identity should hold at any energy A

Note within the approximation used the quantiti#$ should be kept as
energy independent on the scale over which the pkdsshanges by 2 In
such a case Eg3(139 can be considered as the Fourier expansion for the unit
matrix [ in the basis of plane wavee?kd, | = 0,1, +2,... Expanding the

right hand side of Eq.3.139 into this basis and calculating the corresponding
Fourier codficients we arrive at the following equation83]

o

> 869t E)SOI(t,E) =T, (3.136a)
g=0
> 8P, E)SPTSIT(t + 275, E) = 0, (3.136h)
p=0
> st E)SE@T(t - 2rs, E) = 0, (3.136¢)
g=0

where0 is a zero matrix.

We stress, compared to EG.§09 the equations given above are less gen-
eral, since they rely essentially on the expansi®i{?, where the matrices
8@ are energy independent over the scale of ohdky.
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3 Non-stationary scattering theory

3.5.5 Current and the sum over trajectories

Let us use Eq.3.695 and calculate a current generated by the dynamic
double-barrier structure connected to the reservoirsigavie same potentials,
U, = i, and temperatures,, = T, hencef,(E) = fo(E), @ = 1, 2.

We substitute Eq.3.132 into Eq. 3.65 and simplify it. To this end we
assume that both the energy quantuy and the temperature are small com-
pared to the Fermi energy,

nQo, kgT < . (3.137)

Then to integrate over energy in EQ.§5 we use the following expansion,
kd ~ k,d + (E - u)/(hrljl), where the lower indeyx indicates that the corre-
sponding quantity is evaluated at the Fermi energy. Withimadccuracy we can
treat the matrice§(@ as energy independent over the relevant energy window
and evaluate them & = u. The latter simplification is correct since the ele-
ments of scattering matricésandR defining the elements of the mat$® are
changed significantly only if the ener@y~ u changes by the quantity of order
u. Therefore, they can be kept as constant while integratueg energy over
the window of the order of maQo, ksT) < pu.

Using introduced above simplifications we can integrater @resrgy in
Eq. 3.69 and represent a time-dependent currkygt), as the sum of diagonal,
1@ (t), and non-diagonal "(t), contributions, 42, 33

lo(®) = 1D() + 1Mt (3.138a)

The diagonal part comprises contributions offelient dynamical scattering
channels which can be labeled by the indestependent on the number of re-
flections, (equals to@- 6,4 for g > 0) experienced by an electron propagating
through the system3f]

1Dty = i JO(1), (3.138b)
g=0
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3.5 Beyond the adiabatic approximation

where the contribution of thgth dynamical scattering channel is:

aé@‘f(t,u)>

JOt) = —i % (S@(t, ) (3.138c)

ot

Notice the contribution(?(t) is independent of the temperature.
The non-diagonal contribution to a current is the sum of teraure-
dependent non-diagonal in dynamical scattering chanwoelsibutions, B3]

109 = ) erakdy (“O}—f]T> NETOR (3.138d)
p=0 Q;O
a#p

with

e A
JPAG) = —j— | SOt
o (1) =15 ( (t. 1)

8@ (t, ) — 8O (t — 27,[p - ], )
2r,[p—d] -

(3.138¢)

Heren(x) = x/ sinh(x), wherex = |p—qT/T*, andkgT" = 71/(2n7,).

The factorn (|p—qT/T*) describes the feect of averaging over ener-
gies of incident electrons within the temperature widerofghe edge of the
Fermi distribution function. The time of flight;, = d/v,, (for an electron
with Fermi energy) between the barriers plays twofold rd@n one hand, it
separates adiabati@, > 7,, and non-adiabatic] < 7,, regimes. On the
other hand, it defines the crossover temperafliteseparating low-temperature
and high-temperature regimes. At low temperatufes T*, the factor
n = 1. While at relatively high temperature§, > T*, this factor is small,
n(p-qT/T*) = 2lp—ql(T/T*)eP-dT/T" Therefore, at high temperatures the
non-diagonal current,("d(t), is exponentially suppressed. Note the tempera-
ture dfect we are discussing here is due to averaging over energyciofent
electron$ and has nothing to do with inelastic (or other) processesagsg
the phase coherence.

4The temperatur@* is known as the crossover temperature in the persistergmuproblem 18, 43], and it is
appeared in the problem of stationary transport in ballistisoscopic structures with interferendd,[45, 46].
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3 Non-stationary scattering theory

The unitarity conditions, Eq.3(136, allows us to simplifyl "(t) and to
show that both the diagonal contribution and the non-diagoontribution are
real. So, taking a time derivative of EQ.( 363 we conclude that Eq3(138h
is real. Note each terd® (t) in Eqg. 3.1380 in general is not real, only their
sum is necessarily real. Therefore, the interpretation qxﬂantltyJ(C')(t) as a
contribution of thegth dynamical scattering channel into the curref(t) is
correct only in the case iic(yq)(t) is real.

To show that Eq.3.1384 is real we first simplify it. From Eqs.3(1360
and @.1369 it follows that the product of scattering matrix elementsre-
sponding to electrons leaving the scatterer iecent timest andt - 27,[ p—(],
drops out from Eq.3.138d. Then the non-diagonal contribution is reduced to
the following,

109 (t) = SZéZS'&d” COt, ),
(3.139)

COt,u) = Z (S(q+s)(t,H)Q(Q)T(t’u))w
g=0

Here the quantity® is the sum of interference contributions from all the
pairs of photon-assisted amplitudes corresponding tedtajies with the same
length diference 2d. Note this length dference enters the phase faatdthsd,
All these amplitudes correspond to electrons leaving tlttes@r at the timé
when the current(t) is calculated.

The two parts)(@(t) and1"(t), of the generated current result from dif-
ferent processes that lead tcﬁfdrent temperature dependencies. The first part,
1@ (1), is the sum of contrlbutlonJaﬁ, arising from diferent electron’s paths

L(q) inside the system. These paths$tel by incoming g) and outgoing &)
Ieads and by the indexcounting the number of reflections inside the system.
Therefore, one can consider the contrlbutﬂé?l as due to photon-assisted inter-

ference processes taking place within the same spatlaté%tkEach such path
can be characterized by a delay timg,, i.e., the diterence of times when
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3.5 Beyond the adiabatic approximation

an electron leaves and enters the system. If this time ismatl compared
with the driving period,J, then the dynamicalfBects become important for an
electron scatteringfbthe system. Therefore, one can consider the pé‘ﬁms

an dfectivedynamical scattering channelhen we interpreﬁfﬁ) as arising due
to intra-channel photon-assisted interference proce&sese all the quantum-
mechanical amplitudes corresponding to such processesnwdtplied by the
same dynamical facta@®9#<d, the corresponding probability is independent of
energy. Consequently the energy integration becomealtrivi

In contrast, the second patf'9(t), due to interference betweenffdirent
paths (i.e., due to inter-channel interference) is defiretha sum of terms
oscillating in energy. Consequently it vanishes at highgeratures.

From Eq. 8.139 it follows that with increasing temperature or driving
frequency the dierent dynamical scattering channels contribute indeptyde
to the generated current,(t) ~ 19(t). With regard to the temperature such
conclusion is evident sincéd(t) is temperature-independent whil@d(t) is
exponentially suppressed&t> T*. With regard to the frequency this follows
from the observation that the rati§’(t)/1"9(t) behaves aQr,. Therefore, at
Q — oo the contribution @ (t) dominates.

We emphasize that the currdif®(t) can not be considered as a classical
part of a generated currehi(t). This part is due to interference, therefore, it
is of the quantum-mechanical nature. However it is due teriatence taking
pace within the same spatial trajectory, therefore thiseruris insensitive to
energy averaging and, correspondingly, is temperatutegandent.
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Chapter 4

DC current generation

The current generated by the dynamical scatt&8rjas a dc component
under some conditionsty]. In other words, the periodic in time excitation
of a mesoscopic scatterer can result in an appearance of arcgiceven in
the absence of a bias between the reservoirs the scattereunpéed to. This
effect is calledhe quantum pumpgfect and the dynamical mesoscopic scatterer
generating a dc current is calledquantum pump[47, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68]

4.1 Steady particle flow

The existence of a dc current in the system means that therstsady
particle flow in the leads connecting a scatterer to the vegsr To charac-
terize the intensity of such a flow in some direction [from Huatterer to the
reservoir, the upper index), or back, the upper index(t)] it is conveniently
to usethe distribution function $/°'9(E), which defines how many particles
with energy within the intervadlE nearE in unit time passes the cross-section
of a leada. The distribution function integrated over energy defirtes tbtal
flow in some direction in the given lead. The dc current in teallis defined as
the diference of particle flows directed from the scatterer to tisemsir and
back times an electron charge. The charge conservatioresdqbhe sum of dc
currents flowing in all the leads is equal to zero.

4.1.1 Distribution function

Since we assume that the reservoirs are in equilibrium, tihelectrons
moving in leads from the reservoirs to the scatterer, thelent electrons, are
described by the Fermi distribution functiofa{E), wherea = 1,..., N; num-
bers the reservoirs. The distribution functig/{E) depends on both the chemi-
cal potential u,,, and the temperaturé&,, of a corresponding reservoir. Below
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4.1 Steady particle flow

in this chapter we assume the chemical potentials and texiyses, hence the
distribution functions, to be the same at all the reseryoirs

,ua = MO? Ta':TO, a:]-”'aNr,
(4.1)
fo(E) = fo(E).

In contrast, the electrons scattered by the dynamical samam non-
equilibrium. Therefore, they are characterized by the equaiibrium distribu-
tion function. Let us show that the distribution functiomn grattered electrons
Is different from the Fermi distribution function.

The single-particle distribution functiorf°“9 (E), for electrons scattered
into the lead» and moving out of the scatterer, is defined as follo\ed] |

bl (E)b, (E')) = 646 (E— E') fO9(E),
B
(4.2)

00 N,
FO9E) = Y Y [Spos(E.En)|* 5 (En).

N=—0o0 ﬁ:l

Using this definition we rewrite Eq3(40 for the dc currentl, o, generated by
the dynamical scatterer:

oo = E/dE{fOSO“t) (E) - f,(E)}. (4.3)
0

From this equation it follows directly that the dc currentséx in the case if
the distribution function for scattered electrons igatent from the one for
incoming electrons.

In the case of a dynamical scatterer even if Eql)(is fulfilled the distri-
bution functionf©“Y(E), Eq. @.2), differs from the Fermi distribution function,
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4 DC current generation
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Figure 4.1: The non-equilibrium distribution functiof{®**(E), for
scattered electrons at zero temperature is shown scheathatithe step
width is7Qo. The zero-temperature Fermi function is shown by dashed
line.

fo (E). Let us illustrate it in the case of zero temperatures, 4if. In this case
for each energ¥ the sum oven in Eqg. @.2) is restricted by those for which
En = E + nfiQ) < up. Therefore, we can write:

] 2 <1, E<
fO9E) = > D [Sr(E.E)| = { .y E>Zg’ (4.4)
N=-co p=1 ’ ’

where [X] is an integer part oX. Given equation reaches unity only if the
upper limit in the sum ovem approaches infinity. This follows directly from the
unitarity of the Floquet scattering matrix, see, E1260

Note the distribution functiorf ©“9(E) is different from the equilibrium
one only at energies near the Fermi leelk: uo. For energies far fromg the
distribution function for scattered electrons is almostiorium:

1, E<xyug,
fcsout)(E) ~ { 0 E>>z8. (4.5)

Therefore, we conclude: The dynamical scatterer runs atrefesystem
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4.1 Steady particle flow

out of equilibrium. This is, perhaps, the most prominefiiedence of the dy-
namical scatterer from the stationary one.

4.1.2 Adiabatic regime: Linear in pumping frequency cutren

Let us analyze a dc current in the limit of a small pumping Greracy, see,
Eq. 3.49. This s so calledhe adiabatic regimef a current generation. In this
case it is convenient to use E§.42. With Eg. @.1) we can write,

oo = /dE 3 {(1(E) - fo(En>}Z SepEn B2 (46)

N=—o0

Expanding the dierence of the Fermi functions up to linear7if}, terms
and using the zero-order adiabatic approximation for togét scattering ma-
trix, see, Eq.8.469, we calculate:

— eQO /dE< 81:0)22:: { aﬁ,n(E)|2 B ‘S"'B’_n(E)‘z}’

4.7)

where the lower inder indicates the Fourier céigcient for the corresponding
frozen scattering matrix elemeSi.

As it follows from equation above the curreiity can be non-zero if the
Fourier codicients corresponding to the positive,> 0 (emission), and neg-
ative, n < 0 (absorption), harmonics arefidrent. After the inverse Fourier
transformation the mentioned condition reads,

S(tE) # S(-t,E). (4.8)

Thereforethe broken time-reversal symmetry of the frozen scattemag
trix is a necessary condition for a dc current generationhwy dynamical meso-
scopic scatterer in the adiabatic regime.
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4 DC current generation

In fact we are speaking aboutignamicalbreak of the time-reversal sym-
metry by the parameters of a scattepgft), varying under the action of external
periodic in time perturbations. For instance, in the cadevofparameters vary-
ing with the same frequency but shifted in phase,

p1 (1) P1o + P1.1COS(Qot),

(4.9)

P2 (1) P20 + P2,1COS(Qot + o).

the time-reversal symmetry is broken. To show it we note ith#tis case the
time reversalf — —t, is equivalent to a phase reversal— —¢, which, at
¢ # 0,27, changes a parameter set for the frozen scattering matsia result
we arrive at Eq.4.9).

Performing an inverse Fourier transformation in E4.7( we get a more
compact expression for the adiabatic dc curreft; 5, 66

r of, (E) 657 (E. 1)
e [or(180) [ (520 EY)

To show that given above equation is real we use unitarityhefdcattering
matrix, SS* = . Where it follows from that the diagonal elemg@dS*) =
— (dSSY)_isimaginary, hence Eq4(10) is real.

Let us show that Eq4(10 conserves a charge. In the case of dc currents
the charge conservation law (the continuity equation) sesdfollows:

N
> lao=0. (4.11)
a=1

Follow Ref. [66] we use the Birman-Krein formula (see, e.g., R&84]},

din (detS) = -Tr (Sd&S7). (4.12)

130



4.1 Steady particle flow

Summing up ovewr in Eqg. 4.10 and using the identity Eq4(12), we find,

T
;
Zlao~/dtTr< 05) = / n (detS)

a~1

0
= In (detS(0)) - In (detS (7)) =

where in the last equality we have used the periodicity offtbeen scattering
matrix.

In a particular case of a scatterer with two leads when thigesoag matrix
Is given in Eqg. .63, with phasesy, 6, ¢ and the reflection cdicientR all
being periodic in time functions, the dc current generakegl,(4.10, is (Ip =

l1.0=—120):

o0 T
e 8t (E)\ [ dt 80(t) 8e(1)
- 0/dE< )0/7 {R(t) +T () 2 } (4.13)

As one can see, the current generated depends essentidihe gghases of
the scattering matrix elements. This fact emphasizes orare & quantum-
mechanical nature of a current generated by the dynamiatieser. Note that
without a magnetic field it ig = O.

Notice the equation4(10 defines a current at zero as well as at finite
temperatures. From the formal point of view the expansiopawers ofQq
we used in Eq.4.6) is valid only atiQy < kgTo. However one can show that
Eq. @.10 is valid in the opposite casé)y = kgTop, also. To this end we note
that at zero temperature the integration over energy in &xch in the sum
overnin Eq. (4.6) is restricted by the interval of order |n|iQ2y near the Fermi
energyuo. At the same time the adiabatic approximation, Bg469, is valid
at the condition given in Eq3(49. This condition allows us to keep the frozen
scattering matrixS(t, E), as energy independent within the mentioned energy
interval and to calculate it & = uo. The remaining integral over energy in
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4 DC current generation

Eq. @.6) becomes trivial. It givesiniQ)y. As a result the first order in pumping
frequency expression for a dc generated current régels> kgTo):

T

dt 83" (t, )

loo = — /7 (S(t W= )aa. (4.14)
0

The same equation can be obtained from EdL@) in the zero temperature limit
(formally atTo = 0) when it is—adfy/0E = 6(E — w).

The equation4.14) admits an elegant geometrical formulation of the nec-
essary condition for existence of a dc current generatdueiadiabatic regime,
see Ref.47]. Let us consider a space of the frozen scattering matriampar
etersp;. Take a point, A(t), in this space with coordinatgs¢t). During the
period, 0 < t < 7, the point Af) follows a closed trajectory.. We de-
noteS = S({pi(t)}, x), where{pi(t)} is a set of all the parameters, and rewrite
Eg. @.14) as follows: b5

e

oo = =i yé (ST . (4.15)

where the linear dependenceQgis explicit.
Further for the sake of simplicity we consider a case witlytwb param-

eters,ps1(t) and py(t), which vary with small amplitudeg1 < pio, | = 1,2,
see, Eq.4.9). Then we can write,

Using the Green theorem in Edt.(5),

oSt 9 [0St
- S d d =
//{6p1< 8pz> 8pz< 6p1>} P2

oSt . 0ST
S—dp, + S—dp,,
yﬁ Jdp1 PL op2 P2
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4.1 Steady particle flow

P14 A

P10 — ™

I -

P2,0 P2

Figure 4.2: During one period the poirA(t) with coordinates
(p.(t), p2(t)) follows a trajectoryl. F stands for a surface area. The
arrow indicates a movement direction fpr- 0.

we finally arrive at the following47):

S AQT
L - 5_,emom(asas

212 "\ Op10p2

) , (4.16)
Pi=Pio/ 4o

whereJ = m p11p21Sin(y) is an area of the surface (in the present case it is
an ellipse) enclosed by the cure The value of¥ is positive if the pointA
moves counterclockwise as it is shown in Hg2. In Eq. @.16 we also took
into account the following. If the parameters vary with simafplitudes then to
the leading order we can keep the derivatives of the scadteniatrix elements
constant in the surface integral and calculate them atp; o.

So,if the aread encircled by the representing poin{tAin the parameter
space of the scattering matrix during a period is non-zdventin general case
the dc current generated in the adiabatic regime is non-zero

In the small amplitude limit the current is proportional bheetarea, that
Is the current is a quadratic form of the parameters am@gudTherefore,

1The current can be zero if the scattering matrix elementsatares are zero. In addition in the large amplitude
regime when the integrand is not constant and changes aisigome particular cases the current is zero even if
the area is not zero. Then it is natural to speak about adetenrrent nullifying.
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4 DC current generation

the pump fect is an essentially non-lineaffect. Notice, as it follows from
Eg. @.19, the value and even the direction of a dc current can be @thsign-
ply by varying the phase flerencep between the parametepsg(t) and po(t). It
was shown experimentally in Re#§].

The equation4.16 illustrates also an already mentioned relation between
the existence of a dc current and the broken time-reversahmtry. Such a
relation is clearly seen from the following. Under the tinegersal the direction
of motion of a pointA changes by its opposite. Therefore, the oriented surface
F changes a sign.

In should be noted that there are frozen scattering matniwvateres in
Eq. @4.19. They do not connect directly to the driving. However at squartic-
ular values of parameterp; o, these derivatives (or either of them) can vanish.
That results in vanishing of a dc current. Therefore, the peffect depends
not only on parameters of a dynamical influence but also osttite@nary char-
acteristics of a scatterer. More precisely, the dc curraséa only in the case
of spatially asymmetric scatterer. To show it we use B3 which under
conditions of Eq.4.1) reads:

1) o N,
loo = E /dE 6@ D> {ISkus En . B - [Sep (En. B} (4.27)
O N=—00 ﬂ:l

One can see, the dc current is non-zero if the photon-aggstbability for
scattering from the lead to the leadv is different from the probability for the
scattering in the reversed direction.

So,the necessary condition for the quantum punfpat is a spatial-inversion
asymmetry of the scatterer.

The use of Eq.4.17) in the adiabatic regimeiQ)y <« oE, allows us to
represent a generated current as the sum of contributiasodelectrons with
different energies and to introduce a notiorthedf spectral density of generated
currents dl,(t, E)/dE, which we will need to analyze the quantum pump under
external bias. While without a bias and at zero temperaagd, follows from
Eqg. @.14), the current can be expressed in terms of quantities clesiang
scattering of electrons with Fermi energy only.

Using Eqg. 8.50 we find a square of the modulus of the Floquet scattering
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4.1 Steady particle flow

matrix element up to linear i€y terms:

Qo 3 |Supn (E)|°
2 OE

‘SF,a’ﬁ (En ’ E)|2 ~ |Sa'ﬂ,n (E)‘2 +
(4.18)
+21Q0Re[S; 5, (E) Ay (E)] -

Also we used ", >, |Se, (En. E)]2 = 1. Substituting these equations in

Eq. (4.17), taking into account tha}", >, \Saﬁ,n(E)|2 = 1, performing the
inverse Fourier transformation, and using the identty ), we finally calcu-
late a dc current within the linear in pumping frequenQy, approximation,

[66]
T

Ia,O = /

0

dt [ dl, (t, E)
F/dE bE) (4.19)
0

where the spectral densitgl],/dE, is related to the diagonal element of the
following matrix Poisson brackets,

dl, t.E) e
dE  h

e /0SoST 9SSt
' 4.2
<0t 0E  OE ot )w (4.20)

Aan L€
P{S,S"} = P

This quantity is subject to the conservation law at eachggnand at any time:

=y P{88, =0 (4.21)

Q’Zl a=

This equation is a direct consequence of the iden#t§5).

Stress both equations4.(0 and @.19, defines the same quantitly, o.
The diference is a way of writing. Substituting Ed..20 into Eqg. @.19 and
integrating the first term by parts over the tithand both terms by parts over
the energ)E we arrive at Eq.4.10.

Thus we see that the dynamical scatterer is in princiglent from the
stationary one even in the case of slowly varying paramelére diference is
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4 DC current generation

in existence of currents with spectral density(t, E)/dE generated in the leads
connecting a scatterer and the reservoirs.

4.1.3 Quadratic in pumping frequency current

If the phase dterencep of the pumping parameters, see, E§9), is zero
then the linear in frequency current, E4.16), vanishes. In particular such a
current is absent if only one parameter of the scatteringixnadries in time.
However even in this case the dynamical scatterer can gengiguadratic in
pumping frequency dc currerit,o ~ Q3. The dc current proportional Q) for
n > 1is usually called aron-adiabatic

To calculate quadratic €2y dc current we substitute Eq4.(L9 into
Eq. @.6) and expand the fierence of the Fermi functions up to terms pro-
portional toQ3. After simple algebra we find a dc current,

00 T A ~
e ofo dt ~ 0ST ~ 0S7
loo = =— E(-— — gl -~ .
@.0 2ﬂ/d < 6E>/‘I m{S p + 2hQ0A p }w
0 0
(4.22)
If the frozen scattering matrix is time-reversal invaria&(t) = S(-t), then
the first, linear in pumping frequency, term in the curly lkets in Eq. 4.22

does not contribute to current. In this case the quadratieyicontribution is
dominant,

(4.23)

Earlier we showed that the linear in pumping frequency cun®subject
to the conservation law, Eg4 (11). Since the current,% Is also a dc current, it

136



4.2 Quantum pumpfiect

should satisfy the same conservation law. Therefore, we,hav

T ~
dt - OST(L,E)\ _
O/Tlm Tr (A(t, E) T) =0. (4.24)

This equation fulfilled at any enerdy puts an additional constraint onto the
anomalous scattering matrx

4.2 Quantum pumpfiect

The dc current generation by the mesoscopic dynamicakseats due to
asymmetric redistribution of (equal) electron flows inciti® the scatterer from
the reservoirs. It does not require any source (or drain) dfaage inside the
scattering region. Before we outline a physical mechanespansible for such
an asymmetry, we give simple arguments to illustrate a pdsgito generate a
dc current without a bias.

4.2.1 Quasi-particle picture for a dc current generation

The appearance of a dc current can be clarified if to go oven filoe
real particle picture to the quasi-particle picturé4][The particle with energy
above the Fermi leveky we will call a quasi-electronwhile an empty state
with energy below: we will call a hole

For the sake of simplicity we assume all the reservoirs batregro tem-
perature (and having the same chemical potentials). Tleequtasi-particles are
absent in equilibrium. Therefore, there is a zero quadigarflow incident to
the scatterer. On the other hand the dynamical scattengs pleole of a source
of quasi-electron-hole pairs moving from the scattereth® reservoirs. The
guasi-electron-hole pair is created in the case when a) (eé=dtron absorbs
one,n = 1, or severalp > 1, energy quanta<), interacting with a dynamical
scatterer. During this process an electron empties the siét energyE < uo
(a hole is created) and it occupies the state with en&fgy E + niQy > uo
(a quasi-electron is created). We emphasize the createt ghiarge neutrdl.

2The charge of a filled Fermi sea is treated as a reference. point
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4 DC current generation

V(1)
X

Figure 4.3: Under the action of a periodic in time potentigl) = V(t + 7) of the
nearby metallic gate, an electron can absorb one or sevezalyequant&Qy. As
a result it jumps from the occupied level onto the non-ocedpevel, that can be
viewed as a creation of a quasi-electron-hole pair. An macfa dark circle) and
a hole (a light circle) can leave the scattering region thhothe same lead) or
through the dterent leadsh). In the latter case the current pulse is generated.

However if a quasi-electron and a hole leave the scatteagopn through the
different leads, see, Fig.3(b), then the current pulse is generated between the
corresponding reservoirs. The sum of currents tfedent leads is obviously
zero. On the other hand, if a quasi-electron and a hole betls@ttered into
the same leads, then the current does not appear at all,ige¢,3a).

From this picture becomes clear, that the appearance of ardent is
a consequence of a broken symmetry between the quasiegis@nd holes.
Otherwise the number of quasi-electrons and holes scdtterthe same lead
would be the same on average, hence the current averaged (mreg time (a
dc current) would not arise.

4.2.2 Interference mechanism of a dc current generation

As we already mentioned, within the real particle picture #ppearance
of a dc current is due to asymmetry in scattering of electfomms one lead to
another and back, see E4.17). The physical mechanism leading to such an
asymmetry is an interference of photon-assisted scagtanmplitudes. §9|

To show it we consider a one-dimensional scatterer conmgrisvo poten-
tials, V1(t) = 2V cos(Qot + ¢1) andV,(t) = 2V cos(Qot + ¢2), oscillating with
the same amplitude and located at a distanéem each other, Figd.4. For
simplicity we assume both potentials oscillate with smafipfitude. Let an

138



4.2 Quantum pumptiect

Vi(t) V() Vi(t) Va(t)
E ‘L ‘E+thz E ExpQo _ 4 E i E + 1Qq

Figure 4.4: While propagating through the scatterer cosnmgitwo oscillating potentials

an electron can absorb (or emit) an energy quaritginteracting either with a potential
V,(t) or with a potentiaN,(t). Therefore, the photon-induced scattering amplitude is a
sum of two terms.

electron with energ¥ falls upon the scatterer. Since in the case of a small am-
plitude of oscillations only the single-photon processegsalevant 88, 39, 40,
there are three fferent outcomes:

(i) An electron does not interact with potentials, henceogslnot change
its energy. In this case an electron leaves the scatteryigrevith energye©u)
equal to its initial oneE©YW = E.

(ii) An electron absorbs one energy quantugf') = E + #Qy,.

(iii) An electron emits one energy quantuld®©" = E — #Qy,.

Since all these possibilities correspond ttietent final states, whichfdier
in final energyE®©Y, the total transmission probabilifly is the sum of proba-
bilities for mentioned above three processes,

T=TOE,E) + THE+1Q,E) + TO(E-1Q0,E), (4.25)

where the first argument is a final energy while the second®aa initial en-
ergy. The probabilityT©, like the probability for scattering by the stationary
scatterer, does not depend on the propagation directiocortrast both prob-
abilities T and TC) depend on it. Therefore, we concentrate on these last
probabilities.

First we calculatd ™). Note there are two possibilities to pass through the
scatterer and to absorb an energy quantum, see4Hig.The first possibility
IS to absorb an energy quantum interacting with the potektig). And the
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4 DC current generation

second possibility is to absorb an energy quantum intergetth V,(t). Since

in both these cases the final state is the same, the corresgasplitudes
(not probabilities!) should be added up. Denoting corresioty amplitudes as
AU+ = 1,2, we calculate the probability,

T = |AGD 4 4@917 (4.26)

Each of amplitudesi(*) can be represented as the product of two terms, the
amplitude, A(T"9(E) = kL, of a free propagation from one potential barrier to
another one and the photon-assisted amplitt&tﬁ‘é’, describing an absorption
of an energy quanturi)q during an interaction with the potentid|. The am-
plitude A(" is proportional to the Fourier céiecient forV;(t): A{"Y = «xVe4,
wherex is a proportionality constant.

We consider separately two cases. First, when an electioaitent from
the side of the potential; and, second, when an electron is incident form the
side of the potentia¥,. The corresponding probabilities we will label with the
help of lower indices—» and« , respectively. Our aim is to show that

TH 2 T, (4.27)

CalculatingT(j) we take into account that an electron first meets the po-
tential V1(t) and only then, after a distandg it can reach the potential,(t).
Therefore, if an electron absorbs energy néathen it propagates between the
potential barriers with enhanced enerfy, = E + Q. The corresponding am-
plitude is: A% = AP A(I(E,). In contrast, if an electron absorbs energy
near the potentia¥,(t) then it propagates between the barriers with initial en-
ergy E. The corresponding amplitude igt'>*) = A(fred(E) A, If nQp < E
we can expand the phase of an amplitutd&€®9(E.) up to linear nQq terms:
K(E;)L =~ KL + Qqr, wherek = k(E) andt = Lm/(%k) is a time of a free
propagation between the barrid&fsandV,. After that we write,

ALD) = gy eiondklen 42 o gy give (4.28)

Substituting these amplitudes into E4.46 we calculate,
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4.2 Quantum pumpfiect

T = 222 {1 + cos(p1 — @2 — Q7)) (4.29)

Now we calculate the probabilitf". Going from the right to the left an
electron first meet¥, and only then it meet¥;. By analogy with calculations
presented above we find:

AB = dlveta, A = elndlrom (430)

and correspondingly
TH = 2°V2 {1 + cos(¢r — @2 + Qo7)}. (4.31)

Comparing Egs.4.29 and @.31) we see that indeed the probability depends
on the propagation direction, as it was announced in£4./). The directional
asymmetry of scattering can be characterized via thierénce AT™) = T -
T, which is equal to

AT® = 4k®V? sin(Ag) sin(Qqr) (4.32)

whereAg = @1 — ¢>.

The probability of propagation with emission of the quantemergyzQg
is characterized by the same asymmet@(~) = AT™), for our simple model.
Therefore, if the equal electron flows with intensityfall upon the scatterer
from the both sides, then the asymmetric redistributiorcaftered electrons re-
sults in a dc currentge = lo (AT® + ATO)) = 21,AT™). This current depends
on two phase factors. On one hand it depends on tferdnce of phasdy, be-
tween the potentialg; (t) andV,(t). On the other hand the current depends on an
additional contribution to the dynamical phaS®zr = QgL /v (wherev = 7ik/m
Is an electron velocity), due to the energy change duringesoag. The first
factor breaks the time-reversal invariance allowing exise of a dc current in
the system without a current in the stationary regime. Wik second fac-
tor characterizes the system as spatially asymmetric (aemg two diferent
potentials at a distandg). Interesting to note that in the case under consider-
ation the spatial-inversion symmetry is broken onlyif# ¢,, therefore, one
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4 DC current generation

can speak about thiynamicallybroken spatial symmetry. As it follows from
Eg. 4.32), violation of only one of two symmetries, either spatiaersion or
time-reversal, is not enough for a dc current generation.

4.3 Single-parameter adiabatic current generation

Accordingly to Brouwer’s argument47] 2 to generate a dc current in the
adiabatic regime it is necessary to vary at least two pamnseut of phase. The
variation of a single parameter can result in at least qu&drafrequency dc
current, see Sed. 1.3 This conclusion is confirmed by both the experimé&i® [
71] and the theory28, 62, 72,73, 74, 75, 76, 77, 78]. However in Refs.T9, 80|
it was shown theoretically, that at a slow rotation of a po&it is possible to
generate a linear in rotation frequency dc curreffithe rotation angle is treated
as a parameter then this is clearly an example of a singkapeter adiabatic
dc current generation. It is natural to call this devicaagiantum Archimedes
screw Below we give simple arguments showing that in the strestwrith a
cyclic coordinate a single-parameter dc current generasi@ rule rather than
an exception.

Let the scattering matrix depends only on a single depematetime pa-
rameterS(t) = S[p(t)]. In the case when the system returns periodically to its
initial state we have two possibilities: (i) The paramegies a periodic function
of time, p(t) = p(t + 7), or (ii) the parametep is an angle, i.e., the scattering
matrix depends periodically op, see, e.g., Ref5[], S ~ €P. In the latter case
the parameter space can be rolled up into a cylinder (wth®< 2r) and the
parameteip can be a growing function of a time, for exampgpe; t.

If the parametep is small, then the adiabatic time-dependent curkgy,
Eq. 6.13, can be linearized,

1) = G P, (4.33)

3See Fig4.2and related discussion in the text.

“Note also that a uniformly translating potential can geteesadc current§l, 82]. At a slow translation the
current is proportional to the speed. If to treat a spatiardmate as a parameter then this is also an example of
a single-parameter adiabatic dc current generation. Hiereurrent results from the classical drdfget, i.e., the
momentum transfer from the moving potential to the electystem is primary. In contrast in the quantum pump
effect the energy transfer is primary.
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4.3 Single-parameter adiabatic current generation

where the constant

i [0St
Coo(p) = “on <S 8—p>

Is calculated ap = 0. In the case (i) the current is periodic in time without a dc
component. While in the case (ii) the current can have a dgooment ifp ~ t
andC,,(0) # 0. Therefore, only a topologically non-trivial parametpase
allows a single-parameter adiabatic pumping.

This conclusion remains valid at largealso, whenC becomes function
of p. In the case (i) we can expa@{p) into the Tailor series in powers .
Each term of this series results only in an ac current. In #se ¢ii) we expand
C(p) into the Fourier series. Again all the terms but the zero enmaduce ac
currents. In contrast, the zero mode results in a dc curifept« t). Therefore,
if the diagonal element of a matrixC = S4ST/dp has a constant term (a zero
mode) in the Fourier expansion in a cyclic coordinptéhen varyingp with a
constant spee@ = Qot, one can generate a dc currént Q.
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Chapter 5

AC current generation

In contrast to the dc currents, which exist only under thecispheondi-
tions, the ac currents are generated as far as the propgriesatterer changes
periodically in time. As we will see below, there are sev@talsical processes
responsible for appearance of ac currents. First of al§ & redistribution of
incident electrons among the out-going channels, thatnibatied to an intrin-
sic property of the dynamical scatterer to generate a curfBme ac currents
can arise also due to a possible periodical change of a clarglezed onto the
scatterer. And finally the potentialfterence between the electronic reservoirs
can also lead to appearance of a current. Emphasize even thasdcan result
In ac currents since the conductance of a dynamical scatserleanged in time.

5.1 Adiabatic ac current

Let us calculate the time-dependent currgg(t), Eq. 3.39, flowing
through the dynamical scatterer in the adiabatic regimes 7Qy/6E — O.
To this end we transform Eq3 (370 for the Fourier harmonics of a current as
follows. First, in the term having a factdg(E,) we make the following replace-
ments:E, —» E andn — —n. Then use an expansio.50 and calculate the
product:

* * n aSZ’,B,n
F,ap (El"h E) SF,Q'IB (El+n, E) = Saﬁ,nsaﬁ,|+n + hQO é a—ESa,B,Hn

(N+1) 9Supns
2 OE

S:yﬂ,n + (Szﬁ,nAa,B,Hn + A:yﬁ,nsaﬁ,ml) } + 0 (w_Z) )

After that we sum up ovaen,
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5.1 Adiabatic ac current

Z ST:,a/,B (Ena E) SF,O/,B (El+n’ E) - (‘Saﬁyz)l "

Nn=—oo
in [ 7Sz Sy, ) ) ,
2 ( TR St GigE S | + 190 (SypAas + AopSep), + O (7).,

where on the right hand side (RHS) of the equation above therlindexl|
denotes a Fourier harmonics for the corresponding quankiten we get the
following equation for the current in the linear in pumpimgduencyQ), ap-
proximation as the sum of three terms,

o @) = 1@ + 1121 + 197 @®). (5.1)

The first term,

.-
V@) = = [dES [Sut. B’ {f(E) - f.(B)}, (5.2)
h —
)

Is non-zero if the chemical potentials (dadthe temperatures) arefidirent for
different reservoirs. From the unitarity condition, E&4(7), it follows that the
quantityl{)(t) is subject to the conservation law,

Nr
d 1w = o, (5.3)
a=1

the same as for a dc current, see, Eg4®. This fact justify a separation of
|V)(t) from the total current and allows us to relate this part @ plotential
(andor temperature) diierence between the reservoirs

The second term in Eq5(D),

(Q) (t) —e—/dEZf (E) dNa,B(t E) , (5_4)
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5 AC current generation

Is a part of a current due to the variation in time of a chapg® of a scatterer.
In this equation we have introduced the frozemtial density of state€DOS),

dNs(tE) i 0S,5(LE)  9Su(LE) .,
T_Iﬂ{saﬁ(t,a o= Sl Saﬁ(t,E)}, (5.5)

which is expressed in terms of the elements of the frozertesoag matrix
S(t, E) in the same way as the partial DOS of a stationary scateepressed
in terms of the stationary scattering matrix elements, Reég, [31].

Summing up currentg? in all the leads we arrive at the charge conserva-
tion law,

Z 1Q (1) + 0Q (t) =0, (5.6)

where the charge localized on the scatterer is:

Qt) = e/dE ZZfB(E) dN‘””(E dNs (B, (5.7)

a=1 B=1

Strictly speaking the total curremt should enter Eq.5.6). However, as it
follows from Egs. 6.3 and 6.10 neitherl V) (t) nor 1987(t) do contribute to
the equation under consideration. This allows us to inegi§)(t) as a current
due to a variation of a scatterer charge.

We see as3(¥) as1(Q can be explained on the base of the characteristics
(conductance and DOS) which are inherent to the statioraatgeser. In con-
trast the third contribution, a current generated by theadyioal scatterer in the
leade,

198 (1) = /dE Zf (E) d'“ﬁ (t E), (5.8)
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requires a quantity absent in the stationary ca&4, [

dlaﬁ_ E
dE ~ h

<2hQORe SisAs] + %P {Saus S;;ﬂ}> . (5.9)

This isa partial spectral current densitigaving a meaning of a flow generated
by the dynamical scatterer from the reseryinto the reservoitr.
The generated currerf9(t), is subject to the conservation law,

Ny

> 1) = o, (5.10)
a=1

which is directly follows from the property of the partialesgral current density,

N

~ dlgs(t, E)

——— = 0. 5.11

; dE (5.11)

Above condition tells us that there is no any internal sowfca charge (see,
Sec. 4.2) : The scatterer takes a currahfs(E)/dE incoming from the leag
and pushes it into the lead The Fermi functionfs(E) in Eq. (5.8) shows us
how much this stream is populated.

To prove the identity §.11) we use the diagonal element of the matrix
expressiond.52),

Ny
4nQ0 ) Re{Sj Az} = P{S,S},;. (5.12)
a=1
and find,
2h o dl Nf N“
> B = 4hQO;Re{SZﬁAQﬁ} + ;P{Saﬁ,sgﬁ}

- P{8.8},-P{5.8}, - 0.
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5 AC current generation

If we sum up a quantitdl,z/dE over all the incoming scattering channels
(the indexB) then we get the spectral current density generated intte#uky,

dla N dlaﬂ e *
E = 2 JE = % 4thﬁz;R6{S ﬂAaﬂ} ;P{Saﬂ’saﬂ}

~ ~

e A A e A A
= 2_ (P{S’ST}aa + P{S’ST}O’Q) = HP{S’ST}Q/Q’

that coincides with Eq4(20.

The generated curreh®®(t) is essentially related to the anomalous scat-
tering matrix, A(t, E), violating the symmetry of scattering with respect to a
movement direction reversal, compare Egs5() and 8.58. Note for the
point-like scatterer it i = 0, see, Eq..89, and also it isP {S,g, Sis} = 0,
that is directly follows from Eq.3.89, hence it is| 98 = 0. Therefore, with
no external bias (when it i&") = 0) the current of a dynamical point-like
scatterer is only due to a variation of its charyét) = 1{9(t). For arbitrary dy-
namical scatterer having reservoirs with the same potsrdarad temperatures,
f(E) = fo(E), Ve, the current(t) = 1{9(t) + 198(t) is

1 (t) = ——/dE( 0f°(E)> (é(t, E) %) : (5.13)

which is nothing but a generalization of the Blittiker—TherR@etre formula
[31].

5.2 External ac bias

Now we calculate a current flowing through the dynamical reespic
scatterer if the reservoirs are biased with periodic in tvo#age V() =

148



5.2 External ac bias

Vos(t + T) = V,(t) — Vp(t). This case is especial since the ac currents due to
a bias,V4(t), do interfere with currentd 98(t), generated by the scatterer it-
self. As a result there arises an additional, so caléerference contribution
to the current.

So, let the potentials applied to the reservoirs are varigd the same
frequency as the parameters of a scatterer are,

V, ([t) = V,cos(Qot + ¢), a=1...,N;. (5.14)

Due to the approach to phase-coherent transport phenométef [83, 84]
the periodic in time potential,(t) of an electron reservoir is treated as spatially
uniform and it is accounted in the phase of a wave-functiaxl@ftrons incident
from the reservoir to the scatterer. At the same time the atamotentialu,
entering the Fermi distribution functiofy(E) is constant and independent of
V,(t).

As we know, the Schrodinger equation with a spatially umfqrotential
Vo (D),

oY,

i%
ot

= Ho,¥Y, + eV, (t) Vs, (5.15)

can be integrated out in time. Then the electron wave funaam be written as
follows, see Sec3.1.3

—int ft dreV,(t)
¥, = Yo, = , (5.16)

whereY¥y, is a solution to Eq.H.15 with V,(t) = 0. Such a solution corre-
sponding to energg, is

Woea = € 1 e (P) . (5.17)

With potentialV,(t), Eq. 6.14), the wave function, Eq.5(16), corresponding
to energyE, becomesdV, > 0):
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5 AC current generation

iEt SN eV, -
LPE,Q = e_lﬁth,a (r)) Z e_m(b“\]n <h—.£20) e_mgot, (518)

N=—o0

where we have used the following Fourier series,

g X sin(Qot+g.) _ Z Jn(X) g n(Qot+da) (5.19)

N=—oco0

and have included the constadit= geVe/ (%) st +¢)lv—-w from Eq. 6.16) into
the functionye, (F) = Cye, (F).

The wave function?g, is of the Floquet function type, see Eq8.49
and B.27). Note the spatial parte , depends on the Floquet enerf§yut does
not depend on the sub-band numbeiTherefore, the Floquet wave function is
normalized exactly as the stationary wave functjen, does:

/d3r We,|* = /d3r e (5.20)
Indeed, using the following property of the Bessel funcgion
D In(X) Inig(X) = o (5.21)
N=—0c0

we find from Eq. .18,

‘2 |¢E,a‘2 Z Z e—i(n—m)(ﬁa e—i(n—m)QotJn (X) I (X)

N=—0c0 M=—0o0

= ea]® D €9 €% 3T 30(X) g (X) = [vea|” -

q:—oo N=—oc0

|\PE,a

Here we denoteX = eV, /(7Qp), introducedy = m— n, and took into account
IC? = 1.
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5.2 External ac bias

The state with wave functiofig , can be occupied at most by one electron.
While the measurement of an electron energy in the &¥atg can results in
any of valuesE, = E + niQ with probability J2(eV, /7). However the mean
energy,E[WE,], is equal to the energlg of the corresponding stationary state,
WoE o

EWeo)= Y EJA=ED> J+n) n(-2,) =E.
N=—00 N=—o0 n=1

Therefore, the distribution function reflecting the ocdigraof the state®¥g,

Is the Fermi distribution function dependent on the FlogretrgyE.

5.2.1 Second quantization operators for incident andeseattelectrons

_ Let us introduce the creation and annihilation operat(a?é,(E) and
&, (E), for electrons in the Floquet statég,. They are anti-commuting,
Eq. (1.30. The quantum-statistical average of the following prdduc

(81 (B)as (E)) = 608 (E~E) T, (E). (5.22)

Is expressed through the Fermi distribution functigQE) dependent on the
Floquet energy.

Strictly speaking we should consider scattering of the widbquet state,
Ve, incident to the mesoscopic sample. However with B9 and if the
amplitude of oscillating potential is small,

eV, < E, (5.23)

the scattering of any sub-band of the Floquet state is intibgrd of the scatter-
ing of other sub-bands. Therefore, following the approddRed. [84], we, as
before, consider scattering of electrons in the statesfixgll energy.

We suppose that the potentMl(t) is present in the reservair but it is
absent in the lead connecting a reservoir and a scatterer. Then an electron in
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5 AC current generation

the lead is described by the wave function with fixed energy. & incident
electron in the leadr this wave function is:?(" = e €V M wherey
is given in Eq. (.33. Notice there is a number of the Floquet staigs,,
Eq. 6.18, having a sub-band with enerdyin the reservoir. For such states
the Floquet energ¥’ should be dierent fromE by the integer number of
energy quantéQ,. For instance, iE’ = E + nfiQg then the sub-banB’ , has
an energyE since it is

E.,=FE —-niQy = E + niQy — niQYy = E.

All such Floquet states do contribute to the wave functiBff), of an electron

in a lead. Therefore, the operat@’s(E)/a, (E) creatingannihilating an elec-
tron in the stateP" in the leada can be expressed in terms of the operators
a' (En)/a, (Em) creatingannihilating an electron in the reservairas follows:

= eV, \ -
A, (E) = -img, ° ) &, (E - miQo) ,
8 (E) = Y e™ I, (h%)a ( 0)

mM=—o0

(5.24)

o0

" : eV, \ -~
a (E) = Z % J, (th) a’l (E — nfiQy) .

Nn=—o0

The spatial parts of the corresponding wave functions, £G8(, are assumed
to be the same at the place where the reservoir is connectieel lead (an adia-
batic connection condition). Therefore, they do not enitegabove equations,
The operators’"are for electrons in a reservoir. They are anti-commuting
by definition, see, EqQ.1(30. Let us show that the operataasEq. (6.24), for
electrons in the lead also are anti-commuting. Using EQ.1f we calculate:

. . N A -\YA eV,
(0.8 (2)) = 3 3 eonesm, () (L)

N=—00 M=—00

x{&, (E - niQo), & (E' -~ mi) |
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5.2 External ac bias

=L ) - eV, eV,
= 6(1,8 Z e|¢"|5 (E -E - |th) Z Jn <h—§20> Jn_| <h—.£20)

|=—00 N=—00

=0op »_ €716 (E = E' = 1hQ0) 610 = Gop0 (E- E') .

|:—OO

where we introducetl= n—m. N
Next we calculate the distribution functiofy, (E) = (&' (E) &, (E)), for
electrons in the lead:

f, (E) = i J? (%C(’)) f, (E — niQYy). (5.25)

N=—o0

This distribution function is non-equilibrium, that is de@anging of condi-
tions (the oscillating potential vanishes in the lead) witirelaxation processes
present. Despite of the non-equilibrium state, the elestio the lead incident
to the scatterer carry a curreidf? which is independent of the oscillating po-
tential V,(t). This current is time-independent and coincides with aesurof
equilibrium particles:

i _ _© - ey _© —~ (V%
14 h/dEfa(E) h/dEn_ZJn<mo
0 0 =T

‘;) :—E/dEfa(E).
0

e [ — ,[eV
h/dEfa(E)nZ J2 (m
O =—00

) f, (E — niQ)

(5.26)

In the second line of this equation we made a shift> E + nkiQgy under the
integral over energy. As always, we use a wide-band apprabam, i.e., we
assume that only electrons with enefgy u are relevant for transport. There-
fore, we can relax what is happeningkat~ 0, where, strictly speaking, the
decomposition given in Eq5(24) fails.
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5 AC current generation

As a next step we need to express the creammmhilation operators,
b/}, for electrons scattered into the leadn terms of operatorsy /&, for

electrons in reservoirs. The relation between the opesﬁ;dor scattered elec-
trons and the operatoeg for incident electrons is given in Eq3.82. Then
using Eq. §.24) we finally get:

(o¢] o0

N
RIPIPILHCLULERER (;;f) S (Eoy).

6=1n
(5.27)

N ) )
N - , eV,
bi(E) =) > > St,, (E.E)e™Py,, (hQ )aﬁ (E-p).

y:l N=—oc0 p:—oo

These operators, as it should be for fermionic operatoesaati-commuting.
To show it we write:

{BZ(E),b } Zr:z; zoo: Z Z Z g (n+p)gy g-i(n'+p)es

N=—o0 p_—oo n=—oo p =—00

v=1 o=
eV, eV; A
XJn+p (hQ ) Jn '+’ <h—g2(;> Fa/)/(E En) SF,3(5 (E E )

X {éfi (E - phQo) . &, (E’ - p’th)} .
Then we take into account that,
{é’i(E — phQ). & (E - p’th)} = 6,8 (E—E + (' = p) hQy) .

and proceed as follows. With the help &f we sum up oveb. Because of
the Dirac delta function we write&’ = E + (p’ — p) 1Qo = Ey_p instead ofE’.
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5.2 External ac bias

Then we introducen = p’ — pinstead ofp’, k = n—-n" — minstead of’, and
g = n+ pinstead ofp. After that we calculate:

N, oo 0 o
{bl(B).bs ()} =) > 6(E-E +miQo) > > St, (E.Ep)

y=1 Mm=—c0 N=—o00 k=—c0
- = eV, eV,
q:—oo

Using Eq. 6.21) for Bessel functions we simplify given above equation ds fo
lows:

Ny o0
{6 (B).bs (E)} = > ) 6(E-E +miQy)

'y:]_ mM=—o00

X Y Stay(E,En) Sk, (Em ., En).

Nn=—oc0

Finally we take into account the unitarity of the Floquettsmang matrix,
Eq. 3.281, and find a required anti-commutation relation for opasatd scat-
tered electrons:

{bl(E). by (E")} =6 (E—FE") 6up. (5.28)

For the sake of completeness we give a distribution functight! (E) =
(b}, (E) b, (E)), for electrons scattered into the lead[29]

N 0o 00
fO9E) = Y Y ) S:(E.En) Suy (E.Ey) €M%

y=1 N=—co N'=—c0

(5.29)

eV,
X Z Jn+p < ) Jn +p <h—§;;)> fy (E - thO)-
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5 AC current generation

Note this equation is real. To show it one can calculate a éexngonjugate
guantity. Then after an irrelevant replacement> n’, we arrive at the initial
equation.

5.2.2 AC current

Substituting Eqgs,5.24) and 6.27) into Eq. 3.34) and taking into account
Eq. (3.333 we arrive at the current operatby(t). Further, with Eq.%.229 we
average quantume-statistically over the equilibrium stdteeservoirs and find
the following equation for the time-dependent curréntt) = <I}(t)>:

lo (8) = Z g1t |, (5.30a)

|=—00

ot = / ]SS S s, (B ES, (B Ene)

y=1 N=—o00 =-00

(5.30b)
X Z Jn+p <§—£\2/0) Jn +l+p <:£\2/ ) f (E thO) 5I0f (E)}

Let us transform this equation to have &elience of the Fermi functions. To
this end we use Eqs3(28 and 6.21) and find the following expression for the
Fourier harmonics of a current:

/dEZ Z {1, (E - phQo) - f, (E)} Z Z d(n--N)g,

y=1 p=-o N=—oc0 '=—00

(5.31)

* eV eV.
xS, (E. En) Suy (Ei. Enat) Jnep (m ) s (h_QD |
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5.2 External ac bias

This equation is convenient to use in the adiabatic reginhenwve can expand
the Fermi function dierence in powers dbo.

5.2.3 DC current

A more compact equation can be obtained for a time-indepernmiat of
a current] = 0. First of all we express the Floquet scattering matrix rmgeof
the scattering matri$,(E, t), see, EqQ.§.590:

Say (E, En’) = Soutay,—n’ (E) > S;;kyy (E’ En) = S;k)u'f,ay,—n (E) .

Then using a serie(19 we express the Bessel functions in terms of the
Fourier codicients for some exponential function dependent on an asoi)
potential V, (t):

eV, i —int tdt’eVy(t’)
Jn’+p <h—£{(l)> = el(n PRIy (G —{° )

Note the lower limit in a time integral is irrelevant sincedibes not &ect the
value of the Fourier cdicient. Using equation above in Ec.81) and sum-
ming up overn andn’ with the help of the following property of the Fourier
codficients,

n+p

Z A—n'Bp+n' = (AB)p Z (An) (B*)—p—n = (A*B*)—p > (5.32)

n’'=—oco N=—o00

we finally calculate the dc current in the lead[33]
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5 AC current generation

o0 N, 00
oo = E/dEZZ {4 (E - Qo) - 1, (B)}
0

y=1 p=-c0

(5.33)
2

t
—int [ dteV,(t)
X (e Jarevs Soutay (E, t))

p

As we see, the reservoir oscillating potential can be takenaccount as
an additional phase factor in corresponding scatteringixn@ements. Since,
as it follows from Eq. 4.13, the phase of scattering matrix elements defines
a generated current, we can guess that the presence oatisgilbotentials at
reservoirs modifies a generated current.

5.2.4 Adiabatic dc current

To clarify the dfect of potentialsvs(t) onto the dc current, o we con-
sider an adiabatic regimes < 1, and restrict ourselves by the terms linear in
oscillating potentials,

eV < hQy < SE, VB, (5.34)

wheredE is a characteristic energy introduced after By49. We assume also
no bias conditions, Eq4(2).

Let us expand the fierence of the Fermi functions in E&.83 in powers
of pumping frequency:

dfo

fo (E — pnQo) — fo (E) = <_(9_E> PAQ, +

p? (1Q0)* 6o
2 0E2 "

(5.35)

Here we need to keep quadraticig terms. They are necessary since the phase
factors dependent ovi,(t') results in a factof;™.
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5.2 External ac bias

We substitute Eq.5.39 into Eq. 6.33 and sum up ovep. Then we take
Into account the adiabatic expansion, Ef)6(D, for the scattering matri$,:
and keep only terms linear in bot(t) andQo. For short-notation we introduce

T, (t) = exp{—— [ dteV, ( )}. So, the linear i)y term in Eq. .39 results

in the following:

- 2 [dt 0 o e
ny Qop ‘(Ty soum)p’ = —in / = T Soutay ¢ (1 Soutar)

N=—o0 0
dt > i [8°S 0°S;,
v, 14 [S, vg g, o
/fre (){|SV| 2<8t8ES S GioE
0

T
. _[dt_ dS;
+2hQo Re[S) Ay, ] } — i / 7 Say— + O (QF) .
0

While the quadratic in pumping frequency term in E81.3§) is:

T

—~ L. 2 [dto O o s
> 0862 | (1, Souan),| = [ 51 (T o) 51 (75 Siuey) =
N=—o0 0
[ dt 3Syy . as,, >
_£/§va){ s —SWW}Ho(Q,vy).
0

The last equation enters the current, B30, with factord?fy/0E2. We inte-
grate over energy by parts and calculate,

9%y (E) @Y s 0fo (E)
/dE 2B, -5, 52 - /ae( )

2Q* * *
y {BZSW ) #S;, 0S4, 0Sh, 0S4 asay}’

_Sa/
OOE "~ S GioE T ot 9E | OE ot
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5 AC current generation

where we useddfy/0E|g-c = 0 anddfy/0E|z—o = 0. Note the latter is valid
atkgT < pu.

With given above transformations we represent a dc curiggt,as the
sum of three terms linear in bofky andV,: [29]

loo = 100D 4 108 4 070 (5.36a)

Here the current((fgjmp, generated by the dynamical scatterer in the absence of
an oscillating bias, is given in E4(10. The next terms,

[ee] T N
E r

o) _ %/dE<_5fgé )> /%tZVy(t)\say(E,t)\z (5.36b)
0 o =t

Is a rectification current. It is due to rectifying of ac cunt® produced by
the time-dependent potentials(t), onto the time-dependent conductance. The
coexistence of rectified and generated currents was igatst theoretically
[85, 58, 86, 87, 88] and experimentallyq0, 71].

And, finally, the last term in EqQ5(369, an interference contribution,

00 T
- & of dt
(int) _ © _vio hy
Ia',O - h /dE < 0E> / (J"’ Z V)’(t)
0 0 r=1

* 1 *
X <2thRe Si Ay] + EP{SW Sw}> :

(5.36¢)

Is due to a mutual influence (an interference) between threwtsrgenerated by
the scatterer and the currents due to an ac bias. This padusfent shares fea-
tures with both the generated current (it is proportion&Rgd and the rectified
current (it is proportional t&/,).

Physically the splitting of Eq.5.369 into three parts are justified by the
fact that each part separately is subject to the consenviatig Eq. @.11):
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5.2 External ac bias

N,
Y 1¥ =0, x= pump rect int. (5.37)

Let us analyze the conditions necessary for existence ¢f efihe men-
tioned contributions. As we already showed, see, E@)(the currenﬂ(p“mp
Is absent if the frozen scattering matrix is time-revems@hriant:

S(t,E) = S(-t,E). (5.38)

The rectified current,|Us™, depends in fact on the potentialfigirence,

AV,, (t) =V, (1) - V, (1), and it vanishes if the potentials of all the reservoirs
are the same,

V,(t) = V(D). Vy. (5.39)

To show it we use unitarity of the scattering matrix, see, Bqt7), and
find, ZyN;l ay = 1. Moreover, since the potentials are periodic we

have,fOTdtVa (t) = 0. Using these two conditions we calculate:

T

dt N 2
/?Zva(t)ysay(t, E)‘ =
y=1

0

And finally subtracting identity above from Eq.5.860, we find a required
eqguation,

TR
e / ?z;ew ) {vy O -V, (t)}, (5.40)
-

0

where the frozen conductance matrix elements,

Guy (1) = Go / dE( MO(E)> Say (L E)[°. (5.41)
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5 AC current generation

are defined in the same way as in the stationary case, sed,.E4). (

In contrast, the last contrlbutlomgrg), IS present even if both Eqs5.G9
and 6.39 are fulfilled, and neither pumped nor rectified currents xiste To
show it we first use Eq5(39 and rewrite Eq.%.369 as follows:

o _ /dE< afo>/TtV(t)P{é(t,E),éT(t,E)}w. (5.42)

Here we have summed up oveusing the following identity,

Ny
4hnQ0 > Re{S; A,} = P{S.5'}, . (5.43)

y=1

To prove this equation we multiply a matrix equatiéh? from the left byS
and from the right b)é’f and take its diagonal element.

Under the conditions given in Eq5.39 the pumped current is zero,
while the interference contribution, Ech.€2), can survive. The currengm)
Eqg. 6.42 is not zero if the potentiaV/(t) is shifted in phase with respect to
varying in time parameterngi(t) of a scatterer. Therefore, to analyze the ability
of the entire system, i.e., the scatterer plus reservairgeterate a dc current,
l.o # O, it IS necessary to take into account phases of all the tiepeendent
guantities, as parameters of a scatterer as possibly prasendependent po-
tentials at reservoirs.
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Chapter 6

Noise of a dynamical scatterer

The current correlation functioR,; (1, t2), is defined in Egs.4.30 and
(2.39 in time and in frequency domains, respectively. Such ddfecwrelator
Is calleda symmetrized correlatoit satisfies the following symmetries,

Paﬂ (t19 t2) = Pﬂa/ (t2, tl) H (61a)
Pop (w1, w2) = Pgy (w2, w1) . (6.1b)

which are a direct consequence of the fact that the currergasured in leads
a andg, enter symmetrically the correlator.

6.1 Noise spectral power

If currents are generated by the periodic dynamical seattdren the cor-
relation function can be represented as follows (compaEgtg2.33 valid in
the case of a stationary scattereB2]

Pos (w1, w2) = > 276 (w1 + wp — 19Q0) g (w1, w2). (6.2a)

|=—c0

where the spectral pow&,z (w1, wy) is expressed in terms of the Floquet scat-
tering matrix elements as follows:

fpaﬁJ (wl, a)z) = % / dE {5aﬁ 5|0 Fa/a (E, E + ha)l) (62b)
0

= Y Fao (E.E + 1w1) St g, (En + s, E + iwy) Sg g, (Enur . E) —

N=—0o0
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6 Noise of a dynamical scatterer

- Z Fgg (E, E + iw2) Sg 15 (En + hiwz , E + hiwz) Sg 45 (Envi , E)

N=—oc0

+ Zr:zr: Z Z Z Fys (Eisn, Em + iw:) SFﬁy (El+|0’ El+n)

y=1 6=1 N=—00 M=—o00 p=—00

The quantityF,sz being a combination of the Fermi functions is defined in
Eq. 2.46. To derive equation above we proceed in line with how we did i
Sec.2.2.2but instead of Eq.1(.39 now we use Eq.3.32) to relate the operators
b, for scattered electrons to the operatayd$or incident electrons.

First of aII we represenP,z(wi, w2) as the sum of four quantities

P( J)(a)l,a)z) = in,out accordingly to Eg. £.43. For instance,

g; Oy, a)g) is a correlation function for a current of incident electsan
the leada and a current of scattered electrons in the Igadso, the spectral
power reads:

Popi(wnw) = Y Pill(wswo), (6.3)

i,j=in,out

Since incident electrons still did not interact with the témi@r then the
part of a correlator related to incident currents is the sasn@ dynamical as in
stationary cases. Therefore, #{f}" we can use Eq2(45 and write,

P (Wi, wp) = s 610 — / dE Fou(E, E + fiwy). (6.4)

Next we calculatd|;*:

ng’ouo (w1, wp) = € / dE; / dEz{
0 0
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6.1 Noise spectral power

(&) (Ex) 8 (Bx + i) (B] (E2) By (B2 + i) )
(6.5)

1/, R ~ ~
-5 (81 (Ev) &, By + 1) B (E2) By (B2 + 1))

_ %<62§ (E2) by (E2 + o) & (E1) &, (E1 + hw1)>}'

Accordingly to the Wick’s theorem (see, e.g. RaR]) the mean of the product
of four operators is the sum of products of two pair means.ifsiance:

(8] (E) & (Ex + 1) B (E2) By (o + o) ) =
(&, (B1) & (E1 + Tiwn)) <6/§ (E2) bs (B2 + hw2)>

+ (&] (Eq) bs (B + hwy) ) <éa (Ey + hwy) b} (Ez)> :

We can use the Wick’s theorem since the operatégrsorrespond to particles
In macroscopic reservoirs and the operaﬁgrare the linear combination af,.”
The first term on the right hand side (RHS) of an equation abloes not con-
tribute to the correlator, since it is compensated exactlyhe corresponding
product of currents [the first term on the RHS of EG.5]. Therefore, only
those pair means are relevant which comprise particle tgsritom both cur-
rent operatorsfg”) and IA/(;)”D simultaneously. To calculate such pair means we
use Eq. 8.32. In particular we have:

N, 00
(&) (E)) by (B2 + hw2)) =) > Seyp, (Eo + hiwp, Eo + hi[wp + MQYy))

'y:]_ mM=—o0

x (&) (E1) &, (B2 + it [wz + MQq)))
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6 Noise of a dynamical scatterer

N, 00
= Z ZSFM (Ez2 + fiwa, Ez + 7 [wz + MQ))

fy:l M=—0o0

X0y (E1 — E2 — 1 [w2 + MQg]) f,, (E1)

= ) Spp (B2 +Tiw,, Ep + T [w; + MQy))

M=—0o0

X0 (Ex — Ex = hi[wo + mQq]) f, (E1) .

By analogy we calculate all other pair means appeared in@b): (

<éa (El + hwl) 6; (E2)> = Z S;Eﬁ& (Ez, Eo + nth)

N=—0o0

X6 (Ex + hwy — Bz — niQo) [1 - f, (Eq + hiwy)]

(B} (Ex) A, (Er+hwn)) = 3 Sty (Ea Ep + i)

N=—0o0

X0 (E]_ + hw1 — Ex — nhQO) fa (E]_ + ha)]_) R

(By (B2 + hwp) &) (E1)) = ) Sgp, (Ez + fiwp, Bz + i [w; + MQy))

M=—o00

X0 (El -E>x—-nh [a)z + I’T’lQo]) [1 - fa (El)] .

Substituting these pair means into E6.5) we arrive at the sum of two terms.
Then using the Dirac delta-function to integrate over eypesgy overk,, we
get the following for each of these terms:
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6.1 Noise spectral power

1
/ dE2 é SF,,Ba (Ez + hwz, E2,m + ha)z) 1) (E]_ - E2,m — hw2>
X fo (E1) Stg, (E2. E2n) 6 (E1+ hws — Ezn) [1 - fy (B + hwy)]

= 2—:;_1 6 (w1 + w2 + (M=) Q) f, (E1) [1 - f, (E1 + fiwy)]

XST:,ﬂa (E]_,_n + hw1, BE1 + ha)]_) SF,,Ba (El,—m, E]_) R

/dEZ Fpo (E2,E2n) 6 (E1+ hwr — Ezn) fo (E1 + how1)
X Sg o (B2 + o, Eom + Tiwp) 6 (Ey — Epm = hiwp) [1 = T, (En)]

1
= o 6 (w1 + wz + (M=) Qo) f, (Eq + hiws) [1- 1, (E1)]
X Sik:,ﬂa/ (El,—n + hw1, BE1 + ha)1> SF,,Ba (E]_,_m, E]_) R

whereE; x = Ej+knQo, i = 1, 2. Using equations above in E§. ), introducing
| = n— minstead ofm, and replac& — —nandE; — E, we finally find:

('n ouy (w1, wo) = Z 216 (w1 + w2 — 1Q) ng; |OUI) (w1, o), (6.6a)
|=—co
with
PO (W wp) = —— / dE Z Foo (E, E + fiwr) (6.6b)
N=—o00

Fﬁa/ (En + hwl, E + hwl) SFBQ, (En+|, E)
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6 Noise of a dynamical scatterer

In the same way we find:
P s w) = & [ dE: [0 6.7)
0 0
(B}, (E1) B, (Eq + hwy)) <a;g (E2) & (E + hw2)>
L /e » AT (E.) 4
=5 (BL (E) b, (By + 1) &} (E2) 85 (B2 + o))

_ %<a; (Ez) & (E2 + hiwy) b}, (E1) b, (E1 + hw1)>}_

Comparing it to Eq. .5 we see, thaP'%""™ (w1, w,) can be calculated from
Eqg. (6.6) after the following replacements: < B, E; & E; andw; < wy. As
a result we get for the spectral power (repl&ge— E):

| 2 [ 00
(P((Ioﬂutln) ((Ul’ a)z) = - F /dE Z F,B,B (E, E + hwz)
0 N=—o0
(6.8)
X SE 45 (En + hiwz, E + hwz) Sg 45 (Envi, E) .
Then we calculate the last contribution:
PO (w1, wp) = % / dE; / dE; {
0 0
(B}, (B0 By (B + fwz)) By (Bx + o) B (E2) ) (6.9)

n <E); (E,) b, (E; + hw1)> <IA3[; (Ez + fiw,) b} (E) },
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6.1 Noise spectral power

where we already expressed the mean for four operatorans tef pair means.
The first of them is:

N, 0o N,

<62; (E]_) Bﬂ (E2+ha)2)> = Z Z Z <a; E]_r E25+hw2)>

'y:]_ [=—oc0 §=1 S=—o0

Fay (El, El,r) SF,B(S (Ez + hwo, Ez’s + ha)z) = Z Z Z fy (El,r)

'y:l [=—00 S=—00

X Sf
x6 (E1r — Ezs— hw2) Sk, (E1, Eir) Sgg, (B2 + hwa, Ezs + hiws)

and, correspondingly, the second one equals to the folpwin

N, 00 N, 00

<60/(E1 + ) B} (E2)> =333 S (8 (Eum+ hown) & (Ezg))

0=1 M=—c0 'y:]_ g=—o00

XSF,a& (El + ha)l, El,m + ha)l) ST:,,B)/ (EZ, E2,q)

=> ") > [1-f5 (Eum+ hws)] 6 (Evm+ hws — Ezq)
XSF,acS (E]_ + ha)]_, E]_,m + ha)]_) ST:,,B(S (Ez, E2,q) .

Integrating the product of these means dgwe get:

/dE25 (E]_’r — EZ,S - hwz) o) (E]_,m + ha)]_ — Ez,q) fy (E]_,r)

X [1— fs (Evm+ hw) | Stos (E1, Exr) Sgg, (E2 + hwa, Exs + hws)
XSF,a(S (E]_ + ha)]_, El,m + hwl) ST:,,B5 (Ez, Ez,q)
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6 Noise of a dynamical scatterer

1
= £5 (wl + wo — [r +(0—S— m] Qo) fy (E]_,r) [1— f5 (E]_,m-l- hwl)]

XST:,(W (El, El,r) SF,,By (El,r—s, El,r)

XSF,a& (E]_ + how1, E]_,m + hwl) ST:’&S (El,m—q + hws1, E]_,m + hwl)

1
= % 5(&)1 + wo — |Qo) fy (E1’|+n) [1 - f5 (E]_,m + hwl)]

XST:,(W (El, E1,I+n) SF,ﬁy (El,l+p, El,l+n)

XSF,a(S (E]_ + hw1, Egm + hwl) SEB(S (El,p + hw1, Egm + ha)l) ,

where at the end we introduced new indicgs= m — q (instead ofg), n =
s+ m-— q(instead ofs), andl = r — s+ g — m¢(instead ofr).

Comparing the first and the second terms on the RHS of &§) 6ne
can see that the later one results in the same expressiowess ajove but
with f, (Eizn) [1 - f5 (Em + w)] being replaced bys (Em + 7iw) [1 - f, (Eisn)]-
Therefore, finally the equatio® (9 results in the following:

PG (wr,wp) = Y 216 (w1 + w2 — 1Q0) P (i, w2),  (6.10a)

|:—OO
where

Nr Nr oo o0 o0

,J)g;gutout) (w1, wy) = % /dE Z Z Z Z
0

y:l d=1 N=—0co M=—0c0 p=—00
X Fy6 (El+n, Em+ hwl) S;ﬁ:,ay (E, EI+n) SF,ﬁy (El+p, El+n) (6.10b)

Summing up Eqs4.4), (6.60), (6.8), and £.100 we get announced result given
in Eqg. 6.2b).
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6.2 Zero frequency noise spectral power

6.2 Zero frequency noise spectral power

The quantityP,z(0) = P,50(0,0), referred to as the symmetrizedise
characterizes a mean square of current fluctuations £g8) or a symmetrized
current cross-correlator (at # 3), averaged over long time period. It can be
written as follows:

T

P.s(0) = :—ZL/%t/dT<AIAa(t)AIAﬂ(t+T)+Al};(t+T)AIAa(t)>.

0
(6.11)

The noise expression in terms of the Floguet scatteringxmgledments is given
in Eq. 6.2b atl = 0 andw; = w, = 0.

From Eq. 6.1 it follows that the noise value does not change under the
lead indices interchange,

Pos(0) = Pse0). (6.12)

This is another reason why this quantity is called as a symzreetnoise.

Like its stationary counterpart the quantityz(0) can be represented as
the sum of a thermal noise and a shot noise, see, () ( The thermal noise,
(PSE), is due to fluctuations of quantum state occupations of relestincident

from the reservoirs with non-zero temperature. While thet sioise, 3, is
due to fluctuations of quantum state occupations of scattelextrons: If an
electrons is scattered, say into the leadhen in this contact the instant current
is larger than the average current, while in other cont#gts, «, the instant
current is zero, i.e., it is smaller than the correspondiregage current.

Let us calculate a noise when all the reservoirs have the saemical
potentials and temperatures,

Uo =, T4 =T. (6.13)

Hence the distribution functions for electrons in reseiware the same,

f,(E) = fo(E). (6.14)
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6 Noise of a dynamical scatterer

Then from Eq. .20 atl = 0, w1 = w, = 0 it follows (see, also, Se€.2.9 :
Pop(0) = PLY + PCD, [89] where

P = /dEfo(E) —fo(E)}{ aﬁ<1+ ) Z!SFay(En,E)! )

N=—0c0 y= 1
(6.15)
- (‘SFaﬁ(E”’ E)|” + | Sp a0 (En. E)yz) }
s SALA - f(En)—f(Em)
e = /dEzzz >y [oE) - hE]
y=1 6=1 N=—00 M=—00 p=—o00
(6.16)

St 4y (E. En) Sk.o5 (E. Em) St g5 (Ep Em) Srsy (Eps En) -

Clear that the thermal noise vanishes at zero temperaince s that case it
is fo (E) [1 - fo(E)] = 6(u— E)0(E — ) = 0. In contrast, the shot noise does
exist at arbitrary temperature. However it vanishes in tpaldrium system,
i.e., if the scatterer is stationary. In that case BiSE,, E) = 6,0 S(E), hence
there are only terms with=0,m= 0, andp = 0in Eqg. ©.16. For these terms
the diference of the Fermi functions is zero.

As we showed in Sec2(2.4.]) the unitarity of scattering results in conser-
vation laws, Eq.Z.63, for the stationary noise. The noise due to a dynamical
scatterer is also subject to the conservation laws. Morethethermal noise
and the shot noise satisfy them separately:

Z gp(th)

Z?‘S‘“’ =0, Z?‘S‘“’ =0, (6.17b)

Nr
0, Z?gp =0, (6.17a)
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6.2 Zero frequency noise spectral power

that follows directly from Eqgs.q.19 and ©6.16 if one uses in addition the
unitarity condition, Eq.§.28. Note to prove the second equality in E§.X7D

it is necessary to make the following replacement in BdL§): E — E — phiQ,
n— n-p,andm—- m-p.

Let us analyze the sign of a zero-frequency noise power. Tbsse

correlator®,.; is negative in stationary case, see, Etj640. It is negative
in the dynamical case too:

P, <0, 28 <o. (6.18)

atf —

For the thermal noise it follows directly from Ecp.(9:

ez (o]
PL, = —F/dEfo(E) [1- fo(E)]
0

X 3" (ISkap (En B)* + [Sep (EnE)[) < 0.

N=—o0

To check this rule for the shot noise, let us rewrite E&j1¢ for @ # B as
follows:

e2 ©o (o)
P = —F/dEZ
0 p=—co
2
(] Nr
> > o(En)St,, (E.En) Skgy (Ep.En)| < 0.

N=—co y=1

Here we took into account that the terms with squared Ferngtians vanish
for o # Bin Eq. (6.16). For instance, in the terms witff(E,) we can sum up
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6 Noise of a dynamical scatterer

overmandé. Then using Eq.3.281H we find @ # B):

S N;
D> ) Skay(E.En)Sps(Ep. Em) = Gapdpo = 0.

m=—o00 §=1

In the same way one can prove that the term viiitE,,) is also zero.
The auto-correlatd?,, is a mean square of current fluctuations in the lead
a, hence it is non-negative. From Eg6.X7) and ©.19) it follows,
P >0,  PEN > 0, (6.19)

aax

The fact, that the thermal noise and the shot noise separsdsfy the sum
rule, Eq. 6.17), and the sign rule, Eqs6(18 and 6.19), justifies splitting of a
noise into these two parts.

Besides, the thermal noise and the shot noise depdfetatitly on both
the temperatur@ and the driving frequenc§y. Let us show it in the regime
when the parameters of a scatterer vary slofly— O.

6.3 Noise in the adiabatic regime

The Floquet scattering matrix elements up to the linea®R4rnterms are
givenin Eg. 8.50. Remind that the adiabatic expansion implies that theeinoz
scattering matriXS changes only a little on the energy scale of ori@s, see,

Eq. (3.49.

6.3.1 Thermal noise

Substitute Eq.3.50 into Eqg. 6.15 and calculate the thermal noise up to
terms linear iny: [89]

pth) _ ?SE,O) + gpg’g’go), (6.20a)

(07
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6.3 Noise in the adiabatic regime

where

(6.20b)
&
X (205 =[S LB - |8 (L B)[°).
00 T
of dt
(thQo) _ 0T at
P _ kBT/dE< (QE)/Tr
0 0
(6.20¢)

dl,(LE) dlos(LE)  dig (L E)
Xe<5“ﬂ dE dE  dE )

As expected, the thermal noise is proportional to the teatpeg. Let us intro-
duce an averaged over time frozen conductance matrix, sdd),(

T

- dt «
G = / = G0, (6.21)
0

Then the quantity';” depends on its elements

PURD = keT (2005 Go — Gap — Gpa) , (6.22)

in the same way, as the equilibrium noise, the Nyquist-Johnsoise,
Eq. (2.61), depends on elements of the conductance maBixEq. (1.54),
in the stationary case. Therefor®}}® can be called aa quasi-equilibrium
noise Comparing Egs.q.20h and @.6]) it is necessary to use the identity
Eg. 2.66 and the fact that Eq6(200 was derived under conditions given in

Eqg. 6.19.
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6 Noise of a dynamical scatterer

The second part of the thermal noise, E§j209, indicates that the system
is in fact non-equilibrium. The paft{}* can be called aa non-equilibrium
thermal noisesince, on one hand, it is proportional to the temperatueada
thermal), and, on the other hand, it depends on currents@eadeby the dy-
namical scatterer (hence non-equilibrium). Since the tsglecurrent powers
dls(t, E)/dE, Eq. 6.9, anddl,(t, E)/dE, Eq. @.20, both are linear in pump-

ing frequencyQy, then it s ~ Q.

6.3.2 Low-temperature shot noise

If the temperature is low enough,

kBT < h€), (623)

then the thermal noise can be ignored. In this regime the sairce of a noise
Is a dynamical scatterer generating a photon-assistechsis®. Other source
of the shot noise, the bias, is absent because ofEf3( The photon-assisted
shot noise is a non-equilibrium noise. That follows (in theng way as in the
stationary case with bias) from the fact that the noise istdtieose of scattered
electrons for which the distribution functioff°“9(E) is non-equilibrium, i.e.,
less than unity. As it follows from Eq4(4), see also, Eq.4(5), the distribu-
tion function f°“9(E) is non-equilibrium for energies fierent from the Fermi
energy by the amount of ord&€).

Let us calculaté?fﬁh), Eqg. 6.16, in the lowest order il62. To thisend itis
enough to use the Floquet scattering matrix elements irtlzerder inQq. For
instance, with required accuracy we find from E&50):

Sk (Em,Ep) = Smp(E) + 0 (Qo). (6.24)

Remind in the lowest adiabatic approximation the frozertsdag matrixS
should be treated as energy-independent over the scaldarfid)y. Therefore,
under conditions given in Eq6(23 we can integrate over energy in EG.16
keeping the scattering matrix elements constant (for defiess we will calcu-
late them aE = u). Then the remaining integral over energy becomes trivial:
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6.3 Noise in the adiabatic regime

(e0) Q B
[dE o) - 2= { jorin D R 2
0

Using Egs. 6.24) and 6.29 in Eq. (6.16 we find,

DS

v,0=1Nn,m,p=—oco

(6.26)
X |m n| S*y n(ﬂ)sad m(/vt)S;(Sp m(:u)S,By p- n(,u)

So the photon-induced shot noise is linear in pumping frequeX (see, also
Ref. [66]). To simplify above equation we proceed as follows. Forhefixed
n we consider the sum oven and split it onto two parts, the sum over< n
and the sum ovem > n. Then we introduce a new indeéx= m— n instead of
m. After that we find for any quantity<, » dependent on indices andm the
following:

Zlm N Xmn = Z(” m)xm,n+2(n m) X

m=n+1

Z( CI)Xq+nn"‘z:qxqmn = Zq (X-genn + Xgenn) -

g=—o0

The term withm = nis zero due to the factan—n = n—-n = 0. Then the
equation 6.26) is transformed into the following form,

e:_io qu[{s () Sas ()} _o {8, () St ()},

g=1 y=1 ¢6=1

(sh _

(6.27)
+{S;, (1) Sas (ll)}q {Spy (1) Ss ('u)}—q} '
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6 Noise of a dynamical scatterer

Going over from Eq.4.26 to Eqg. 6.27) we have summed up ovelandp using
the following identity valid for the Fourier cdiécients of any periodic functions
A(t) andB(t):

> Ai(Bug) = (AB) . > Aug(B)" = (AB),. (6.28)

N=—oc0 N=—oco

Easy to check that Eq6(27) satisfies the symmetry given in EG.(2), P =
iP[(gf,h). To show it we need to use« ¢ in an expression fo(P[Sf,h).

6.3.3 High-temperature shot noise

At higher temperatures,

ksT > 71Q, (6.29)

the thermal noise dominates. In this regime the shot noge(€EL), is only a
small fraction of the total noise. However the thermal n@isd the shot noise
depend dierently on both the pumping frequen@Qy and the temperature, that
allows in principle to distinguish them.

With Eq. 6.29 we can expand the fllerence of Fermi functions in
Eg. 6.19 in powers ofQQy. Up to the first non-vanishing term we get:

oo (E)

fO (En) - f0 (Em) = 1o JE

(n—m).

Substituting this expansion and the adiabatic approxonator the Floquet
scattering matrix, Eq.6(24), into Eqg. 6.16 we find the high-temperature shot
noise kgT > hQ) :
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6.3 Noise in the adiabatic regime

e? of 2
(sh 2 0 2
fPaﬂ = —hQO/dE <_E) E q

0 a4=-
(6.30)
N N
x> > {St (E)Sw (B)}, {Ss (B) S (B)} .
v=1 6=1

In this equation we keep the integration over energy siniseaver the interval

of orderkgT > hQq near the Fermi energy. While the use of an adiabatic
approximation, Eq.€.24), does not put any restrictions onto the energy depen-
dence of the frozen scattering matri®, over such an energy interval. The
guadratic dependence of the high-temperature shot noisleeopumping fre-
guencyQgy was shown in Ref.qQ].

6.3.4 Shot noise within a wide temperature range

One can relax restrictions put by Eg6.43 and 6.29 and calculate ana-
lytically a shot noise at arbitrary ratio of the temperatanel the energy quan-
tum Qg dictated by pumping. This is possible if the scattering matan be
treated as an energy independent over the relevant endegyah

hQo, kKeT < OE. (6.31)

RemindsE is an energy interval over which the scattering matrix clesngjg-
nificantly.

So, with Eq. 6.31) while calculating the shot noise, E@.16), in the adi-
abatic regime [when we use E@.24)] we can calculate the scattering matrix
elements aE = u only. Then the corresponding integral over energy is calcu-
lated analytically,

(m—n) QY

— 2ksT
2ksT ) B

/dE{fo(En) — fo (Em)}? = (M= n) Ay coth(
0
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6 Noise of a dynamical scatterer

and finally we arrive at the following,

e2 (o)
P = 1 D F(anQo.keT) (6.32a)
g=—00
N N,
XD > 480, 10 Sus ()}, {Spy () S5 W)} -
vy=1 6=1
where
A kT < 7O
_ ghQo ghQ0 B 2 > "B ’
F (97Q0, kgT) = > coth( 2kBT> keT =

GO ke > 1.
(6.32b)

The obtained equatior6(32 reproduces both the equatiot.Z7) for the low-
temperature shot noise, which is lineaKlp and temperature-independent, and
the equation .30 for the high-temperature shot noise, which is quadratic in
pumping frequency and, under conditions of E&3(), inversally proportional

to the temperature.

6.3.5 Noise as a function of a pumping frequetxy

At zero temperature the dynamical scatterer generatesaoshot noise,
which is linear inQq. With increasing temperature the thermal noise arises. It
also depends of2o. Therefore, the padP(;” of the total high-temperature
noise dependent a3y can be written as the sum of two contributions,

5P = Pl | i) (6.33)

Let us compare these two terms. A non-equilibrium thermaend=q. 6.200,
generated by the dynamical scatterer in the adiabatic et <« SE), is of
the order
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6.3 Noise in the adiabatic regime

1o
PURA) + ke T —.
ob ' 6E

While a high-temperature shot noise, E§.32), can be estimated as follows:

(7Q0)?

P _
B kT

Their ratio is equal to
P hQooE
PHY - (keT)?

From this it is seen that &sT < VAQEE the shot noise dominates. How-
ever at higher temperature namely a non-equilibrium thenoise determines
a dependence of the total noise on the pumping frequ@gcy herefore, with
Increasing temperature one can expect the followiBg} [

( hQO , kBT < th s
(7Q0)°
593&%0) ~ = ekt Qo <« keT < VhQooE, (6.34)
ke T
Qo SE VhiQooE < kgT .
\

Stress the linear dependence@nat low and high temperatures is due to dif-
ferent physical reasons. While at low temperatures it istduke shot noise, at
high temperatures it is due to the thermal noise.

Here we have presented the Floquet scattering theory feemdiquantum
pumps. The same problem was also investigated withtierdint approaches,
the random matrix theoryofl, 92, 93, the full counting statistics94, 95, 96,
97, 98], and the Green function formalisr89, 100 101, 102 103. Note also a
prediction P4, 90, 95, 89, 107 that in the quantized emission regihtae noise
vanishes. It seems that the experiment confirmd.@4]

1This is a regime when the integer numinesf electrons is pumped during each period.

181



Chapter 7

Energetics of a dynamical scatterer

7.1 DC heat current

By analogy with a dc charge current, Ed.J), we define a dc energy
currentl £ in the leadr as a diference between the energy flof°"? carried by
non-equilibrium electrons from the scatterer to the resieand an equilibrium
energy flowl E(" from the reservoir to the scatterer:

|E = |Elu) _ B, (7.1)
Here the corresponding energy currents are defined as &![6v]

. 1 : .
e = / dEE {7 (B), (7.2)
0

wheref©"W(E) is a distribution function for scattered electrof$?(E) = f,(E)

Is an equilibrium distribution function for incident eleshs. We are interested
in a dc heat currentQ which is the total energy currehf reduced by the con-
vective energy flow of electrons carrying a dc charge curent

(7.3)

The division ofIE into heatl S and convectivey, |,/e flows can be explained
on the base of particle and energy balance for the reserwuith fixed both the
chemical potential;, and the temperatur€, (for macroscopic samples, see,
e.g., 109). If dc chargel, and energyE currents enter the reservair then
its charge (the particle number) and its energy should ahafithe same time
the chemical potential and the temperature of a reservoinldnbe changed
also. Let us analyze what should be done to maintgirand T, fixed. To
keepu, fixed one needs to remove exceeding number of electrons hatrate
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7.1 DC heat current

|./ethey enter the reservoir. To this end the metallic contdayipg a role of
reservoir for a mesoscopic sample, is connected to anotheln bigger conduc-
tor. This connection is located far away from the place wileeemesoscopic
sample is connected, so that all the injected non-equilbrélectrons become
equilibrium. Therefore, all electrons which are removedkigepu, fixed) are
equilibrium and hence have an eneggy see, e.g.,11]. It is clear that remov-
Ing of electrons is accompanied by removing of energy wita giga |,/e. Note
this convective energy flow, 1,/€, is removed at equilibrium, hence it can be
reversibly given back to the reservoir.

Now analyze what to do to maintain the reservoir's tempeeafined. In
general a taken away convective energy flow is not equal tadtad energy
flow 1E incoming to the reservoi. To prevent heating of a reservoir it is
necessary to remove additionally energy with rfe Eq. (7.3). Since, as a
rule, the reservoir can not produce a work then only the waake out of it
energy, Q, (keeping the number of particles fixed) is to bring it intetact with
some bath. Energy exchange between the reservoir and thésbegsentially
irreversible. Thisis a reason to nameadweatthe part of an energy flow denoted
as|Q. Emphasize, this part of an energy flow becomes a proper ineait(can
change a temperature) only deep inside the reservoir,taftemalizing of non-
equilibrium electrons. In the absence of a bath the resesweimperature will
be changed under the action of a heat curt&ntwhich, as we show, can be
directed as to the reservoir as out of it: The dynamical spatican either heat
some reservoitr or cool it, even when the temperatures of all the reservoirs
were originally the same.

Expressing the distribution functiof®*9(E) for scattered electrons in
terms of the Floquet scattering matrix elements and digioh functionsfs(E)
for incident electrons, Eq4(2), and using Eq.3.40 for a dc charge current,
l..0, We finally get the following expression for a dc heat curightEq. (7.3):
[28]

9 - /dE(E 1) 3 S [Seuy € ENP 1T ED - 1, (B)).

N=-co B=1
(7.4)
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7 Energetics of a dynamical scatterer

Here as a factor aft,(E) we used the following identity,

00 Ny

ST Seas ELED) = 1, (7.5)

N=—0o0 ﬂ:l

which is a consequence of the unitarity of the Floquet seatjenatrix follow-
ing from Eq. 8.280) atm = 0 andy = a.

In addition we give also the following two equations for tledgat current.
The first one,

. .
9 = %/dE(En_Ma)ZZ|SF,QB(En,E)|2{fﬁ(E) - 1, (En)},
0

N=—o0 ﬂ:l

(7.6)

follows from Eq. (7.4) via the substitutioic — E, andn — —n, And the second
one,

(o]
o0

1 N 2
19 = H/olE{ > > (En—ta) [Skap (En. E)| 15 (E)

0 N=-oco =1
CE ), (B) } | (7.7)

is obtained via the same substitution but made only in thma teith fz, while in
the term withf, we used the identity7/(5).

Now we use the last equation to show the existence of two geiteral
effects due to the dynamical scatterer. For better clarity waras that all the
reservoirs have the same chemical potentials and the sampetatures:

Mo = MO, Ta,=To, fa,(E): fo(E), azl...,Nr. (78)

Therefore, all the possible eneybgat flows in the system are generated by the
dynamical scatterer only. Presenting this problem we foRef. [104.
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7.1 DC heat current

| Q(pump | Q(pump
—_— —_—
a=1 . a=2
Mo, To - = Mo, To
I?(gen) |§(ge”)

Figure 7.1: The heat flows caused by the dynamical scattatertwo contacts.
|9@e js a generated heat flowing into the reservgirl AP'™? is a pumped heat.
The heat production rate [, = 12©°7 4 |20

7.1.1 Heat generation by the dynamical scatterer

The first of mentionedféects consists in the following:
The periodic in time variation of parameters of a mesoscagpmiterer is ac-
companied by pumping of an energy into an electron systenat diter all
leads to heating of electrons reservoif90, 28, 107, 66|

In other words, functioning of the quantum pump is accomgery a
heat production as expected. To calculate the total heduptomn ratelt%t we
sum up the heat current§ flowing into all leads. Using Eq.7(7) under the
conditions given in Eq.1.8) we find

Ny N,

N &0 00
“ Q
12 = E 12 = ZO/dE B(E) E j n§ :E j\sF,QB(En,E)\Z. (7.9)
Clzl 0

n=—co =1 p=1

Since the sum of dc heat currents is not zero, in contrasetsum of dc change
currents, see Eq4(11), we conclude that indeed the dynamical scatterer is a
source of heat, FigZ.1 Taking into account a physical meaning of quantities
entering Eq. 7.9) we can say that the quantit§, is due to the energy absorbed
by electrons scattered by the dynamical sample. The origihi® additional
energy is driving external forcdeelds causing a change of parameters of a scat-
terer.
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7 Energetics of a dynamical scatterer

7.1.2 Heat transfer between the reservoirs

The secondf@ect is the following:

The dynamical scatterer plays a role of a heat pump produaihgat transfer
between the electron reservaifd 08 109 110 111]]

This dfect is quite analogous to the considered earliksot of a dc charge
current generation. The dynamical scatterer can cause @@aegce of heat
flows, 12PUmB “which are directed from the scatterer in some leads andeto th
scatterer in other leads, Fig.1 At the same time the sum of these flows in all
the leads is zero,

Nr
D 1 2Aeumd = o, (7.10)
a=1

as in the case with a dc charge current, EBqL1).

Above equation{.10 means that the heat currenfgP'™? flow through
the scatterer neither being accumulated nor disappearegthe dynamical
scatterer is not a source (or a sink) for this part of heat fldegsrole consists
only in providing conditions under which the heat currentsvihg out of the
reservoirs can be redistributed in such a way that the heabedaken out of
some reservoird JPU™) < 0, and be pushed into other reservoifgP'™? > 0.
Note if some reservoitg is at the zero temperature then in the lead connecting
the scatterer to this reservoir the heat current is not h@;&xﬁp”m'@ > 0, since
it is impossible to take heat out of such a reservaoir.

To show the existence of a quantum heat purtipot we proceed as fol-
lows. Let us formally split the total heat production rifginto the parts| Qgen,
such that

Ny
g = > 1200 (7.11)
a=1

Comparing this equation with Eq7.Q) we can write,

0 00 N,
| Qaen % / dE H(E) 30 [Seus(En B)[ . (7.12)
0

N=—o0 18:1
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7.1 DC heat current

One can interpret the quantit§9e" as a generated heat flowing into the reser-
voir . Then comparing Egs7(12 and Eq. 7.7) (at f, = fo, Ya) we can see
that 12@®" is different from the heat curremf flowing into the leade. The
difference,

| QPump — 1 Q _ | Qlgen (7.13)

IS just a part of a heat current which is transferred betwkemdservoirs. This
part is not related to the heat generated by the dynamicélesea Using
Eqgs. 4.7) and @.10 into Eq. @.11) we find,

(o)

(o] N,—
Feme = % / dE(E - o) fo(E) § D D [Srup(En B)|* - 1

0 Nn=—o0 IB:]_
(7.14)

With the unitarity condition.289 one can easily check that Eq. {4) satisfies
the conservation law, Eq7(10.

Accordingly to Eq. .13 the heat flowlQ in the leada consists of two
parts, Fig.7.1 The first oneQ@®" is a positive heat flow generated by the
dynamical scatterer. The second oHgPU™P is a transferred heat flow which
can be either positive (the heat flow is directed to the resen) or negative
(the heat flow is directed from the reservai. Note if IPUMP < 0 and the
transferred heat flow is larger than the generated heat flaiwarsame lead,
[1Q(PumB| > 1 Q@e | then the reservoi is cooled, sincé® = [ PUMA 4] QgD <
0.

We have splitted a heat floW? into the partd 29" and9(PU™ to show
thatlQ can be negative. Therefore, the electron reservoirs caonipbe heated
(that is intuitively expected since functioning of a devireour case a quantum
pump, is accompanied by the energy dissipation), but alsdeacooled (that
IS a non-trivial éfect). Strictly speaking we can rigorously calculate onlyeath
flow 19, Eq. (7.7), and the total generated heat reb{‘&, Eqg. (7.9. While the
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7 Energetics of a dynamical scatterer

splitting presented in Eqs7(12 and (7.14) is not unique, since the equation
(7.11) is not enough for unambiguous definition of the quantitigge". In
the next section we consider an adiabatic regime and givei@ual physical
arguments supporting the splitting of the total heat flginto the sum of
generated and transferred heat flows.

7.2 Heat flows in the adiabatic regime

At w < 1, Eq. 3.49, up to the terms linear in frequendyy, of an exter-
nal drive the Floquet scattering matrix elements are fahgwsee Eqs.3.44),
(3.469 and (3.4839]:

iQ 3 |Supn (E)|°
2 OE

|SF,aﬁ(Ena E)|2 = ‘Saﬁ,n (E)|2 +
(7.15)
+ 2hQ0Re S} 5 (E) Augn (E)] + O (QF) -

Substituting this expression into EG..6) we calculate a heat floh? under the
conditions given in Eq.7.8) up to terms of ordef23. We consider separately
finite temperature and zero temperature cases.

7.2.1 High temperatures
Ifitis,

kBTo > Qg (7 16)

then we can expand theftirence of Fermi functions in Eq7.©) in powers of
Qo

(NhQ)? 921,
2  OE2

fo (E) — Ty (En) = <——> niQg — + 0 (7).

(7.17)
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7.2 Heat flows in the adiabatic regime

Substituting above expansion into E@.6) and summing up ovar, using the
properties of the Fourier c@iecients, we calculatekg Ty > 7Qo):

19 = Qe 4 Qeump 4 9 (Q3) (7.18a)
where
nor of.\ [ dt /85 65"
t
|Qen _ _/ AL /_ 0595 7.18b
@ Ar d OE J\ot ot /), ( )
0 0
and
T
of dt aSt
Qpump _ — 0 —
1S /dE(E uo)( 8E>/T {(S+2thA) 8t}
0
(7.18c)

The quantityl 9(PU™ satisfies the conservation law, EG.10. This follows
from Eq. @.11) with a dc charge current given in Ec¢.22. Then at zero
temperature we have an identity,

—‘9@“”“‘0)} - 0. (7.19)

T
dt ,\
—ImT 2hQoA(t

/‘I m r{ S(t, o) + 27QA(L, po)) pm

0

which should hold for any.

The separation of contributions given in E@.X89 can be justified by the
following arguments.

1. The generated heat flolff(9®" is definitely positive in all the leads,
a = 1...N;. This is exactly what is expected if the heat is generatechby t
dynamical scatterer and is dissipated into the reservdwsshow its positive-
ness we rewrite Eq.7(180 in terms of the Fourier cdicients for the frozen
scattering matrix elements:
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7 Energetics of a dynamical scatterer

| Q@en hQO /dE< m") ZZ (Supn (E)|°. (7.20)

N=—o0

It is obvious that Q9" > 0. From above equation it follows that in the adia-
batic regime the heat generated by the quantum pump is di@ergaumping
frequencyQq. [90]

2. The transferred heat floW(PU™? vanishes at zero temperature, since
it is impossible to take heat out of a reservoir with zero temafure in order
to push it into other reservoir. This property follows frorg.E7.189 where at
zero temperature it i — po)dfo/0E = 0. From Eq. {.189 it follows that the
transferred heat is linear in pumping frequen@P'mP ~ kgToQ.

Note under the conditions given in E¢..{6 it is possible to realize a
regime when the energy (kg Tp€o) taken out of some reservoir is larger then
its heating ¢ Q2). Then such a reservoir will be cooled. To characterize a
cooling dficiency let us introduce the cirient K, equal to a ratio of the dc
heat current in the lead and the total work produced by driving forces. Since
the volume of the system remains constant, the mentionekl waqual to the
total heat generated by the scatterer. Therefore, théceatK, is,

K, = (-1)-2 (7.21)

where

ofo dt aS oSt
gy = —/dE< )/ Tr((’)t 8t) (7.22)

The positivgnegative sign corresponds to coolingating of the reservaoir.

7.2.2 Low temperatures

In the case of ultra-low temperatures,
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7.2 Heat flows in the adiabatic regime

kBTo < th 5 (723)

while integrating over energy in Eq7.©) we can relax an energy dependence
of the Floquet scattering matrix elements and calculatentheE = uo. Such a
simplification is possible because of the following. Thegration over energy
in Eq. (7.6) is over the window of ordetg T, near the Fermi energy. The scatter-
Ing matrix changes significantly if the energy changes by#iee of ordesE.
Taking into account Eq.7(23 we find that in the adiabatic regime, E§.49),
itis kgTo < SE. The last justifies the simplification used.

So, now the equatiorv(6) reads:

Ho

19 = hZZ\SFaﬁ(qurnhQO,uo)\ / dE(E — po + NAQ)

Ho—Nh0

o

18%; 2
= 4_7-[- Z ‘SFQ’,B (NO + nhQO’IUO)‘
N=—co p=1

Using Eqg. .15 and making the inverse Fourier transformation we finally ca
culate kgTo < hQy):

T
_E/
“‘4
0

Comparing equation above with Eq..{80) we conclude that at low tempera-
tures, Eq. 7.23, the dynamical scatterer only heats the reservoirs. Whée

heat pump fect is absent, that is consistent with the conclusion maddéen
base of Eq.7{.189 calculated at zero temperature.

QU

)
(as (t. o) 65 gt o) )w +0(Q)). (7.24)
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Appendix A

Dynamical mesoscopic capacitor

The capacitor does not support a dc current. To model it onecoa-
sider a mesoscopic sample attached to only a single resewWeiwill call it a
mesoscopic capacitdd 12, since its capacitance depends not only on the ge-
ometry (as for a macroscopic capacitor) but also on the teofstates (DOS)
of electrons. Changing periodically the potential of a senya a near gate
or changing periodically the potential of a reservoir (oahing both potential
simultaneously) one can generate an ac current flowing legtitee sample and
the reservoir. Due to the gauge invariance the current adepen the potential
difference rather than on each potential separately. Therafondat follows
we consider the periodic potential applied to the samplestationary reser-
voir. The reservoir is in equilibrium with the Fermi distatoon function fo(E)
with chemical potentiglo and temperaturksTo.

A.1 General theory for a single-channel scatterer

For the sake of simplicity we consider a lead connecting drape to
the reservoir to be one-dimensional. We ignore spin-flicpsses, therefore,
electrons can be teated as spinless. Then the sample caemehas a single-
channel scatterer which has only one incoming and one audgwbital chan-
nels. In the stationary case the capacitor is characteigdue single scattering
amplitude. If such a sample is driven by the periodic pedtidm then the men-
tioned above scattering amplitude becomes a matrix in tleeggrspace with
elementsSg(E,, E), whereE,, = E + niQy with n integer. We call this matrix
asthe Floquet scattering matrix

A.1l.1 Scattering amplitudes

The scattering amplitudeS;y(t, E) and Sy (E, t) define elements of the
Floquet scattering matrix as follows,
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A.1 General theory for a single-channel scatterer

t.
S(E + 00, B) = SpolE) = [ TS, (LE). (A1)

dt ;
Sk(E, E —nnfo) = Soutn(E) = féngotsout(E,t) ) (A.2)

/
/

whereT = 2r/Qq is a period of a drive.
From the definition we get the following relation between amd out-
scattering amplitudes,

Sin,n(E) = Sout, n(En) . (A-S)

In a time representation one can get,

dt’ o ,
?emﬂo(t g S'out(En,t ) s

Ot~

Sin(ta E) = zoo:

(A.4)

SOUt(E’ t) nQO(t t) Sm(t E n) .

v
T

b

o\q

A.1.2 Unitarity conditions

The unitarity conditions read,

> Se(EnEm)SE(EnE)= ) Sr(EmEnSE(E.En) =dmo.  (A5)

N=—0c0 N=-—o00

Using Egs.A.1) and A.2) we obtain from Eq. A.5) the following relations
between the amplitudes, andSy [see Eqg. 8.60)],
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A Dynamical mesoscopic capacitor

~t

™t S Enme 1S (E, 1)

T T
at o d
/ ? eIont Sin(t? Em) Sin(t, E) = / ?
0

0
= Omo- (A.6)

Using the second equations in Eg&.5) and (A.6) one can find,

Z e ™ N " Sg(En, En) SE(E. Ep) =

N=—oc0

(A.7)
Z —imQqt <Sout(Em, t) S (E. t))m - Z g imt s =1
M=—0o0

M=—00

In fact we have proven the following useful identity beingigedt consequence
of the unitarity of scattering,

T
t/
/d7 —inQo(t— t)Sn(t En)S (t En) = (A.8)
n: [e%] 0
or equivalently,
Z e—inQot Sin(t, En) S;ut, _n(E) =1 , (A9a)
N=—o0
Z Z g met Sout n+m(Em) Sout n(E) = 1, (A.9b)
M=—00 N=—00
Z Z @ imQot Sin. n+m(E- )Sm A(E-p) = 1. (A.9¢)

M=—00 N=—00
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A.1 General theory for a single-channel scatterer

A.1.3 Time-dependent current

The general expression for a time-dependent curi@jtip the case of a
periodically driven capacitor reads as follows:

1(t) = ~ / dEZ fo(E)—fo(En)}Z e %" St (Ey, E) Sk (Eny, E),

N=—o0 |=—00

(A.10)

To simplify expression above we shit— E, in the part dependent oig(Ey).
Then from Eq. A.7) we conclude that this part is reduced fgfE). Using
Eqg. (A.1) in the remaining part of EQA(10) we arrive at the following,113

1(t) = E/dEfO(E){\Sm(t, E)|” - 1}. (A.11)

Let us show that in the adiabatic regime this equation carabigydransformed
into the following form,

I(t) = ——/dE( m") S(t, E)%. (A.12)

in accordance with a general theory developed in RH].(see, e.g., Refg9)).
To this end in the adiabatic regime we use,

in 92S(t, E)

Sin(t, E) = S(t,E) + > T H0E

(A.13)

in the first order inQy approximation withS being the frozen scattering
amplitude! To calculate|Si(t, E)|2 we use|S?> = 1 and, correspondingly,
9%|S|?/(0tOE) = 0. Also we use,

1See the first two terms on the RHS of E4.§2) for a single-cavity capacitor but also E.88) for a double-
cavity capacitor. The appearance of an anomalous scatarmplitudeA in the latter case does noffect

Eq. (A.12).
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A Dynamical mesoscopic capacitor

0S* S 0S* 0S , 0S 0S” 0S 0S*
G E- LSS E S G oES " ot 9B

and find (up to~ Qg terms):

0 oS*
St B ~1—ifi — .
ISin(t, E)| 'haE (S 8t>

Substituting this equation into EqA(11) and integrating over enerdgyby parts
we arrive at Eq.A.12).

A.1.4 The dissipation

The (dc) heat flowing out of the driven capacitor is,

e = [ B D (Ea- o) [(E) - o EN]ISE(ER B, (A.14)
0

N=—0o0

Using the unitarity of the Floquet scattering matrix, E&.5) with m = 0, and
shifting the energyE, — E, in the part withfy(E,), we simplify,

Qo [ .
=52 [ dEBE) Y niSe(EnE)P
0

N=-—o00

+%/dE(E — o) fo(E) Z ISk (En, E)°
0

N=—0o0

N=—0o0

_%/dE(E — o) fo(E) > _ IS(E. E_p)P
0

Q [ -
= ZO/dE fO(E) Z n|SF(Ena E)|2 .
0

N=—o0
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A.1 General theory for a single-channel scatterer

Then we introduce the scattering amplitusig,(E) = Sg(En, E), use the prop-
erty of the Fourier caicientsQonS;, ,(E) = —i {dS;,(t, E)/at} and finally
obtain: [L13

e = — / dE ©(E) / At st E) 05*”“ 9Sn(LE). (A.15)

Note Egs. A.11) and (A.15) are valid at arbitrary frequency and amplitude of
the drive. The disadvantage only is that they involve angirgtgon over all
energies.

A.1.5 The dissipation versus squared current

Interesting to note that in the adiabatic regiti® (~ 0) at zero tempera-
ture the heat productior for the capacitor can be related to the average square
current(1?). From Eq. £.12) we find for zero temperature,

dS*(t, uo)

o (A.16)

10 = -2 S(tuo)

Using SdS = -dS S following from the unitarity of the frozen scattering
amplitude|S(t, E)|> = 1, we represent the square current as follows,

* * * 2
and find for its average:
T
(1% = / OIftlz(t) eZQOZn {ISnl* + 1S} . (A.17)

0
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A Dynamical mesoscopic capacitor

To calculate a heat curreh¢ in the adiabatic regime we use E4.1(4)
with fo(En) =~ fo(E) + niQoadfo(E)/0E + (nPh2Q3 /2)(92fo(E)/aE2 For
Sk(En, E) = Sinn(E) we use Eq.4.13) and find with accuracy up tQ2,

le = %/dE(E—y)<—afa°I(EE)) > nISyE)P

N=-—o00

N=-—o00

The first term is identically zero for the capacitor. To shawve take into

account that for a single channel capacitor the frozeneswadgt amplitude is of
the following form,

S(t, E) = /¢ (A.18)

Then we find,

ot T ot
0 0

o0 % ‘I
Z iNQq |Sn(E)? _/dtS(t E) 0S(LE) _ —i/d—ta¢(t’ E) _ 0.

N=-—o00

Therefore, the heat flow generated by the dynamical capasito

2
_ Q3 /dE< 0fo(E)) Z {ISWE)? +IS_n(E)?} . (A.19)

Comparing EqsA.17) and A.19) we find the following at zero temperature:

[113
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A.2 The chiral single-channel capacitor

le = Ry (19, (A.20)

whereR, = h/(2¢?) is the relaxation resistance for a single-channel seatter
and spinless electron$12.

A.2 The chiral single-channel capacitor

Experiments demonstraté]4, 115 that a quantum capacitor in a 2D elec-
tron gas in the integer quantum Haffect regime is a promising device to real-
ize a sub-nanosecond, single- and few-electron, cohetamtgm electronics.
The quantum capacitor can be used as a single-particlesefiitty. With such
an emitter as an elementary block, sevefidas were predicted including shot-
noise plateausllq, two-particle emission and particle reabsorptidd][ and
a tunable two-particle Aharonov-Bohnffect [117].

A.2.1 Model and scattering amplitude

We consider a modellfl8 114 115 119 consisting of a single circular
edge state of circumferende(a cavity) coupled via a quantum point contact
(QPC) to a linear edge state which in turn flows out of a resenfeelectrons
with temperatur@dy and the Fermi energyp, see FigA.1l. A periodic in time
potentialU(t) = U(t + 7) induced nearby gate is applied uniformly over the
cavity.

Using the method presented in S8&.3one can calculate the elements of
the Floquet scattering matrix as follows:

T
Sk(En, E) = / %ténﬂotsin(t, E), (A.21a)
0
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A Dynamical mesoscopic capacitor

Figure A.1: The model of a single-cavity chiral quantum cajos
driven by the uniform potentidll (t) induced nearby metallic gate. The
dotted line denotes the QPC. Arrows indicate the directfotnavement
of electrons.

Sn(t.E) = ) e¥sl, (A.21b)
g=0

t
SO = r, st =@rarte'®O, qu(t):g / dru(t).

t—-qr

Herer (E)/t(E) is a reflectioptransmission amplitude of a QPC connecting cav-
ity to the linear edge state,= meL/(7K) is a time necessary for electron with
energyE to make one turn around a cavity of lendth The indexq counts
number of turns which electron makes in the cavity until pstgit. In above
equation it is assumed tha®, <« E and the reflectioftransmission amplitude
of a QPC changes in energy over the sedte~ E which is much larger than
1nQo. Correspondingly we neglected the terms of ordeg/oE and smaller.

To calculate given above Floquet scattering matrix ele®)é&H(En, E),
we consider scattering of a plane waggt!/7+ % with unit amplitude and with
energyE onto an oscillating scatterer. We direct the axedong the linear edge
state and the axigalong the circular edge state of a cavity. We assume that the
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A.2 The chiral single-channel capacitor

QPC connects points= 0 andy = 0. Then the wave function reads as follows:

ik x<0.
Y(t, X) = (A.22a)
g iEt/n Z \/78F(En, E) g inQot-+iknx . x>0,
N=—o00
P(t,y) = e EV Z g <l Z arn €V, O<y<lL, (A.22b)

N=—0o0 |:—oo

whereY, is a Fourier cofficient forY'(t) dependent on a uniform periodic po-
tential U (t) of a cavity:

T(t) = exp —ig/dt’U(t’) : (A.23)

In what follows we suppose,

€ = h_szo < 1. (A.24)

Then up to zeroth order iawe have [for spatial coordinatesy < L/(eQq7)]:

% ~ 1, dknx g ghxgnQouy (A.25)

wherev = 7ik/me is an electron velocity.
We introduce the following periodic in time functions:

Sin(ta E) = i: e_inQOISF(En, E) > a(t) - Z _IIQOI (A-26)

N=—c0 |=—00

With these functions one can perform inverse Fourier t@nsétion in
Eqg. (A.22) and get,
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A Dynamical mesoscopic capacitor

e—iEt/h+ikx x <0
P(t, x) = « (A.27a)
Sin (t - E) e—iEt/h+ikx . X> O,
\Y
Yty =a <t - \—3;) T(t)e ViKY o<y < L. (A.27b)

The amplitudes of a wave function at= 0 andy = 0 are related to each
other through the scattering matrix of a QPC. If its elemenémdt can be
kept as energy independent over the scale of aifdgrthen diferent terms in
Eq. (A.22) have the same boundary conditionxat 0 andy = 0. Therefore,
one can use a wave function directly in the form of E§2(7):

Sin(t.E) \ _ ( r(E) t(E) 1
( a(t)r(t) ) - < t(E) r(E) ) ( a(t — 7)Y(t) e ) : (A.28)

The time of a single turm; = L/v, was introduced after EQA(21).
We solve the system of equations.28) by recursion. The equation for

a(b),

a(t)T(t) = t+ra(t—7) () e,
has the following solution:

at) =tr )+t y _rid*r(t-ar). (A.29)
g=1
Substituting Eq.A.29) into Eq. (A.28) we find:
Sin(t.E) = r + 1(t) Y _ro e (t - qr). (A.30)
g=1

Then using Eq.A.23) we arrive at Eq.A.21b).
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A.2 The chiral single-channel capacitor

A.2.2 Unitarity

The Floquet scattering matrix is unitary. This puts thedwihg constraint
onto the scattering amplitudg,: [30]

T

dt
/ 7|s.m(t, E)?=1. (A.31)
0

Let us show that EqA.21b) satisfies this condition:
r d
t
[ st B = AvE,
T
0

T? —
A=R+— ) RI=R+T =1,
R 2

T
dt — .
B = —2R< =T rd g{akL-®q(1)}
[Fon{-T2
5 =

(o)

_|_T_2 Z Rm i rq eiqkl— ei{q)m(t)_q)mq(t)}}
R
— q:l

=1

T
S dt [ T « . .
— g ~gkL “) 0 M —iDg(t-mr) _ —iDqg(t) \ _
_2T‘R§re' /T{R§Req eQ}_O.
m=1

g=1 0

HereT = [t? andR = |r]? are transmission and reflection probabilities, re-
spectively. In the last line of equation above we use, fibgt,q(t) — Pm(t) =
®y(t—mr). Then using a periodicity aby(t) in time we make a shift—mr — t

In this term under the integration for a time periddAfter that one can sum up
overmand get zero.
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A Dynamical mesoscopic capacitor

Note in the stationary cas®(t) = 1, the elements of the Floquet scattering
matrix become&g (Ep, E) = 6,0 S(E), where the stationary scattering amplitude
IS:

2k
This quantity can be presented in the following form:
) — RekL
S(E) = —gkt L~ "€ (A.33b)

(r -R e—ikL)* ?

which is manifestly unitary.

A.2.3 Gauge invariance

Now we show that the model we use is gage-invariant, i.e.,etéhg same
current either applying a periodic potentld(t) at the reservoir or applying a
potential-U(t) at the cavity.

We consider the stationary cavity but suppose that the gierjgotential
U(t) = U(t + 27/Qp) is applied at the reservoir. In this case the state of an
electron in the reservoir is the Floquet state, see Eg87 and £.19. Let the
operatora’ (E) creates an electron in the reservoir in the Floquet state,

Yet ) = et Y r e, (A.34)

N=—o0

where Y, is the Fourier coféicient for Y'(t) defined in Eq. £.23). If U(t) =
U cost) thenT, = J,(eU/7Q), whereJ, is the Bessel function of the first
kind of the nth order. The operatora’™{E) and & (E) describe equilibrium
fermions,

(@7(E),&(E")) = 6(E - E')fo(E). (A.35)

We assume also that there is no potential within the lead eximy the
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A.2 The chiral single-channel capacitor

cavity and the reservoir. Therefore, the wave function fectons in the lead
. H E

is a plane waveyg(t, X) = €3, Note that the wave numbdrfor yg(t, X)
and the wave vectdefor Ye(t, P) in the reservoir depends on energifeliently.

While in the leack = /2m¢E /%2 depends on a total enerd@yof an electron,
in the reservoik depends on the Floquet ener@y,and it is independent of an
additional side-band enerd, — E = naQ.

Let the operatoa(E) creates an electron within the lead. Then matching
the wave functions with the same total energy, see £44), one can write,

A(E) = f: T & (E_p). (A.36)

N=—0o0

Note that we ignore the reflection due to the wave number ahgngjhe corre-
sponding reflection cdicient is as small agi{2/ug)?> < 1. We usually ignore
such small quantities.

After scattering by the stationary cavity an electron acegithe scattering
amplitudeS(E). Therefore, the operatdb(E) annihilating the scattered electron
with energyE is:

b(E) = S(E)&(E) = i S(E)Ynd (E_p). (A.37)

Now we calculate the curreiht), flowing in the lead,

1(t) = E // dEdE €% {(b'(E)B(E")) - (&' (E)A(E"))} . (A.38)
0

Thelth harmonic of this current reads,
T

| = E / %té'ﬂot // dEJE €%t {(b'(E)B(E)) — (A'(E)A(E"))} . (A.39)
0

0
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A Dynamical mesoscopic capacitor

Using Eqgs.f.35) - (A.37) and making the shifE — E + niQ we finally calcu-
late,

| = E / dEH(E) Y 13 Tos {S*(En) S(Eny)) — 1}. (A.40)
0

N=—o0

To simplify above equation we introduce a time-dependemttion,

S(t,E) = f: S(E,) Y,e M (A.41)

N=—00

and take into account that,_ _ Y*Yn. = & 0. Then after the inverse Fourier
transformation we get from EcA(40):

I(t) = E/dEfO(E){\S(t, ) - 1}. (A.42)

This equation defines the same current as Ed.1) in the case when the poten-
tial — U(t) is applied to the cavity. To check it we need to show that timefion
S(t, E) differs from the functiorsiy(t, E), Eq.(A.21Db), first, by the phase factor
(in fact by the factorY'(t)) which is irrelevant for the current, and, second, by
the replacemeritt — —U. To this end we substitute

S(E) = Z dits@ SO S@O) = 2rol,
q=0
into Eq.(A.41) and calculate,

o0

S(t.E) = ) e¥s, (A.43)
g=0

SO =r(®)r,
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A.2 The chiral single-channel capacitor

S/(q>0)(t) _ t2rq 1 ZelanTT —mQt

= t°r% 1‘I’(t o) = 1) Pro-te O,
t

g/ U(t)

t-qr

Dq(t)

Here we usedk(E,) ~ k(E) + nQ/v, andL/v = 7 = h/A. Comparing
Egs.@A.21b) and A.43) we see that,

S(U(®).E) = 1(t) Sin( - U(1). E) . (A.44)

One can understand above equation as follows. The parialéng a reservoir
at timet has a phasé&’(t) induced by the oscillating potential. However to
calculate a current we need to count particles leaving tiagycat the timet. If
the particle leaving the cavity at tintespent in cavityg turns then it leaved the
reservoir at timeé—qr. Such a particle has a time-dependent ph&seqr). The
common for all the amplitudes phase is irrelevant for thesuezble quantities.
Therefore, one can take out the largest time-dependenept{@s After such
an artificial transformation the time-dependent phaseered™ ()Y (t — qr).
This is exactly the phase which the particle spendjtgns in the cavity would
feel if the potential-U(t) would be applied at the cavity instead to be applied
at the reservaoir.

A.2.4 Time-dependent current

Replacing in Eqg.A.10) the Floquet scattering matrix elements by the ele-
ments ofS;,(t, E) we obtain [compare to Eq3(65)]:

T
1(t) = / dEZ fo(E) — fo(En)) / en0-SE (¥ E) Sin(t, E). (A.45)
0

N=—00
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A Dynamical mesoscopic capacitor

Then substituting EqsA(21b) into Eq. (A.45) and integrating over enerdy
we find the current as a sum of two terid8 and|9: [119

1(t) = 19() + 1), (A.463)

19D (t) = %TZ Z R-H{U(t) - U(t - gr)} , (A.46b)

o=1

T
s=1

() _ e_ng {i 7 (s TO) {re'kFL} Z RA-1 (@ i®s(t-ar) _ lcbs(t))
(A.46¢)

HereR = 1 - T is a reflection probability of a QP& = +2meuo/h, kgT* =
1/ (n7) = A/(27%). In EQ. (A.46) the timer is calculated for electrons with Fermi
energy,E = uo. Such an approximation is valid in zeroth ordekyTo/uo — O.
The functionn(x) = x/ sinh(X) has appeared after an integration over energy:

(2712 kE‘AT") _ | 2%5 / dE f(E) &2 50, (A.47)
0

Note that when we integrated over energy a term V(i) in Eq. (A.45) we
made a shiftt, — E and expanded exponential factors in accordance with

Eq. (A.25);

eiqknL ~ eiqu einQoT

wherek, = k(E,). The double sum appeared after substituting BcR1) into
Eg. (A.45) we presented as follows:

ZZACIBF) = ZAqu + ZZAQBC]+S+ ZZAp+sBp

=1 p=1 =1 s=1 p=1 s=1
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A.2 The chiral single-channel capacitor

In Eq. (A.46) we assume that the energy scéle over which the reflec-
tion/transmission amplitude of a QPC changes significantly ismtaiger than
the temperaturedE > kgTo, and taker andt at E = uo. This is correct if
ksTo < o since for a QPGE ~ E and only electrons with energi€s~ ug are
relevant for transport.

The contribution @, which we will name as diagonal, arises due to inter-
ference of photon-assisted amplitudes correspondingetepiatial paths with
the same length [the same indexn Eqg. (A.21b)] which electron follows to
propagating through the system. This contribution is tenajoee independent.
Since we neglect inelastic processes the temperature ¢derioo high. The
non-diagonal part]"®, is due to interference of photon-assisted amplitudes
corresponding to dlierent number of turng}; # . This part is suppressed by
the temperature (8, > T*) since it is a sum of contributions which oscillates
strongly with an electron energy. Therefore, at high terapges,To > T*, the
only linear in cavity’s potential part is preseht) ~ 1 @(t). While atTo < T*
both parts) @(t) and1 ™ (t), do contribute and the current is a non-linear func-
tion of U (t).

The currentl (t) depends on a driving frequen€y, periodically with pe-
riod 6Qq = 2r/7. The corresponding periodicity is governed by the tirad a
single turn around the cavity. f = nT, henceQy = n6Qq, then the oscillating
potentialU(t) = U(t + 7) does not change the phase of electrons contributing
to the current. Such electrons enter the cavity, make sSegéuans, and escape
the cavity. Therefore, they visit a cavity for a finite timeipe 6t = qr = qn7J.
These electrons see affextively stationary cavity since the time-dependent
phase is zeraPy(t) = 0. In such a case the current does not ailifi¢,= 0. At
frequencies dierent from these particular values the phase accumulatea by
electron within a cavity becomes dependent on time. Coresgty) in accor-
dance with the Friedel sum ruldZ], the charge accumulated within a cavity
becomes dependent on time that, in turn, causes an appeafantme depen-
dent current] (t) # O.

A.2.5 High-temperature current

Since atTy > T* the current) (t) ~ |(t), is linear in potential, we can
introduce a frequency dependent response function (ctacice),
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A Dynamical mesoscopic capacitor

@ 1
Go =1 A.48
| U (A.48)

whereU, andl, are Fourier coficients for potential and current respectively:

U =Y Ue 100 =) et (A.49)

|[=—c0 |=—c0

Taking into account that

U(t _ qT) — Z U| eilQoQT e—ilQot ,

|=—0c0

we calculate from Eq.A.46D):

@_ 1- gl
(d) _

The ac conductanc(él(d) shows a strong non-linear dependence on the frequency
Qo of a drive. The frequencyfiects both the magnitude and the phase of a
response function. In particular, at© 1Qyr mod 2r < n the response is
capacitive-like. While atr < 1Qqor mod 2r < 2r it is inductive-like. It is
interesting that alQyr mod 2r = x the response is purely ohmig{® = 1/R,

(for Ry see below).

In general to model a mesoscopic system under consideradi@m equiv-
alent electric circuit one needs to use some frequencyrike element. How-
ever at small frequencie§yr < 1, one can model it as a capacitar@@, a
resistancR?, and an inductanck{’ connected in series, Fig..2. The con-
ductance of such a circuit equals to

1 :
s R+ g, ot} .

Comparing it to Eq.A.50) at
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A.2 The chiral single-channel capacitor

Cq Rq Lq

Figure A.2: An equivalent electrical circuit to model a low-
frequency response of a quantum capacitor.

w=1Qy <« I, (A.52)
T
we find:
e? h /1 1 h?
(@ _ & L L@_ T A
< A’ Ri e2<T 2)’ ¢ 12e2A° (A.53)

whereA = h/t < g is a level spacing in the isolated cavity. The upper index
(d) indicates a high-temperature regime.

At lower temperaturesTo < T*, both parts,|(@ and 10D, contribute to
a current. The currer™, Eq. (A.460), is a non-linear function of both the
magnitude and the frequency of a driving potentiat).
A.2.6 Linear response regime

At small amplitude of an oscillating potential,

el < 1hQg, (A.54)

one can simplify the expression fdf"d., At zero temperature we use
Eqg. (A.460) and find a compact expression valid at arbitrary frequeron
the other hand, at small driving frequenci€sr < 1, it is more convenient to
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A Dynamical mesoscopic capacitor

expand directly in the expression for the scattering mags. A.21), and then
to calculate the curren(t), Eq. (A.45). In such a way one can obtain a simple
expression allowing us to analyze a temperature dependém@ceurrent.

A.2.6.1 Zero-temperature linear response current

We expand exponents depending®dain Eq. (A.460) up to linear inU,
terms. Then, taking into account that at zero temperaf{¥e= 1, one can sum
up oversanda. After that we can calcula®® = 1"?/u,.

We use the following transformation taking into account tda = U*|,
sinceU(t) is real:

) = 3) U Ge'
|=—00
o0 UI GI, e—ilQot i UI* GI,* eiIQot h »
— : — I il Qot
. 5 > e,

I:—OO I:—OO

_G -G

I = UG, G >

Then the total zero-temperature ac conduct#sce Gl(d) + Gl(”d) is found to be,

1 ilQoT _ .|QoT
G =GO )14 1 n(LRE 2VRe¥cosfe) ) | (a5
Qo7 1+ R-2vVR cosfr)

Here we use the following notatiom: = VR &', yg = keL + y; — 2reUg/A,
whereleUp| < ug is an average value of an oscillating potential. We strests th
Eg. (A.55) is valid for small amplitude but arbitrary frequency of astilating
potential.

To get the parameters of a low-frequency equivalent cifetiibw temper-
atures we denote them @g, Ry, andL,) we evaluate Eq.A.55) in the limit of

212



A.2 The chiral single-channel capacitor

Qo — 0 and obtain after the comparison with E4.51):

e T ~ _h
Ca= A1+R-2VR COSfF) =), Rq= 2e2’

(A.56)

L h2v(1i0) 1. 8R- 2(1+ R) VR cosfyr) — 4R co(vF)
a7 12 T2 ‘

Herev(E) = i/(27)S(E)0S*/0E is the DOS of a stationary cavity coupled to a
linear edge state [fd8(E) see Eq.A.33) ].

A.2.6.2 Low-frequency linear response current

At small frequency,

Qor < 1, (A.57)

the Floquet scattering matrix, EqA.21), can be expressed in terms of a sta-
tionary scattering matri§(E), Eq. (A.33), calculated ak(Ug) = V2m.E /% —
2reUy/(LA). To this end we expand’(t’) = U(t") — Uy, entering equation for
Dy (t) in Eq. (A.21b), in powers oft’ —t,

du’(t) . (t —t)? d2U’(t)

U'(t) ~ U'(t) + (t' - t) T 5 e

(A.58)

and integrate ovdr. Then expanding corresponding exponents we calculate up
to linear inU’(t) and quadratic if2g terms:

9S(Uo.E) i edU (1) 9°S(Uo, E)
OE 2 dt OE2

Sin(t,E) ~ S(Uo,E) - eU'(t)
(A.59)

12 eU(t) 3°S(Uo. E)
6 dt2 JE3
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A Dynamical mesoscopic capacitor

Note that first three terms in the right-hand side of equadioove can be found
from adiabatic expansion EqA(L3) if one expands the frozen scattering matrix
up to linear inU’(t) terms,

dS(Uo, E)

S(t,E) = S(U(t),E) » S(Up, E) + U'(t) Uy

discard ~ Q% terms, and take into account that in our mod&/oUgy =
—-edS/oE.

Substituting Eq.A.59) into Eq. (A.45), where in addition we expand,

0fo 9%y (ﬂhQO)2

fO(E)_ fO(En) ~ _G—E hQ - 3E2 2 s (AGO)
we find a low-frequency conductance:
G = /dE( afO(E)> G(E),
(A.61)
G(E) = -ie?lQyv(E) + eth—% ('QO) v3(E)
_ieZhZ (IQ0)3 1 62V(E)_ 3(E)
6 |82 oE2 "

At zero temperature EgA(61) leads to parameters of an equivalent electric cir-
cuit given in Eq. A.56). Itis less evident but still true that at high temperatures
(To > T7) from Eq. (A.61) one can find parameters given in E4.%3).

A.2.7 Non-linear low-frequency regime

In the limit of low frequencies, Eq.A.57), one can go beyond the lin-
ear response regime, Ed\.64). Substituting Eq.4.58) into Eq. A.21b) and
expanding up to terms of ord&2 we calculate the scattering matrix as follows:
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A.2 The chiral single-channel capacitor

in 0°S(t, E) .\ r*ed’U(t) 8°S(t, E)
2 OtoE 6 dt? OE3

Sin(LE) = S(LE)+
(A.62)

R <edU(t)>264S(t, E)

3 at SE2 + 0O {(Qo‘[')s} .

Remind that the frozen scattering matrix &, E) = S (U(t), E). To calculate
it one can use EqA(33) and replac&klL — kL — 2reU(t)/A. Note Eq. A.59)

IS nonlinear inUg but linear inU’(t) = U(t) — Ug. In contrast Eq.4.62) is

nonlinear in a full time-dependent potentia(t).

Substituting Egs.A.62) and (A.60) into Eq. (A.45) we calculate a low-
frequency current as follows1]19

) = / dE( ‘”O(E)) (99 E) + IOt E) + J9CE)),  (A63a)

dU(t)

IO, E) = € v(t, E) —2, (A.63D)
JO(t,E) = —? aat { VA(t, E) —— dU(t) } (A.63c)

6 o2 | \8r2 OE2 dt
e 9 [ PvLE) (du®))
9672 gt | OE3 dt ’

where the frozen DOS is:

IO E) = _ﬁf{( 1 0v(t, E) A, E)) dU(t)}
(A.63d)
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v(t, E) = —S(t E)%EE) % 1+2%ZrQéq['<L—2ﬂeU@/A1 . (A.64)
g=1

Note in Eq. A.63) we usedv/ot = —e(dU/dt) (dv/dE), since the DOS depends
on time via an oscillating uniform potential only.

To illustrate the physical meaning of Ecf.63) it is instructive to rewrite
this equation. Integrating over energy by parts one caresgmt it in the form
of the continuity equation for a charge current,

3Q(t)

I(t) + =0, (A.65a)

Q) = e / dE H(E) vayr(t, E) (A.65b)

h MALE) N 654t E)
den(t, E) = V(t E) - = o + E T

(A.65¢)
L 282v(t, E)  9*(t.E) (dU\?
9672 OE2 ot2 oE2 \ dt ‘

HereQ(t) is a charge accumulated on a mesoscopic capaegg(t, E) can be
called asa dynamical density of states

The dynamical DOS takes into account a retardatibecg i.e., a finite-
ness of a time spend by an electron inside a capacitor. Asuét the charge
Q(t) accumulated on a capacitor depends on the frequency ofe dxt small
driving frequenciesQ)y — 0, such a dependence (up to terms of o@grcan
be accounted by introducing affective resistancB, connected in series with
a capacitanc€,. In the linear response regime these quantities are cdrstan
rameters, see Ed\(56) for low- and Eq. A.53) for high-temperature regimes.
In the non-linear regime these parameters become depeamndamiriving poten-
tial, i.e., the capacitor is characterized by a non-linegrathdence of a charge
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A.2 The chiral single-channel capacitor

Q on the potential dropJc and the resistor has a non-linear current-voltage
(I-V) characteristic. In such a case it is more convenienhtaduce the dif-
ferential parameters, theftBrential capacitanc&;(Uc) = dQ(Uc)/0Uc, and

the diferential resistancd?;(V) = aV/al (V). In terms of these quantities the
currentl (t) flowing into an equivalent electrical circuit subject teethotential
U(t) = Uc + V reads as follows (&®y — 0): [119

[(t) =Cad—U—RaCa < o;l:) (A.66)
Comparing Egs.A.63) and (A.66) we find:
Cy(t) = € / dE (-aE’I(EE)) w(t, E), (A.67a)
0
N ofp\ 0 du
. (R 5 (eeF)

Rs(t) = (A.67b)

2€% % dfo dofo\ 0 du\ -
de< E v(t, E)de< 0E) . <v(t E) )

We conclude, in the non-linear low-frequency regime the Di@8nes an in-
trinsic capacitance of a mesoscopic sample (which is coupleeries with a
geometrical one if any). That is in accordance with R&1L7 where the linear
response regime was considered. Th&edence consists in the following: In
the non-linear regime the DOS is related to thi@edlential capacitance while in
the linear response regime the DOS is related to an ordiregrgatance. An-
other diference we found concerns thi#eztive resistance. In the linear regime
for our system it has a universal value at zero temperaRye; h/(2¢%), see,
Ref. [112 and Eq. A.56). While in the non-linear regimBy; becomes depen-
dent on the sample’s properties (on the DOS) and the poltdhtin

Note the third contribution in EqA(63), J©), defines a dferential induc-
tancel,(t) = 0®/0l (where®d is a magnetic flux). The corresponding equation
can be calculated straightforwardly. We do not show it beeatis lengthy.
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A.2.8 Transient current caused by a step potential

Let the potential changes abruptly at some time morent

O, <1,
u(t) = (A.68)
Uo, t>1.

Strictly speaking we suppose that the potentiagjlumps from zero tdJg for
some time intervadt > fiugt. The lastinequality allows us to use the scattering
matrix, Eq. @.21), valid if all the relevant energy scales much smaller thmen t
Fermi energyuo. On the other handt should be small enough compared with
intrinsic time scalesr;, RC-time, etc) to speak about abrupt change.

Using Eqg. A.21) in Eq. (A.45) we represent a current as a sum of two
contributions [see Eq3(139]:

1(t) = 1) + 1009t (A.69a)
O - i € N g@p 9SO
1Dty = —j 2ﬂ%;s‘*(t) ot (A.69b)
o) T jske L 00
109(t) = ﬂ—eTs S (ST*Q e, cdy- > st msry).
s=1 g=0

(A.69c¢)

These equations are equivalent to equatiéndq).

Note originally Eq. A.45) for a time-dependent current was derived within
the Floquet scattering theory. However it can be cast ineofttm which
does not appeal to periodicity of a drive, see general E§.7( and particular
Egs. A.46) and (A.69) as examples. Then one can use this equation to calcu-
late aperiodic current also. Therefore, we use Bop9) to analyze a transient
current caused by the potential E4.§8).
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A.2 The chiral single-channel capacitor

A.2.8.1 High-temperature current

At high temperaturesly > T*, only the diagonal current9(t) survives.
For the potential (t), Eqg. (A.69), this current is (fot > tp): [119

T
1 9D(t) = %—RN(‘), (A.70)
T

whereN(t) = [t/7] is an integer part of the ratigr.

As we see at high temperatures the currfty,= 1(@(t), decays in time in
a step-like manner: It is constant over the time intervahd it exponentially
decreases with increase time. Over the time scale largerrtioe can write
|(t) ~ lge"®0)/™ wherely = €UqT/hand

D= — (A.71)

In (%)

Is a decay time. At small transparency of a QHC~ 0, the decay time is
m=T/T.

A.2.8.2 Low-temperature current

At lower temperaturesTo < T*, the current (t) = @) + 1"(t) still
decays in time but in addition it shows fast oscillationshvatperiodh/(eUp).
To calculatd "9 (t) we need to knovC(t), Eq. (A.69). We substitute Eq/A.68)
into Eq. (A.21b) and find,

r, gq=0,

S@ _ | e 1<q<N, (A.72)

Then we calculate,
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e s 1<s<N, 1<N,
SOSO = _Trsx (A.73)
e N+1l<s, VN,

and

s@+9g@+ = T2RA-1rs

e, 1<qs<N-s, 1<s<N-1,2<N,

(

N-s+1<qg<N,s<N,1<N, (A.74)
x{ @t

1<q<N,N+1<s,1<N,

1, N+1<gq, Vs, ¥N.

\

Finally we find,

O(N — s
Cs = )/N(t)TrSRN 1_<R(TUO;S —X(t)H(S—N—l),
TT
(A.75)
(t) 1_T it ¢y (1) ey 1 N
wa(l) = -lTe' " ————, x(t)y=€e"1n —0— -
1-Ré7" 1- R

Then we calculate from EgA(690):

10Dty = i—I / dE (-‘Z—E’) g {INE) + IO E) + IOLE)} , (A.76a)
0
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. @2 (N+1)
IO, E) = —RVIn (1-r |kL> {1 Teizns e’ézﬂ%} , (A.76b)
1-Reé" s
N>1 |skL27rU0) S 208 (N1
r ey @ (N+1)
JO(t,E) = - RV Z < {1 _Telr R lR’éZ’T} (A.76¢)
jskL s c 2720
JOE) =(-1) > O ity 1= ¢ Pk (A.76d)
1-Re

s=N+1

Note, the equations abovefidr from Eq. A.690 in the following. Using
Eq. (A.47) we reintroduced an integration over energyand then used the
following identity:

oo

r i2rs A 0f i2rns

Ef(E)er Ew) = — / E(-——2)esEwo, A77
/d o(E)e 2rs ] 9B\ "aE ) © (AT7)
0 0

The current ™d(t), Eq. (A.76), can be greatly simplified €Uy = nA:

IO, E) = RV In (1 - rekt) {1 —'Zﬂ—”“} , (A.783)
N>1
@Skl ps i0,. 8% t
(2) N —i2r— -
(t,E) = (-1)R Z - { _e } (A.78b)
J®(,E)=0. (A.78¢)

If in addition the temperature is low [such that ory = ug is relevant in
Eqg. (A.769)] and the Fermi level lies exactly in the middle between the-c
ity’s levels, rsgskel = (-1)SR¥?, then the total current,(t) = 19@(t) + (1),
reads as follows,
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A Dynamical mesoscopic capacitor

i t
I(t) = gT RO {1+ Sm(ﬂ%ﬂ@} :
(A.79a)
= (-1)°
[ = —In <1+ \/Fe> ~To(N-1) Y=
s=1
t<t: (A.79b)
Q sin(27nt)
) ==T {1—Tln (1+ VFz)} :
t>r71: (A.79c¢)
i t
() ~ Qr g {1—S'n(27mf>|n \/ﬁ} .
T mhn
A.2.8.3 Emitted charge
Let us calculate a charge,
Q= /dt{ld(t)+ 1)}, (A.80)
0

emitted from the cavity under the action of the potenti@l), Eq. (A.68). To
this end we integrate a currelft) over a time interval of duration(over which
N is constant) and then sum ovdrfrom zero to infinity,

o (N+l)r

Q=>" / dt{19¢) + 1)} . (A.81)

N=0 {

After the simple algebra we calculate,
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A.2 The chiral single-channel capacitor

I -
05 15 25 35 ey,/A

Figure A.3: The dependence of an emitted chaggen the potential
step heightJ, at zero temperature. The Fermi level is centered in the
middle of cavity’s levels.

i(kL-27 50
/dE( afo) In 1_29(. ) . (A.82)

_ reIkL

At T > T* above equation give®) = €?Ug/A.

At lower temperatures we consider the liniit— O when the density of
states can be approximated as a sum of delta-function peatexred at eigenen-
ergiesk, of an isolated cavity. Aty > A the spectrum near the Fermi energy
Is equidistantE, = Eg + nA. Then we use in EqA(.82),

%Sln(l—eiz”%) :—% + {{E_AEO}},

where{{X}} is a fractional part oKX, and find:

oo o (2) ({52} ((52}))

(A.83)
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A Dynamical mesoscopic capacitor

From this equation it follows that at zero temperature théttech (absorbed)
charge is quantized, Figh.3. For instance, ifug is centered exactly in the
middle of two cavity’s levels, then we get:
1 eU
Q=el||s+——||, ksTo=0, T—0, (A.84)
2 A
where [[X]] is an integer part oK.
At finite but small temperatureggTo < A, the deviationsQ from this
guantized value is:

1 — e(|1—2vO|—1)ﬁ

0Q = sgn(1- 2vp) ey,

: (A.85)

wherevy = {{eUy/A}} lies within the following interval: 0< vy < 1,
sgnX) = +1 for X > 0 and-1 for X < 0. The functiondQ(vp) has the fol-
lowing asymptotics:

A

VOFTOe_m’ Vo — 0,
- 1

6Q(Vo) = < £ Vo = 370, (A.86)
\ _(1_\/0)%e_ﬁ, Vo— 1.

The violation of a charge quantization is exponentially Braalow tempera-
tures unless we are at the transition point from one plateanather.

Next we consider how the quantization of an emitted chargéfested by
the finiteness of QPC'’s transmission fiogent. For the scattering amplitude
S(E), Eq. A.33), atT < 1 the density of states can be approximated by the
sum of Breit-Wigner resonancesq( with width I' = TA/(4r) < A,

1 r
v(E) = - zn: EEFIT (A.87)
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A.2 The chiral single-channel capacitor

Then at zero temperature Ty = O, the deviatioQ from Eq. (A.84) reads:

5Q=—0(2v-1) + =41 arctan= (A.88)
- — V - + - - ) .
Q 0 2 arctan

whered(X) is the Heaviside theta-function equal to zeroXox 0 and unity for
X > 0. The asymptotics fafQ(vp) are following:

(Vo 5, Vo — O,
oQ(Vo) = ¢ +3, Vo=370, (A.89)
| -(1-vo) %, vo— 1.

In contrast to the temperature, theet of a finite QPC transmission is more
crucial, sinceQ is linear in transmissiof.
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Appendix B

Mesoscopic capacitor as a particle emitter

In the below we consider the model introduces in Se€.1 in the large
amplitude ¢ A) adiabatic regime at low temperatures. We are particularly
terested in the case of a cavity with small transpareficyy 0. In this case
electrons and holes emitted by the cavity are well sepamat@se and we can
treat them as separate particles in quite intuitive man@ar.the other hand,
as we show, they are subject to the Pauli exclusion prin@pl# are able to
interfere. Therefore, they are quantum particles.

B.1 Quantized emission regime

First we show that at zero temperature the current genebgtdte capac-
itor slowly driven by the large-amplitude periodic potehtiJ(t) = U(t + 7),
consists of a series of positive and negative pulses canespg to the emis-
sion of electrons and holes. When we speak about an eleatndteé by the
cavity we mean the following. With increasing the poten@akrgyeU(t) the
position of quantum levels in the cavity changes. One of tt®upied levels
can rises above the Fermi level and an electron occupyisdenel leaves the
cavity. Therefore, the stream of electrons in the lineareestgte (which the
capacitor is connected to) is increased by one: The eledremitted. In con-
trast, whereU(t) decreases, some empty level can sink below the Fermi level.
Then one electron enters the cavity leaving a hole in thastref electrons in
the linear edge state: The hole is emitted. Therefore, thatgun capacitor can
serve as a single particle source (SPS). Since after theddérthe charge on
the capacitor returns to its initial value, such an SPS ethassame number
electrons and holes, i.e., itis a source of quantized aentsgr[L15.

Let the capacitor, see Fig\.1, is driven by the potential

U(t) = Ug + Uy cos(Qot + ¢) . (B.1)
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B.1 Quantized emission regime

In the adiabatic regime to describe a capacitor it is enoadtnow its frozen
scattering amplitude. In our mod&lt, E) is given in Eq. A.33b) where we
need to replacklL — kL — 27eU(t)/A. If in addition the temperature is zero,

keTo =0, (B.2)

then we need the scattering amplitud&at ug only. We rewriteS(t) = S(t, uo)
as follows,

S(t) = & i-T e (B.3)
T 1- VI-Tee’ '

where6, is a phase of the reflection amplitude of a QPC connecting Bt S
to the linear edge state,= VR &%, ¢(t) = ¢(uo) — 2reU(t)/A is a phase ac-
cumulated by an electron with ener§y= uo during one trip along the cavity,
¢(uo) = 6 + kel

To proceed analytically we assume that the amplitug®f an oscillating
potential is chosen in such a way that during a period onlyleve of the SPS
crosses the Fermi level. The time of crosstags defined by the condition
#(tp)) = 0 mod . Introducing the deviation of a phase from its resonance
value,s¢(t) = ¢(t) — ¢(tp), we obtain the scattering amplitude in the limit

T -0, (B.4)
as follows: T+ 2i66(0)
_ g 1 +2 o(t 5
S(t) = —€* T 25000 + O(T?). (B.5)

We keep only terms in the leading orderTin

There are two time moments when resonance conditions oweniitimes
of crossing). First time is when the level rises above therirézvel and the
second one is when the level sinks below the Fermi level. Wmt@ethese
times astg‘) andté”, respectively. At a timeg‘) one electron is emitted by the
cavity, while at a timetg” one electron enters the cavity, a hole is emitted.
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B Mesoscopic capacitor as a particle emitter

We suppose that the constant part of the potebliaccounts for a detun-
ing of the nearest electron levi}, in the SPS from the Fermi level. Then the
resonance times can be found from the following equation:

En+eU(tP) =y = U+ Ujcos(Qotf +¢) =0. (B.6)
0 0

For|eUg| < A/2 andleUy| < |eUq| < A — |eUp| we find the resonance times,

® _ 40 ¢ o_ 1 ( U0>
t = Ft - R 7 = arccos| — . B.7
0 0 QO 0 QO Ul ( )

The deviation from the resonance tim#® = t — t{), can be related
to a deviation from the resonance phasé®) = FMQst®), wheresM =
de/dtl,_»/Qo = F2rlelA™t /UZ — U3. With these definitions we can rewrite
Eq. (B.53 as follows:

4 (+) .
t—ty —II
%, t t(()+) sIz,
t—t{) +ir;
_do ) t—t9 il )
— O _I T
1, t—t5| >,
\

Herer; is (a half of) a time during which the level rises above or $iBlow the
Fermi level:

TA . TA
Arr ’eUl sin <Qotg°) + (p) ’ 4rle] /Uf — U§

QT = (B.9)

The equation®.8) assumes that the overlap between the resonances is small,
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B.1 Quantized emission regime

) — t(()_)‘ >T,. (B.10)

Substituting Eq.B.8) into Eqg. (A.12) we find an adiabatic current at zero
temperature (for & t < 7):

I(t) = ; I _ I . (B.11)

2 2
(t_tg—>) + T2 (t_tg+>) Iy

This current consists of two pulses of the Lorentzian shaipte kalf-width I",
corresponding to an emission of an electron and a hole. raieg over time
easy to check that the first pulse carries a chasghkile the second pulse carries
a charge-e.

In this regime the frozen density of states, E§.64) reads:

4 2 .\ 2
2 2
AT (t_tg—>) + T2 (t_tg+>) 112

V(t’ :uO) = s (812)

With this equation one can estimate the adiabaticity candit.e., the condition
under which the current? ~ Q3 is small compared to a linear @, current
|, see Eq.A.63). We usev ~ 1/(TA). In the linear response regime we have,
12 ~ ehv? d?U/dt?, and correspondingly find:

1@ Qg
Wlin ~ m ~ hVQO ~ ? < 1. (Bl3a)

While in the non-linear regime to leading order@I’, we can write: 1 ~
ehy (dv/ot) (dU/dt). Then usingv/ot ~ 1/(T,TA) we calculate:

|(2) h T.Qo
1D I,TA T2

Comparing Egs.K.139 and B.13b we conclude that in the quantized emis-
sion regime the adiabaticity condition is more restricteenpared to the linear
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B Mesoscopic capacitor as a particle emitter

response regime. For instance, if E.139 can be rewrittent asp < 7, then
Eg. B.13b can be rewritten asp < I';.

We calculate also the heat production ratein the quantized emission
regime. For the curren(t), Eq. B.11), we find to leading order iR, < 1,

T (I1%) = ;Fi (B.14)

and substituting it into EqA.20) we finally find, [L13

h 1

= —=. B.1
r T (B.15)

le

This heat flow is due to additional (over thg) energyr/(2I°;) carried by each
particle (electron or hole) emitted during the peribd

B.2 Shot noise quantization

Let us show that the quantized ac current generated by theeSRlEs in a
quantized shot noisd 1, 116 127 in a geometry of FigB.1.

We calculate the zero-frequency symmetrized correlatimctdon power
P15 for currentsl(t) andl,(t) flowing into the contacts 1 and 2. At zero tem-
perature it reads [see Ed.27)],

GZQ > 2 =~ -~ * & I~
Pra= " Dol {So1ySoastg {So2r S5ty - (B.16)

g=—00 7,6:1

The frozen scattering matr&o(t) for the entire system is:
eikFLnS(t)rC eikFletC
So(t) = : (B.17)
ekelag(t)te  ekelerg

whereL,; is a length of a path along the linear edge states from thexctinto
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B.2 Shot noise quantization

—~
1
iz i
{Te
11(t) 12(t)
N N

Figure B.1: The quantum capacitor is connected to the lirdge state which in
turn is connected via the central QPC with transmisdigrio another linear edge
state. The arrows indicate the direction of motion. The pidéU (t) induced by
the back-gate acting onto the capacitor generates an an¢lL(t) which is splitted
at the central QPC into the currenigt) andl,(t) flowing into the leads.

the contacty, rc/tc is a reflectioftransmission amplitude of the central QPC,
S(t) is a scattering amplitude of the capacitor. Remind thaeed ,emperature
we need all quantities only & = uo. After the simple algebra we find,

Pro==P0y_a{[Sq’ + |S*}. (B.18)
g=1
where o
Po = ERcTe ZO (B.19)

To calculate the shot noise we need the Fourieffapents,

T
Sq = %téqﬂot S(t), (B.20)
0
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B Mesoscopic capacitor as a particle emitter

which in the limit
<7, (B.21)

can be calculated as follows. The functi8(t), Eq. B.8), is almost constant
and changes only in a tiny(I";) vicinity of timest((f). Since only integrating
over those small intervals plays a role in EB.Z0), we can formally extend
integral,foT — [, and evaluate it closing the contour in the compigtane,
[= — ¢, in the upper, Im> 0, forq > 0 or in the lower, Im < 0, forg < 0
semi-plane. The corresponding contour integral is evathasing the Cauchy
integral,

(B.22)

s
t=tpj

N N
1 ° f;(t) 1 dv f;
ﬂ % dt; (t _ tpj)nj+1 - Z n—jl dtnj

j=1

wherety,; is a pole of then;th order,N, is a number of poles which lie inside
the integration contour.

The functionS(t), Eq. B.8), has poles() = tO) +ir, andt) = t$ —ir, in
the upper and lower semi-planes of the complex varigbkspectively. Simple
evaluation gives:

equzotg‘) , >0,
Sq = — 2QqI, g1l gt (B.23)
gk’ | g <0.

Substituting above equation into Edg.L8) and evaluating the following sum
to leading order in the small parameter Qol;,

Zq|sq\2 = 1+0(é), (B.24)
g=1

we finally find the noise,
P120=-2P9, (B.25)
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B.2 Shot noise quantization

which is independent of both the parameters of the SPS arnghtlagneters of a
driving potential.

If the amplitudeU; of an oscillating potentidl (t), Eq. B.1) is larger, for
instance ifn electrons anah holes are emitted during a period, then the noise
is n times largert, P1, = —2nP,, see the upper solid (black) line in Fig.5in
Sec.B.4

Remarkably the noise produced by the SPS is quantized. Thenent
Po, Eq. B.25), depends on the frequen®y of the oscillating voltage and on the
transparency ¢ of the central QPC. Therefore the quantization is not usifer

B.2.1 Probability interpretation for the shot noise

The nois€P1, EQ. B.25), can be understood as the shot noise due to one
electron and one hole emitted by the source during the p&rie®r/Qg. The
shot noise originates from the fact that in each particwanethe indivisible
particle has either to be reflected from or transmitted tghotlhe central QPC
[20]. Since an electron and a hole are emitted #fiedent times they are un-
correlated and contribute to the noise independently. eSthe electron-hole
symmetry is not violated in our system they contribute tasaaqually, lead-
ing to a factor 2 in Eq.§.25). Further for definiteness we consider an electron
contribution,

Q0
PE = — Py = —eZRCTCZO. (B.26)

The hole contribution can be considered similarly.

To interpret?'$ we introduce the following probabilities which are eval-
uated by averaging over many periods. First, we introducmg@esparticle
probability N, having a meaning of a probability to detect an electron at the
reservoira = 1,2 during a period. Taking into account that the SPS emits only

one electron during a period, we calculate for the circuderconsideration,

1The authors of the Refl1R1] considered the Lorentzian current pulses generated tefudbr shaped external
voltage pulses across two-terminal conductors and showethth shot noise is proportional to the number of
excitations. The operator algebra describing these éiaritais also derived.
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B Mesoscopic capacitor as a particle emitter

Fig. B.1:
Ni = Re, N = Tec. (B.27)

Second, we introduce a two-particle probabiliy; which means a probability
to detect two particles at fierent contacts during a period. Since in our case
there is only one electron emitted during a period, we have,

Nip = 0. (B.28)

And, finally, we introduce the particle-particle corretatifunction,

0N12 = N1z — NiN,. (B.29)
From Egs.B.27) - (B.29) we find:

oN12 = —RcTe. (B.30)

Comparing above equation and E&.Z6) we find the following relation be-
tween the noise power and the particle correlator:

eQ
Prp = 7057\&2. (B.31)

The equationsK.29) and B.31) show how the current cross-correlafoy, re-
lates to the two-particle detection probabilityf,. We will show that this rela-
tion holds also for circuits with several SPSs wiép # 0.

B.3 Two-particle source

Two cavities placed in series, Fi§.2, and driven by the potentiald, (t)
andUg(t) with the same period can serve as a two-particle source. Depending
on the phase étierence between the potentidls(t) andUg(t) such a double-
cavity capacitor can emit electron and hole pairs, or ed@chrole pairs, or emit
single particles, electrons and hole$1]
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B.3 Two-particle source

B.3.1 Scattering amplitude

If the cavities placed at a small distantgr ~ 0O, of each other, then the
Floquet scattering amplitude of a capacitor reads,

SP(En.E) = Y Srr(En Em)SLr(Em E). (B.32)

M=—0o0

HereS;r(En, E) is the Floquet scattering amplitude for a single cayjity,L, R.
Then introducing the amplitud®\?(t, E) whose Fourier cdécients define the
elements of the Floquet scattering matrix of a double-gasapacitor,

T
dt .
SPAENE) = [ TSPt E). (B.33)
0

and using Eq.A.21) for a single-cavity scattering amplitude, we find:

S E) = " ePesP() Y st - pr), (B.34)
p:O r=0

wherel; is a length of the cavity = L, R

B.3.2 Adiabatic approximation

In the limit of a slow excitationQ2g — 0, we can approximate the single-
cavity Floquet scattering matrix as follows:
2 oE

S;F(En, E) = Sjn(E) + +0(QF) , (B.35)

where S;,(E) is the nth Fourier cdécient for the frozen scattering matrix,
S|(t, E), of a single cavity. For the double-cavity capacitor weent/write:

Q0N dSP(E)

SPAEE) = SP(E) + —— 32

+hQAE) + 0 (QF) . (B.36)

235



B Mesoscopic capacitor as a particle emitter

Figure B.2: The model of a double-cavity chiral quantum capa The periodic
potentialsU, (t) = U, (t + 7) andUg(t) = Ug(t + 7) act uniformly onto the corre-
sponding single cavities connected via the QPSs with tresssomT,_ andTg to the
same linear edge state. Arrows indicate the direction ofenwant of electrons.

whereS® is a Fourier cofficient for the frozen scattering matrix of a double-
cavity system,

S@(t,E) = Sg(t,E)S.(t,E). (B.37)

Correspondingly, the inverse Fourier transform gives:
in9°SAt, E)
2 OtoE

To find the anomalous scattering amplitudig, E) for a double-cavity system,
we substitute Eq.K.35) into Eqg. B.32). Then after the inverse Fourier trans-
formation we find:

S@t, E) = SP(t,E) + + Qo At, E). (B.38)

SO(tLE) = Sk(LE)SL(LE) + 'haa_StLaa_SER

I [g Sn g 0S:
2 17 ot9E T TRAtoE [

(B.39)

Comparing Eqs K.38) and B.39) we finally get:
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B.3 Two-particle source

7Qo AL, E) = 7 { (B.40)

0SL 0Sgp  0S,. 0SR}
> .

ot 0E OE ot

B.3.2.1 Time-dependent current

In lines with calculations presented in Sécl.3we calculate the time-
dependent current generated by the double-cavity capagitm Q2 terms:

of oS oS@r
@) = / 0% @
O = o dE( 3 (A=) + 21003 (A

(9 i 0S@ 9SS
Rt — ) px A
+ t (2 E " 1790 S ) } . (B 1)

Using Eqgs. B.37) and B8.40) we find:

19)(t) = € / dE( afo) {3@N(t, E) + 3@ E)} . (B.42a)
J&D(t, E) = vi(t, E) dUL(t) + ve(t, E) dlf;(t), (B.42b)
ho(,dU du du
(2,2) v L 2 R L
JOLE) = 28t{ YL gt T VR dt + 2V VR— dt } (B.42c)

Herev(t, E) is the frozen DOS of the cavity= L, R.

B.3.3 Mean square current

To recognize a regime when both cavities emit particles Banaously we
calculate the mean square curredtl][
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B Mesoscopic capacitor as a particle emitter

T
(12) = /%t (12 . (B.43)
0

To leading order i)g we should keep oni?1 in Eq. B.42). Alternatively
one can express an adiabatic current directly in terms dfdleier codicients
S(2 for the double-cavity frozen scattering amplitude, E8.3(). Then, by
analogy with Eq.A.17), we get at zero temperature:

(1% = eZQO {’S‘Z) ’S@) } (B.44)
To calculate the Fourier céeients,
Td
t .
SEE / FéqﬂotsL(t) Sg(1), (B.45)
0

we proceed similarly to how we calculated Ef.Z3). For amplitudesS;(t) we

use Eqg. B.8) with lower indeces andg indicating cavity-specific quantities
Orj, I'zj andtg?, j = L, R We assume that each cavity emits only one electron
and one hole during a period. Then the functi@&) for 0 < t < T have one

pole,tl(o‘j) = t(()}) + il';j, in the upper and one poIE(;j) = t((ﬂ) — il';j, in the lower
semi-plane of a complex variabieTherefore, we calculate:

Sk (15) Sta+ St (t62) Sre» 9> 0.
S¥ = (B.46)

Sr (15) Sta+ St (t5R) Sre» a<0,

where,S 4 are given in Eq.8§.23) with 6, I andtgi) being replaced by, I';;
andtg?, respectively. The squared Fourier fla@ent reads:
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B.3 Two-particle source

2 2
P = [sn (40)][" 5ol + |5t (84)[ 5w+ 287,

(B.47)
&0 = 2R {Sp (1)) SLeSL (182) Ska} -

wherey = — forq> 0 andy = + forg < 0.

To proceed further we need to define more precisely whetherctwvi-
ties emit particles at close or atfiirent times. To this end we introduce the
difference of times,

AP =150 - 152, (B.48)

wherey = ¥ andy’ = ¥ depending on particles (an electron or a hole) of
interest, and compam(ff’;{ ) to the duration of current puls&s,, I';r.

B.3.3.1 Emission of separate particles

First, we assume that all the particles are emittedfédint times,

‘At‘ﬁf’g') > T Tk (B.49)

In this case,
s (t57) =" (B.50)

wherej # j, and from Eq. B.47) we find:

2
’ s@ 402 {12, 2090 | 12, 2000 ) | )

(B.51)
&0 = 8QFT T pe ¥+ cos <qQoAtEY’F’§ )> .

Next we need to sum up ovgrn Eq. (B.44).
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B Mesoscopic capacitor as a particle emitter

It is convenient to introduce the following quantities:

AL = ie—zqszorﬂ _ e 1 en). (BS2)
1,] - q:1 - 1_ e—ZQorTj - ZQOFTJ ’ .

© ~1) cosQpAt) — g ol
A, = e %0l cosOuAL) = (
2 ; (€20A1) 2 cosQoAt) — coshQol';s)
> 1
At>T S+ O(Qolws) (B.53)
. _ -1) Sin(QpAt)
Ay = e %= gin@@QoAt) = (
3 ; (0€20AD 2 cosQoAt) — coshQol';s)
or 1 /QoAt
At>T: éctg <OT> + O(Qolrs) . (B.54)

wherel';s = I, + I';r and At = Atg’;{). Then we see, to leading order in
Qol'rj < 1 the term with&l) does not contribute to the sum ovgrunless
Atgg) < FTJ'.

Substituting Eq.8.51) into Eq, B.44) and using the following sum,

—~ 405 o1 4033
we find,
e/ 1 1
TAD = = — + . B.55
2 ﬂ(rﬂ m) (B.55)

Comparing above equation with a single-cavity result, Bgl4), we conclude:
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B.3 Two-particle source

If all particles are emitted at fierent times then both cavities contribute addi-
tively to (12). Note, because of EgA(20) the same is correct with respect to a
generated heat flow.

B.3.3.2 Particle reabsorption regime

Let one cavity of the capacitor emits an electron (a holehatime when
another cavity emits a hole (an electron). We expect thasdiece comprising
both cavities does not generate a current, since the aeiltted by the first
cavity is absorbed by the second cavity. The subsequentlaatins of both the
quantity<I2> and the shot noise (in SeB.3.4.2 support such an expectation.

So, we suppose that,

At(+ ) > At( +) < l_‘TL, FTR s
(B.56)
At(_ o) . At(+ +) > FTL? FTR .

In this case¥) in Eq. (B.47) still does not contribute, since it dependsmﬁf;‘)
which is large. Other quantities, we need to calculate Bg}4), are the fol-
lowing:

- 0. AT (L -ToR) (+) 0. M -TwR)
S t( ) — e|9r|_ LR T 7 — @b 2R 7 7!
L \*pR AR i +TR) St tor € AR +H (T 4+ThR)

SR (t&?) = eigrR At(LZI;QJr)"'i(FTL_FTR) SR (tS—L)) — eiGrR At(LTI’?:)_?(FTL_FTR) )

A+ (e +Teg) AC (T Tor)

After squaring we find,

2 2

e (58)] = 3w (6R)[ =7 (at)
2 2

e (68)] = s ()] =7 ()
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B Mesoscopic capacitor as a particle emitter

where
(At)? + (T, - [;R)?

(A2 + (T + ToR)?

y(At) = (B.57)

Remarkablyy(At) is independent of}, i.e., when an electron and a hole are
emitted at close times then all the photon-assisted prbtiediare reduced by
the same factor. Therefore, we can immediately write istdd&q. B.55) the
following equation,

70 = g (F v ) [ (360) o (36) ) e

For the identical cavitied;;. = I'-r, emitting in synchronisrrx)t(L}j) = At(L}{) =
0, the mean square current vanishes. Therefore, one canaay this case the
second R) cavity re-absorbs all the particles emitted by the fittqavity.

B.3.3.3 Two-particle emission regime

Next we consider the cases when the two particles of the samdeake
emitted near simultaneously. Due to the Pauli exclusiomggple it is impossi-
ble to have two (spinless) electrons (or two holes) in theesasrate. Therefore,
the second emitted particle should have energy larger tiafirst one. To be
more precise, the electron pair (or the hole pair) has erlarggr then the sum
of energies of two separately emitted electrons (holesgrédfore, the heat flow
I should be enhanced and, because of EQR®{), the mean square current also
should be enhanced [compared to E§56)].

We assume:

AR AR < T, T,
(B.59)

AR (AR > T, Tir.

In this case the two poles &)(t) = S (t)Sk(t) as a function of a complex time
t in the upper (antr in the lower) semi-plane become close to each other, that
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B.3 Two-particle source

affects calculations significantly. Now the quantitidés Eq. B.53), and Ag,
Eqg. (B.54), become of ordeA, j, Eq. B.52). Therefore, we should keefy’ in

Eq. B.47). From Eq. B.59) it follows thathAt“X) < 1 and we find:

Qo(I" I
A, = ol + ') +0(1), (B.60a)

<Q Atcw)) + QF(Crp + Trr)?

QAL
Ag = +0O(1). (B.60b)

(0 At(”)) + 02Ty +ToR)?

Also we will use the following quantities,

— @b At (T o) S, (t (+) e|9L AR +i(Co +TeR)
A+ —Tog) At(L+R+)—|(1"TL TR’

_ gt M) g ) = gt AR (T +Tor)
AR +(T-ToR) M i(T -Tr)

)~ AL
Sk (t(—)> : (té R)) _ dOmt0) (ax) (FTL+rT2R)z+2|AtL,R (T +Tr)
(M) 4o Tor2

2 A+t
Sr ( (+)> St ( (+)) = @(Or=br) (At(LJ’r"?Jr)) ~(Cr TR -2 R (T +TR)
2
(AMED) +Ta-Tor)?

b

b

and some squares,

2
‘S ( (_) 2 S (_) 2 (At(LTI’?_)) + (FTL + FTR) (B 61)
() - o) - CEL e
(AMED) " + (T~ Ton)?
2 2 (At(+’+)) ‘s (Te + TR
(+) _ (+) _ L,R 7L 7R
o 60 - s ) - ) s
(ACR) + (T - T2
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B Mesoscopic capacitor as a particle emitter

In Eg. B.44) we need to calculate the following sum,

ZCIZ’S&Z)IZ = 01 + D3, (B.63a)
g=1

where

@y = S <t§,}3)‘2 ) ¢ {ISual*+ |Swel*} =[St (tl(o_Fg)‘z

o=1

(B.63b)

2
82A1 . (At(L,l’? )) + (FTL + FTR)Z 1 1 1
0 (AfR) TRt VT TR

i=L.R

and

O, = g:lqué_) = Zgzlqz‘R {SR (tél)> SLgSL (tfog) Fe,q}

(B.63c)

2
B 802 AT (MER)) -(C+Ter)? gop, 206D (CasTor) 2
(M) T % o D [

From Egs.B.60) we calculate,

2
s 2
ony (M) =R oA —2MD ([ 4TR)

GFTL - 2 2> GFTL - 2
Qo((m&fé)) +(FTL+rTR)2) Qo((AtEY'F?) +(rTL+rTR)2>

2

and

2 2
g ACTR) (3(Atﬁg)) —rfz) n —2Atﬁg)((mﬁg)) —3r§2)
2 — 3 —

az, = 2 NS a% 2\
" QO((Atﬁg)) +r§2) : Qo((mﬁg)) +r§2)

9
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B.3 Two-particle source

Using above equations in EQB 639, we find,

8FT L FT RH

B <(At( )> | e FTR)Z) ((At(ﬁq_)) 2 + (FeL + FTR)2> °

)’ _ 2 (- 2
- -2re{ () 13 ) (3(at) - 13
2 2 2 2
_2 (At(L};)) ((At&;)) - 3r§2> } = 2l ((At&;)) + r32>

After the simplification it becomes:

O, =

with

_16FTLFTR(FTL + FTR)
2 2 :
Qo <(At(ﬁe—)> + (CrL - FTR)2> <<At(th_)) + (Cr + FTR)Z)

Next, substituting EqsB.630b and B.64) into Eq. B.639 we get:

D, = (B.64)

2 2
(FTL+FTR){ <(At|(:|’?_)) +(FTL+FTR)2) —lGl—EL]—ER}

= 2 2
Qo Lr( (A))) +(C-TR)2 ) [ (ALSS)) +(T,L+T,R)2
L.R LR

o) 27 ()}

2
wherey(At) is defined in Eq.B.57). The sumd ¢, ¢? ’S(_Zq)‘ gives the same

result but withAt{;™ being replaced byt{;". Finally, from Eq. 8.44) we
have the mean square current,

i o [SOP
o=1 ;

2
r,z((mf,ﬁ)) +r§z+4rTLrTR) L (

" N2 Qo
Qo iR ( (At‘u’q )) +r§z)
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B Mesoscopic capacitor as a particle emitter

100 (20 ) (47 (36) - (a)} . @o

For the identical cavitied,;, = I';g, emitting electrons and holes in synchro-
nism,At(L};) = At(L}j) = 0, the mean square current, hence the heat production
rate, is as twice as larger compared to the one in the regisepairately emitted
particles, Eq.B.55).

Combining Eq. B.58) with Eq. (B.65 we obtain an equation describing
all the considered regimest]]

4% = g <ri " riR> {2 Y (At(iﬁe”) +y <At(iﬁ€)>

-y (at)) -y (AR) } .

Note that this equation is in the leading ordeKlpl’;; < 1. The higher order
corrections arise from the curred©? in Eq. (8.42) and from approximations
we made evaluating the Fourier ¢heients, Eq. B.20).

(B.66)

B.3.4 Shot noise of a two-particle source

Let the double-cavity capacitor is connected to a lineaeedgte which in
turn is connected to another linear edge state via a ceni@l @ith transmis-
sionT¢, Fig. B.3. Our aim is to investigate how the shot noise, arising when
emitted particles (electrons and holes) are scattere@ athtral QPC, depends
on the regime of emission of the double-cavity capacitor.

By analogy with the single-cavity capacitor case, B2)18), we can write:

Pyp = —%Zq{ysff)\ﬁ S 2}, (B.67a)

a=1

246



B.3 Two-particle source

11(t) I2(t)

T

Figure B.3: The double-cavity quantum capacitor is corggbtd the linear edge state
which in turn is connected via the central QPC with transmis3 ¢ to another linear
edge state. The arrows indicate the direction of motion. gdtentialsU, (t) and Ug(t)
induced by the back-gates acting on the correspondingesigénerate an ac currdi(t)
which is splitted at the central QPC into the currdn() andl,(t) flowing into the leads.

and taking into account th&® = S, Sg:

P12=-Po Z q { ‘(SLSR)q‘Z + ‘(SLSR)—q|2} : (B.67b)
g=1

To evaluate this cross-correlator for théfeient emission regimes we proceed
similarly to what we did in Sed®.3.3

B.3.4.1 Emission of separate particles

If all the particles are emitted atfeierent times, Eq.K.49), then calculat-
ing the sum over we can neglect the terg}” in Eq. (8.51). Then using the
following sum (to the leading order Rql;; < 1),

i qe—ZQQOFTj = -1 aAl’j ~ 1
=1 2Q oI, j 49%1_%- ’
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B Mesoscopic capacitor as a particle emitter

(see Eq.B.52) for Ay j) we calculate,

P = -4, (B.68)

This noise is due to four particles (two electrons and twegpémitted by both
cavities during the periotl = 2r/Qy.

B.3.4.2 Particle reabsorption regime

Under conditions given in EqB(56) all the photon-assisted probabilities
are reduced by the same factor, see BdgpT). Therefore, we can immediately
write instead of Eq.E.69) the following equation,

Prp = —2Pg {y <At§jg)> ry <At§};’)} . (B.69)

If electrons and holes are emitted at close times, then behnbise®,,
Eg. B.69), and the mean square currérh@}, Eqg. B.598), are suppressed. On
the other hand their ratio remains the same as in the regiramisision of sep-
arate particles. It tells us that in the reabsorption redgimeearely emitted (not
absorbed) electrons and holes remain uncorrelated.

B.3.4.3 Two-particle emission regime

We will show that the shot noise is not sensitive whether tfacteons
(two holes) are emitted at close times, Bg.59), or not. This means that two
particles are scattered at the central QPC independerkéythky are emitted at
different times. Therefore, despite the fact that the energymétectrons (two
holes) emitted simultaneously is enhanced compared tautineo$ energies of
two separately emitted electrons (holes), they remain makaed rather than
constitute a pair.

To calculate Eq.E.67) we use Eqs R.47), (B.60), and B.61) and evaluate
the following sum,
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B.3 Two-particle source

>oa[sP = Fi+Fa, (B.70a)
g=1
where
O\ 2 . 2 2 O\ |2
‘SL <tpR)‘ q{‘SL’q‘ + |Sra| } = -2 ’SL <tpR)‘
g=1
(B.70b)
2
(~-) 2
OA <AtL,R ) + (CrL + IhR)
x Y 1ot = ,
: aFTJ (_ _) 2
j=L,R (At > + ([T —T4R)
and
Fo= Z ac{?) = 8Q3 1 I'r
. 00 IR (B.70c)
X%{SR (té)_l_)) Sik_ (tfj)_R)> e’wa_@rR) Zlqe—qﬂorrz @aQoAt }
o=

Using the producBg (tfo‘L)) St (tl(o‘FZ) given just before Eq.B.61) we write:

F,— 8%l { — 2Ty Z e %= sin (QQOA'[(L};)>

(At{jg)) +(Ty ~ToR)?

((At( )) o 1“32) S qe 9l cos (qQoAt( )> } ,

g=1

and rewrite it, using EqsB(53) and B.54):

2
- (=) 2
Fo = = {ZAt(L’é)rTE T (AtL’R ) T A }

2 )
e B
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B Mesoscopic capacitor as a particle emitter

In the regime under consideration the derivatigds/ol',, anddAz/ol,. are
given just below Eq.B.63). Then we find:

2 2 2
(_8FTLFTR){ (ZA'[I(:I’?_) FTZ) + ( (At(Ljh_)) _FEZ) }
_SFTLFTR

2 2 7T )2 2
{(At(L,é)) +(FTL—FTR)2}((AtE,ﬁ<’) +F$z) (M) T

Fp=

Substituting above equation and ER.7{0b) into Eq. B.709 we get,

)2 2
(AtL,I’? ) +(FTL_FTR)

2
(AMGR) 42 T8l T 5
2 - .
(Atl(_jl’?i) ) + (FTL _1—“rR)2

2 =2
(ARY) +re -T2

> qls@)’ =1
g=1

2
The same result is for negative harmonig$;’ ; q ‘S(_Zg’ = 2.

Thus the noise power, EQB(67), is P .r = —4P,. This is the same as in
the regime when the particles are emitted #iiedent times, Eq.K.69). There-
fore, the noise is not sensitive to whether two electrons (iales) are emitted
simultaneously or not. Note the equatid§9) is applicable for all considered
regimes.

B.4 Mesoscopic electron collider

Consider the circuit presented in Fig.4 where the two quantum capac-
itors (two SPSs) are placed in arms located at thk=idint sides of the cen-
tral QPC. The particles emitted by theffdrent SPSs are uncorrelated, hence
they contribute to noise independently. However if the tyW&SS emit electrons
(holes) simultaneously, then these particles become lateteafter scattering
at the central QPC. The correlations arise due to the Paadlugxn princi-
ple: Two electrons (holes) can not be scattered to the sagee stdte, instead
they are necessarily scattered tffelient edge states and arrive dtelient con-
tacts. Therefore, in this regime the system comprising tR8sand the central
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B.4 Mesoscopic electron collider

L
B

11(t) 15(t)

— A —

S—

Figure B.4: Two quantum capacitors are connected to lingge states which in turn are
connected via the central QPC with transmissign The arrows indicate the direction of
motion. The potentiald (t) andUg(t) induced by back-gates acting on the corresponding
capacitors generate ac currehtg) andl,(t) at leads.

QPC serves as a two-particle source emitting only partiolesirs whose con-
stituents are directed tofterent contacts.

By mere changing the phasdiérence between the potential driving two
cavities? one can switch the statistics of particles emitted duringréog from
classical to quantum (fermionic).

B.4.1 Shot noise suppression

The elements of the frozen scattering maég(t) for the circuit under
study, Fig.B.4, are:

2This phase dference controls a flierence of emission times of particles exiting the cavities
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B Mesoscopic capacitor as a particle emitter

X eelug, (t)re  @kFlzSp(t)te
Sot) = _ : (B.71)
gkr LZlSL(t)tC ke LZZSR(t) e

whereS;j(t) is a frozen scattering amplitude of the capacitot L, R. Other
guantities are the same as in E&.X7). With this scattering matrix from
Eq. (B.16) we calculate:

Pio=-P0 Y a{|(SiSr)e|’ +|(SiSR o[’} - (8.72)
o=1

Comparing Eq. B8.72) with Eq. B.67H we see that the fference is only a
replacemen§,. — S;. From Eq. B.8) we conclude that the complex conjugate
scattering amplitude corresponds to emission of a hole lgatren) if a bare
scattering amplitude corresponds to emission of an ele¢&rdole). Therefore,
one can use the results of S&3.4if one to replacert{ z” — At'y?, etc.

If two capacitors emit particles atfeierent times or they emit an electron
and a hole at close times, then the noise,

is due to independent contributions of four uncorrelatatiggas emitted during
a period by both capacitors. Note the possible collisiomalactron and a hole
at the central QPC does ndfect the shot noise, since an electron and a hole
have diterent energies (above and befotlie Fermi energy, respectively) and
are not subject to the Pauli exclusion principle which cdeltl to appearance
of correlations crucial for a noise.

In contrast, if two electrons (two holes) are emitted ateltiisles,At(Lfg) =

t5) 153 < T, Tr (AR = 15—t < T, Tor) then the noise is suppressed:

[116
Pro = P+ P, (B.74a)

3There is no contradiction with the fact that a hole carriegsitive heat, see EqB(15). Since heat is defined
as an extra energy obtained by the reservoir with fixed cherpmential. To maintain it fixed we need to add one
electron with energy, after a hole will enter the reservoir.
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B.4 Mesoscopic electron collider

where electron and hole contributio ?2) andfP(lhz), are:

4 )

_ a, I
P9 = 2P0y (M{R)) = -2Poq 1 - R
() -6R) +1% |
( )

a,.T
P = —2Pey (AR) = -2P0{ 1 - R
(667 -63) "+ 12 |

We give the noise as a sum of electron and hole parts sincecthryibute
independently.

When each of the time ﬂérencesAtEf’F){) is larger than the sum of half-
widths of current pulses, then the two sources contributa shot noise in-
dependently, FigB.5, lower solid (green) line. In this case E@.{4) leads to
Eqg. B.79. In contrast if there is some overlap in time between thegamwave
packets arriving at the central QPSY ;) ~ Ty + I'ig (AtU5) ~ Ty + i),
then the correlations between electrons (holes) ariselenaddise decreases. In
the case of the full overlamtg’;{) = 0 andI';. = I';r, the noise is suppressed
down to zero:

\ . (B.74b)

\ . (B.74c)

\

P9 =0, if ) =1, (B.75a)
P =0, it ) =1}, (B.75h)

In Fig. B.5 the dashed (red) line shows a noise generated by the twdadent
sources as a function of the amplitude; of a potential acting onto the capac-
itor L. If U_1 # Ur1 then the times when particles are emitted by théedent
sources are ¢lierent. In this case both sources contribute to noise indepen
dently. However ifeU, ; approachegUr; = 0.5Ag then the time dferences
At — 0 that results in a suppression of a shot noise.

In contrast to the case considered in &8.4.2 where the noise decreases
together with a current, here the noise vanishes while thects remain non-
zero, I4(t) # 0, Ix(t) # 0. Taking into account the conservation law for the
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B Mesoscopic capacitor as a particle emitter

0
—_ |
S |
e i
kS L )|
| / N
| - - -
-4 \
|
_6_ \————

Figure B.5: The nois@;,, Eq. B.72), as a function of the amplitudéd, ; of a potential
UL(t) = ULp + UpL1cosQot + ¢ ) acting upon the left capacitor, see Fi§j4. Upper
solid (black) line: The right capacitor is stationary. Loveelid (green) line: The right
capacitor is driven by the potentidk(t) = Uro+Ugr1 COSQot+¢r) Which is out of phase,
¢r = m, and have an amplitudsJz; = 0.5Ag. Dashed (red) line: The right capacitor is
driven by the in phase potentiglz = 0, with amplitudeeUg; = 0.5Ag. Other parameters
are:eUL’o = eUR’o = 0.25ARr (AL = AR), QL= 0, T, =Tg=0.1.

zero-frequency noise powezﬁzl,2 Pos = 0, we derive from Egs.H.75) that
P = P = 0, wherex = e, h. In other words, there are regular electron (hole)
flows entering the contacts = 1, 2. This regularity is due to the following.
First, the electrons (holes) are regularly emitted by thesss. And, second,
due to the Pauli exclusion principle, each two electronded)ancident upon
the QPC will be scattered intoffierent contacts.

While electrons (holes) emitted by thefférent SPSs are statistically in-
dependent, after the collision at the central QPC electflooles) become cor-
related (i.e., indistinguishable in the quantum-statadtsense) since they lose
their origin: It is impossible to indicate which SPS emittd electron (hole)
arrived at the given contact. Thus the disappearance of tansige [L16 in-
dicates an appearance of the Fermi correlations betweetnagie (holes) after
colliding at the QPC. Thisféect looks similar to the Hong, Ou, and Mandel
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B.4 Mesoscopic electron collider

[123 effect in optics. However as we show for electrons the prolighdi de-
tect particles at the fferent contacts peaks while for photons it shows a dip

[123.

B.4.2 Particle probability analysis

For definiteness we will concentrate on electrons. Remiatdbring the
period T = 21/Q, each SPS emits one electront@t andt{d, respectively
for L andR sources. The single-particle probability, i.e., the probability to
detect an electron at the contact= 1, 2 during a period, is independent of
the time dﬂferenceAt(L}{) = tg‘L) - tg‘R). In contrast the two-particle probability
N1o, i.e., the probability to detect electrons at both contakcisng a period
depends crucially on this time fiiérence. Moreover att{z) = 0 the two-
particle probabilityN,, becomesa joint detection probabilityintroduced by
Glauber [L24], which means a probability to detect two particles at twotaots
simultaneously, i.e., on the time-scalg < 7.

B.4.2.1 Single-particle probabilities

At At ;) > T, = [ = [ the particles emitted by thefeiérent sources
remain distinguishable and we can write,

Ny = NP+ NP (B.76a)
Ny = NP+ NP (B.76b)

where the upper indiced ) and R) stand for the origin of an electron. The
single particle probability can be calculated as the sqoéie single-particle
amplitude for the particle emitted by some SPS to arrive atgilien contact,

NOD = |A,;]%, with

Ay = d¥trre, A = R,
(B.77)
.A2|_ = eikFLZL tc, AZR = eikFLZR c.
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B Mesoscopic capacitor as a particle emitter

wherel,; = L,c + Lcj is the distance from the sourge= L, R though the
quantum point conta@ to the contactr = 1, 2 along the linear edge state, see
Fig. B.4 and compare to EqB(71). Then we find,

N = R, NP = T, (B.78a)
ND = 10, NP = R, (B.78b)

and
N1 =N, = 1. (B.79)

For At(L}() = 0 we can not distinguish the SPS an electron came from.
However apparently one electron should be detected at eathat. Therefore,
Eq. B.79) remains valid.

B.4.2.2 Two-particle probability for classical regime

At Atz > T, = T = [:g the electrons emitted by theffiirent SPSs
remain uncorrelated. Therefore, we can write,

NI = NN NED = NP (B.80)

For N{) see Eqs.B.78). Taking into account that the two-electron probability
can be represented as follows,

Nip = N + NER L B o B (B.81)

and that a single electron can not be detected at two distaceq

Ni7 = N{7 =0, (B.82)

we find,
Nip = NP NBD = RZ 4+ T2, (B.83)
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B.4 Mesoscopic electron collider

Note N1, < 1 since with probabilityR-T¢ the two electrons can reach the same
(either 1 or 2) contact.

Using Eq. B.79) we find,0N12 = N1o—N1N» = —=2R:T¢, that s, by virtue
of Eg. B.31), consistent with a shot noise due to electrdhg = —-2Py, see
Eq. B.73) for the total noise. Alternatively we can proceed as foBo8ince in
this regime the electrons emitted by th&elient SPSs are statistically indepen-
dent, the particle correlation functiofiN,> = N1, — N1N>, can be represented
as the sum,

oN12 = SN + NP, (B.84)

where the single-particle correlation functions are,

NG = -NPND | oNE = -NPINP. (B.85)
Using Egs. B.78) we find againgN1> = —2R:Tc.

B.4.2.3 Two-particle probability for guantum regime

If AtTz” = 0 then the electrons collide at the central QPC and become
correlated, i.e. they acquire fermionic statistics. Thmes we can not use
Eq. B.80). Strictly speaking, we even can not introduce the uppeicey]
since we can not indicate the origin of an electron arrivihtpe given contact.

In this regime we can still use EqB(79). Since there are no events with two
electrons arriving at the same contact, we find:

Npp = 1. (B.86)

This quantum result is independent of the parameters of énérad QPC in
contrast to its classical counterpart, E§.§3). Using Egs. B.79 and B.86)
we calculate the particle correlation functiaii,, = 0. This is consistent with
a zero noise result, EgQB(759, if one uses Eq.K.31) relating a shot noise and
a particle correlation function.
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B Mesoscopic capacitor as a particle emitter

The result given in EqK.86) can also be calculated as a two-particle prob-

ability, N1, = \A(2)|2. Note due to colliding at the central QPC electrons be-
come indistinguishable. Then scattering of two electratescribing by the
following two two-particle amplitudesi® = Ay Az and AP = — A1pAa %,
result in the same final state. Therefore, these amplitudesid be added up,
A® = AD 4+ AP and the two-particle amplitude can be written as the Slater
determinant,

A Ar

A® = det . (B.87)
Ao Ar

Using single-particle amplitudes given in E@.77) and taking into account
thatLy + Lor = Lir + Lo (due to crossing of the trajectories at the central
QPC) andct; = —rite (due to unitarity) we arrive at EQB(86).

Comparing Egs.K.86) and B.79) one can see thaf;o, = N1 N». This
equation seems to tell us that the arrival of electrons atconéacts is not cor-
related with the arrival of electrons at another contactweiger we found that
electrons arrive at contacts in pairs, i.e., electrons @omgly correlated. This
seeming inconsistency is due to a special value of singtecfgprobabilities,
Nj = 1. In the next section we consider a circuit with < 1 when the single
particles as well as the pairs of correlated (due to colgjdihthe central QPC)
particles do contribute to noise. We show that collidingipbes are positively
correlated.

B.5 Noisy mesoscopic electron collider

In Fig. B.6 we show a set-up where the regular flows, emitted by the two
quantum capacitor§, and Sg, become fluctuating (noisy) after passing the
guantum point contactls andR, respectively. There are events with two, one,
or zero particles entering the central part of the circuRQJ} and contributing
to the cross-correlatdP,, of the currentd,(t) andl,(t) flowing into the con-
tacts 1 and 2, respectively. Under the conditions when teetr@ins (holes)
emitted by the dferent SPSs can collide at the quantum point cor@athere

4The sign minus is due to fermionic statistics: Two electraresinterchanged in incoming scattering channels
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B.5 Noisy mesoscopic electron collider

i

I - C I

R
a=4

Figure B.6: The two noisy flows originated from the quanturmpoontactd. and
R can collide at the quantum point contatt

are dfferent contributions int@®1,.> Namely, there are single- and two-particle
contributions. In the case if the two particles enter the GiR&y become cor-
related (after colliding at the contaC) and cause a two-particle contribution
to the noise. While if only one particle (either from the atiiL or from the
contactR) enters the CPC it causes a negative single-particle tomitvn, see
Eq. B.26). Inthe casd | = Trthe cross-correlator is zer3;, = 0. Therefore,
the two-particle contribution is positive: After collidgnat the quantum point
contactC the two electrons (holes) become positively correlated.

B.5.1 Current cross-correlator suppression

The elements of the frozen scattering maéb(t) for the circuit, Fig.B.6,
we need to calculat@,, are the following:

SIf the electrons (holes) do not collide at the cont@dhen there are only negative single-particle contribugion
into the noise
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B Mesoscopic capacitor as a particle emitter

Soqa(t) = €turre, So1a(t) = e lezrpte

(B.88a)
Sora(t) = €tus (Dtre,  Spaa(t) = €XFLuSy(Dtte,
Soo(t) = €*Flar te, So.2o(t) = €kFlezrgre

(B.88b)

Sooa(t) = €8S (Dtrte, Sooa(t) = €XFL2Sy(t)trrc

where the lower indicek, R, andC at the reflection and transmission @oe
cients denote the corresponding quantum point contaciaglisese elements
in Eq. (B.16) we calculate by analogy with Eq®.(74):

Py = PG + PGP+ P 4+ P2 (B.89a)
where the single particle,

PN = POY = P (T2+T3) , (B.89b)

and the two-patrticle,

A T,
P2 = 2P,T Tk LR , (B.89c)

2
(60 - t6) "+ (T + Tog)?

AT, T,
P2 = 2PT, Tr LR , (B.89d)
(t(+) t(+)) + (FTL + FTR)Z

contributions to the current cross-correlator are intasdl The cross-correlator
P12 Is given in Fig.B.7. The equation.899 describes a shot noise at the
second plateauM;, ~ —Pg) of this plot.
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B.5 Noisy mesoscopic electron collider

-20 [ | . | . | . | . | .
0.0 0.2 04 0.6 0.8 1.0 1.2

eU_1 (4)

Figure B.7: The current cross-correlafp, as a function of the amplitudg, ; of a
potentialU(t) = U o + U1 cos(Qot + ¢ ) driving the left SPS. The parameters of
SPSs are the same as in Fg5 buty, = ¢r. Other parameters aré; = Tg = 0.5.

In the classical regimeAtEf’F’{) > I, I''r, when the emitted particles
remain statistically independent, the two-particle cdition is not present,

2
9’(1"2’2) ~0 (FTJ-/AtEY’F’{)> ~ 0, wherex = e, h, and the cross-correlator,

P1o = 2P {TZ + TR}, (B.90)

Is due to a contribution of single particles only. In thissdial regime the
measurements at contacts 1 and 2 can give the following ma&sgduring one
period separately for electrons and holes): (i) Two patidan be detected at
the same contact, (ii) two particle can be detectedfétm@dint contacts, (iii) one
particle can be detected at either of contacts, and (iv) nicpgcan be detected
at all.

While if the electrons (holes) can collide at the central QBIQ’F{) =0, the
cross-correlator is suppressed compared to BEQQ). Assumingl’,. = I';g =
I'; we find from Eq. B.899,
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B Mesoscopic capacitor as a particle emitter

Pro = —2Po(Tr—TL)?. (B.91)

The current cross-correlator becomes zero in the symnestse, T, = Tr. We
should stress that the current flowing into either of costéchoisy,(§12) > 0,

a = 1,2, despite the fact that the current cross-correlator ipiegsed. This
suppression is due to a positive two-particle contributompensating a neg-
ative single-particle one. This regimefi@irs from the classical one considered
above in two points: (i) There are no events with two eledr@les) detected
at the same contact, (ii) if two electrons (holes) are deteat diferent contacts
they are detected simultaneously.

B.5.2 Particle probability analysis

As before, we concentrate on electrons. The holes can b&deoedg in the
same way.

B.5.2.1 Single-particle probabilities

The single-particle probabilities are insensitive to Wwieetelectrons emit-
ted by diferent sources can collide at the central quantum point cbGtar
not. Therefore, we assum 3z’ > T, [r and use Eqs.B.76) with the
following single-particle amplitudes:

Ay = d¥btrtire,  Ag = MR igtc,

(B.92)
Aol = eikFLZL tLte, Axr = eikFLZRtR lc.
Then we find,
NP = TiRe, NP = TgTe, (B.93a)
NS = TiTe, NP = TrRe, (B.93b)
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B.5 Noisy mesoscopic electron collider

and

Ny = T+ Te(Tr = To),
(B.94)
Ny = Tr=Tc(Tr = Tp).

Apparently it should b&; + N, = T| + Tg : How many electrons enter the CPC
so many electrons reach contacts 1 and 2.

B.5.2.2 Two-particle probability for classical regime

We can use results of Ség.4.2.2 Substituting Eqs.B.93) into Eq. B8.80)
and then into Eq.K§.83) we arrive at the following:

Niz = T T (RE + TE) . (B.95)

This equation dfers from Eq. B.83) by the factorTgT, which is a probability
for two particles to enter the CPC and to contributé\ie.
CalculatingdN12 = N1 — N3N, with Egs. 8.94) and B.95) we find,

N1z = —RcTe (TE + TR), (B.96)

that is consistent with a single-electron contribution e tross-correlator,
Eq. B.89b by virtue of Eq. B.31).
Alternatively Eq. B.96) can be represent as E&.84) with

ONY = —ReTeT2, NP = —R.TCTR. (B.97)

B.5.2.3 Two-particle probability for guantum regime

If At” = 0 then those electrons emitted by the SPSs which reach the
contacts 1 and 2 are correlated. Therefore, instead of EE§4X we should
write:
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B Mesoscopic capacitor as a particle emitter

N1z = SN + SN + 6N IR (B.98)

where the single-particle cross-correlation functioresgaven in Eq. B.97) and
the two-particle correlation function is:

AN~ vy NN N 599

The two-particle probabilityN1» can be calculated as follow31» = \A(2)|2,
with a two-particle amplitude (in the case of indistinguble electrons) being
the Slater determinant, EqB87). Using the single-particle amplitudes given
in Eq. B.92) we calculate,

Nip = T Tr. (B.100)

Note this equation is independent of the parameters of thiead€PC, that can
be used as an indication of a quantum regime. Stress in thgluquaegime the
two-particle probability becomes the Glauber joint datetcprobability [L24].

The equationB.100 can be understood as follows: If and only if the two
electrons enter the CPC (one electron frioand one electron from) then they
necessarily collide at the central QPC and readfedint contacts. Therefore,
the probability to detect one electron at the contact 1 areleactron at the
contact 2 is equal to a probability for two electrons to ettterCPC.

Using Eqgs. B.100 and B.93 we calculate the two-particle cross-
correlation function, Eq.K.99),

SNER = 2T TrR.Te . (B.101)

which, by virtue of Eq. B.31), is consistent with a two-patrticle contribution to
the cross-correlation function, Ed®.899), atl';. = I',g andt! = .

With Eqgs. 8.97) and @B.101) we calculate the total particle cross-
correlation function, Eq.K.99):
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B.6 Two-particle interferencefiect

6N = —RcTe (Tr — TL)?, (B.102)

which is consistent with an electron contribution to thereat cross-correlation
function P! = P1,/2 = —Po(Tr— TL)?, see Eq. B.91) for the total current
cross-correlation function.

B.6 Two-particle interferencefi@ct

Let us consider a circuit with two interferometers, Hg8, and show that
the particles emitted by the SPSs can show even such a stieti¢ & a two-
particle interferencefiect. [117]

In contrast to previous sections, now we consider a nonbati@aregime:
We take into account the time necessary for electrons (hgsopagate along
circuit’s branches, while the process of emission by the ISR®ated adiabat-
ically. If the difference of times of a propagation along th&etent arms|J
andD, of an interferometer is larger thdi;, then the single-particle interfer-
ence is suppressed and the currents flowing into contactaseesitive to the
magnetic flux though the interferometer. However if the paeters of a circuit
are adjusted in such a way that the particles emitte®,bgnd Sg can collide
at the outputd.1 andR2, then the current cross-correlation function becomes
sensitive to magnetic fluxeb,. and®g of both interferometers. Thidiect is a
manifestation of a two-particle interference taking placthe system.

B.6.1 Model and definitions

The circuit, Fig.B.8, has four contacts and, therefore, it is described by
the 4x 4 scattering matriXS;,(t, E) defining the corresponding elements of
the Floquet scattering matri§r .5(En, E) = Sinasn(E), @, 5 = 1,2,3,4. All
the contacts are in equilibrium and have the same Fermilaiston function,
fi(E) = fo(E), Vi, with chemical potentigly and temperatur&,. Each source
S| andSg emits one electron and one hole during a period.

We are interested in a zero-frequency cross-correlatioation P, for
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B Mesoscopic capacitor as a particle emitter

currentsl; andl,. At zero temperatur&kgTy = O, it reads [see Eq6(16)],
& L fi Sl
Pr2= o > sign@) / dE > >
= P N
(B.103)
XSk 1,(En, E)St. 15(En, Eq)Sr.25(Em.Eq) St 2,(Em, E).

whereE, = E + nhQy. Usingéin and summing up over andm we find,
Ho

00 4
P1p = %Zsign(q) / dE )
g=—o0

po-aiQ 701
(B.104)

X {Sin1y(E)Si.15(Eq) } 4 { Sin2/(E)Sin25(Ea) } -

In the circuit under consideration there are no paths froenctimtact 4 to the
contact 1 and from the contact 3 to the contact 2. Therefbeerdlevant in-
dices arey,6 = 1,2. Thus the final expression for the current cross-correlato
becomes:

Ho

P1o = ; > sign@) / dE{Aq+ Bq+Cq+Dq} , (B.105a)
g=—o0

Ho—0qN 0
where

Aq = {Sin,ll(E)Si*n,ll(Eq)}q{Sin,Zl(E)Si*n,Zl(Eq)};a (B.105b)
By = {Sin,ll(E)Si*n,lz(Eq)}q{Sin,21(E)Srn,22(EQ)};a (B.105c)

Cq = {Sin12AE)Sh11(Eq)}, {Sin2aE)Si21(Ea)}, -  (B.105d)

O
a
[

= {Sin,12(E)Si*n,12(Eq)}q {Sin,ZZ(E)Si*n,ZZ(Eq)}:;- (B.105e)
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Figure B.8: The circuit comprising two single particle scesS, andSg and two Mach-Zehnder interferometers with
magnetic fluxesd, and®g, respectively.
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B Mesoscopic capacitor as a particle emitter

Note because of integration over energy in 211059 only the quantities with
g # O are relevant. Shiftinge; — E (under the integration over energy) and
replacingg — —q (under the sum ovay) one can show that the contributions
due toA; andDg are real, while the contributions dued@g andB, are complex
conjugate each other.

Manipulating with Fourier ca@cients we will use the following relations:

(X0} €97 = {X({t-1)}q
(B.106)
X YOy = (X(t- 1)l (Yt -1)); .

Before presenting expressions for the scattering matemehts we intro-
duce some definitions. We assume that kinematic plagde) acquired by an
electron with energ¥ along the trajectoryl of a lengthL,, is linear in energy,

¢c(E) = ¢ + (E— po) 7 /1, (B.107)

wherey, = keLp andr. is an independent of energy time spent by an electron
within the trajectoryl. We will label each trajectory by the three-letter lower
index, where the first letter is a number of a destination acntthe second
letter indicates the branch of a corresponding MZI, andltive tetter indicates
the source of electrons. For instance, the label 2UL indicates a trajectory
starting at the left single-particle sour&g, passing across the upper branch
of the (right) MZI, and finishing at the contact 2. We will namI’s branch
as upper (the lower inde¥) or down (the lower indeX) if an electron going
through this branch encircles the magnetic flux counteckstose or clockwise,
respectively, see Fid3.8.

Itis convenient to introduce an interferometer imbalanoer;, j = L,R
and a time delayr R,

ATL = TlUj — Tle . ATR = TZUJ - TZDJ ’ ATLR = Ta/YL - T(IYR’ (8108)

wherea = 1,2,Y = U,D, andj = L,R. The quantityAr g characterizes the
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B.6 Two-particle interferencefiect

asymmetry in position of the sourc8s andSg with respect to the central QPC.
With these definitions someféierences which we need below read as follows,

TwuL — T1DR = AT + AT R, T1ur— TipL = AT — AT|R,
(B.109)
TouL — T2DR = ATR + AT R, Tour— TopL = ATR— AT|R.

The magnetic flux®;, j = L,R, through the corresponding MZI we
present as the sum of fluxes associated with upper and loaecihes,

(Dj = (DJ'U + q)jD s (B.llO)

Each MZ| has two quantum point contacts which we will labeljthyand
j2, ] = L, R Without loss of generality we choose the scattering megrior
these QPCs as

i VRie 1v/Tje
Sj, = : (B.111)
| A /Tja, \/ Rja
Herea = 1, 2. For the central quantum point cont@ctonnecting two branches
of the circuit we use a scattering matrix of the same form hitit mdex ja
being replaced by the indeéx
We assume also that the dwell timgfor electrons in each single-particle
source,) = L for S_ and| = Rfor Sg, is short compared to the period of a drive

[see Eq. A.57)],
Qorj < 1. (B.112)

Therefore, for the left and right single-particle sourcesaan use the frozen
scattering amplitudes, which we denotesaét, E) andSk(t, E), respectively. In
particular, within this approximation one can USgt, E) = Sj(t, E,). In what
follows we useS(t, E) = Sj(t,uo) = Sj(t). The amplitudess;(t) are given in
Eq. B.8) with 6;, T, andt” being replaced by, T';j, andt§?, respectively.
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B Mesoscopic capacitor as a particle emitter

We are interested in the regime when the interferometer lemica times
are large compared to the duration of wave packets but sedpared to the
period of a drive,

T > ATL, ATR > FTL, FTR . (8113)

Then there is no a single-particle interferendge@& which could result in
magnetic-flux dependence of a current cross-correlatoth®other hand if,

At +Atr = O, (B.114)

then, the interference of two-particle amplitudes makgsdependent o, +
DR.

B.6.2 The scattering matrix elements

Calculating the scattering matrix elements we take intecact that an
electron can follow to a given contact along thé&elient trajectories. For in-
stance, we have:

Sr11(En. E) = Sriui(En E) + Sk1p1(En, E),
Sr1i(En, E) = \/méz”%ém(msm,
= /RoRGR, €74 dew E)dnomung,
Srip1(En, E) = - \/me_i%%ei‘“DL(E”)SL,n,

= - VvRcTuTi2 e_i%%ei"plDL(E)einQOTlDLSL,n-

where the dependengeg (E) is given in Eq. B.107). After the inverse Fourier
transformation, we arrive at the following,
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B.6 Two-particle interferencefiect

Sinu(t,E) = v/ Rc{ RLR2 €7 % de®g, (t - 1y, E)
(B.115a)

T Sk deo®s, (t - 71p, E)},

By analogy we find other scattering matrix elements we needatoulate
Egs. 8.109:

|n * (L Eq) — { R1R.» e_i CIJO g ¢ (E) g-1aQ0miuL g+ “(t — T1uL, E)
(B.115b)
Tl e W gl Bg HAQTLGE (t 7y E)} vV Rc,

Sin1o(t, E) =1+/T { R1RL i2”(’%<'3"‘901“R(E)SR('[ — T1UR, E)
(B.115¢)
TiiTi2 e_i%%gei‘“DR(E)SR(t — T1DR, E)},

m 12(t Eq) = { VR 1R 2 e—iZnQ%: e_i‘plUR(E)e_tiOHURS*R(t — T1UR, E)
(B.115d)

T o €27 06 g ivor(E)griaQoriong(t — 700 E)} (_i \/TT:) :

Sin21(t, E) =1 v/ Tc{ VRmRro é%%éWUL(E)SL(t — TouL, E)
(B.115€)

A e_izjr“’io[)ei‘pZDL(E)SL(t — T2DLs E)},
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B Mesoscopic capacitor as a particle emitter

Si*n,21(ta Eq) = { \/RRlRRZ e—iZn%OU e—i‘PZUL(E)e—tioTZULS’I"_(t — ToUL, E)
(B.115f)

— VI Tre elzn@LOD e_I"DzDL(E)e_IqQOTZDLST_(t — T2DL, E)} (— I \/ Tc) ,

Sin22(t,E) = v/ RC{ VRR1RR2 eiZﬂ%ei‘”“R(E)SR(t — TouR, E)

(B.1150)
- VirTre e_i%%(?ei"OZDR(E)SR(t — T2DRs E)},
Sin22(t, Eq) = { VRaiRez €77 % gvar(B)gatransy(t — 1y, E)
(B.115h)

B m e_IZﬂ"DLOD ei(PZDR(E)etiOTZDRSR(t — T2DR, E)} \/Q :

Using given above equations we calculate the cross-ctoréba, and analyze
its dependence on magnetic fluxes and®x.
B.6.3 Current cross-correlator

We consider separately quantitie,, By, Cy and Dy entering
Eq. B.1059.
B.6.3.1 Partial contributions

First we calculate quantitie&,, D4 and corresponding contributioﬂéA),
P9 to the cross-correlator. Substituting Eq®.X15) into Eq. B.105H we find
forq # O:

4
Aq = RcTcdidr ZAi,q, {i= VRiR2TuT2, j=LR, (B.116)
i=1
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B.6 Two-particle interferencefiect

where

Avq = 2R E (Ary+ATe) {SL(t — ATL)ST_(t)}q {SL(t + A?'R)Sﬁ(t)}:.j1 ,

. O +O
—i2r—L—R

AZ,q: e o e—i%(ATL+ATR){SL(t+ATL)S;:(t)}q {SL(t—ATR)ST_(t)}; s

Pog = €20 dibntm [ (t— A7 )S; ()}, {SL(t- ARSI (1)} -

Asg=€ 2" % Re—i%(ATL‘ATR){SL(t+ATL)S’[(t)}q {SLt+ATRISL(D) ], »

Notice the sum#\ + Ay _q andAz o+ A4 _q become real (only) after integrating
over energy in Eq.K.1059. The Fourier cofficients are:

i00ctE) -t g0t
(Sut= Ar)Sy O} gl geafon 4 dalsl | > 0,
+ = — . + . . —
L L)oot g SLg At gtiqQoAT. | equotgL)’ q<0,

{S (t + AT )S* (t)}* . e_tiot(()T_)eitiOATR + e_iqgotglr_) ’ q S O,
L\t = RJ)<0L q SL,CI e_tiot(()T_)eitiOATR + e_tiotgf_) . g< O,

wheres g = 2Qql; e 9! And the corresponding products read as follows:

{Sut-Ar)SeL O}, {Sult+ ATR)SSL(t)}:; =S4

1 + d9Qo(Ari+ATR) éqgo(t&)_t&)wn) + e_iqgo(t&)_t&)_MR) . 9>0,

1 + o +are) 4 Jo(R-40) | oiao(-0-0n) o
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{Sut+AT)SHLD}, {Sult - ATRISHLO],

1+e i0Qo(ATL+ATR) te IqQO(tOL tgl_) ATL) n e_tiO(tgl__)_th_)+ATR) ’ q > O,

) i (=) _¢(+)
1 + @ 19Q(ATL+ATR) 4 o IqQO(t L—ATR) + e_IqQO(tOL —to +ATL) , g<0,

{SLt—AT)SeL (M)}, {SLt - ATRISGL(D |, = Siq

1 + @9(AT-Aa) | g |qQO(t tg’[)+ATL) + e_tiO(tgl__)_tg)t)+ATR) ., >0,

(=) (+)
1 n éqQO(ATL ATR) + € IQQo(tOL t ATR) + e—IQQo(t tOL —ATL) ’ q < 0,

{Sut+Ar)SeL®O ], {SLt+ ATRISeLM) } = S

1 L e i0Qo(ATL—ATR) e IqQO(t tg) ATL) n e—quO(t( ) tf)t)—ATR) i q > O,

1 + ei9Q(AT -ATR) | o |qQO(t tot)+ATR) N e_tiO(th)_tt(Jt)+ATL) . g< 0.

Taking into account EqsB(53), (B.54) and the presence of integration
over energy in Eq.&.1059 we conclude that the quantify, (after summing up
overq) results in a noticeable contribution to the cross-cotoelanly if it does
not oscillate in energy. This is the case under conditiousrgin Eq. 8.114).
Then we calculate,

O+ D
P = 4?05L§Rcos<2n%>. (B.117)

The quantityD, leads to the same contributiof®>) = P)). Then the

corresponding part of a cross- correla@f\*m UD(A) 33(12),

O +0
PAD) = 8P/ Lk COS (%%) . (B.118)
0
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Next we calculatéB,. Using Eqgs. B.115 we calculate the corresponding
products of scattering amplitudes entering E2y1059:

Sin11(E)Sip.12(Eq) = —i VTcRc €™ 7 {

R 1R 2 €719%70RS (t — 79y ) Si(t — T1UR)

+T 1T €9%ToRS (t — 71p, ) Si(t — T1pR) —

CEAr. 0Pl .
_§L e . elznd’o e_'qQOTlDRSL(t - Twu |_) SE('[ — TlDR)
.EAT i & H
—f et @ T lA%TRG (t — Ty, ) SE(t - TlUR)},

Sin21(E)Sih 22(Eq) =1 VTcRe é%{
RriRrp €719 %™20RS) (t — 7951) Si(t — T2uR)
+Tri Trp €7 19%0720RS (t — 7op( ) Si(t — T20R)

SEATR

(] .
—{r€ 7" €7 g 0%TRS (t — 75y ) Sk(t — T20R)

EArg _jor %R

—(RE€'TE e T % e_tiOTZURSL t — T1pL) SF (t _7-1UR) :
R

The Fourier cofficients are:

1Sn11(E)ShadBal}g = We—{

{RuRL2 + TuiTio) {Si(t— ArR) Sg(t)}q -
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—§|_ e'% eiZ”F; {SL(t — ATL - ATLR) S*R(t)}q

~4 oISt g 12T, {SL(t + At — ATIR) S*R(t)}q },

(Suar®S; AE}, = -i VTeRee !4

(RriRee + TriTre) {SL(t — ATiR) SR |, —

(R e‘i% e_iZJT‘TO {SL(t — ATR— ATIR) SE(t)};

EATR
h

—lr€ " €7 {S (t+ Atr— ATLR) Sk}, }

Then the quantityg,, Eq. 8.1059, can be represented as follows:

4 6
By = -ReTc {Bo,q +4RY Big+ Y. Bi,q} : (B.119)

i=1 i=5

where

2
I I CTEF S E=CY

Bl,q _ e|27r Ld:ro Rei%(ATL+ATR) {SL(t - At — ATLR)S;:}(J[)}q
x {SL(t+ Atr - ATLR)SE®) }, -

: D +O
—i2r—LR __

Bz’q = e ® @ i5 (A +ATR) {SL(t + At — ATLR)S;(t)}q

X {SL('[ - ATR — ATLR)SE('[)}; ,
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Bag = é%HTfé%(An—Aw{SL(t_ATL—ATLR)S*R(t)}q

X {SL(t - ATR - ATLR)SE(J[)}:;I ’

_i2n LR

B4’q = @ o e—i%(ATL—ATR) {SL(t + ATL - ATLR)S;(t)}q

x {SL(t+ Atr - ATLR)SE(® }, -

Beq = ~Te {Su(t - ArSi0), {

s EATR

e ' e_iZN%(F; X {SL(t — ATR — ATIR) SE(t)};

EATR i

+é7 e

Zﬂda_g {SL(t + AT — ATLR) S*R(t)}:; },

Beq = ~T{% (Sut- arSi0), {

SEAT

e e|2”<1>_|6 {SL(t - At — ATLR) SE(t)}q

SEAT

teit g '2”% {SL(t + At — ATLR) SE(t)}q }’

where T,E,‘lg,) = RiuRj2 + TjaTje. The quantitiesT,E,J,’gf and ¢; [see
Eq. B.116] define the transmission probabilityr,f,‘l)m(E) = T,E,Jl’gf -
2¢j cos(2nd /®g + EATj/h) for electrons with energ§ through the interfer-
ometerj from the central QPC to the contact 1(2) fot L(R).

We see from Eq.R.119 that the termBgq always contributes leading to
the cross-correlator similar to what we got in S&c4.1 The difference is
only in an additional factoll\;2, TRy, due to interferometers and in the time
delay At_ r appeared in the non-adiabatic regime. Other terms in E4.10
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B Mesoscopic capacitor as a particle emitter

do contribute in the case they lose oscillating dependencenergyE: Some
of terms By q — B4 do contribute ifAr. = +Arg. While the termsBs4 and
Bs,q (both or either of them) do contribute to current cross-elator in the case
of symmetrical interferometerdr. = 0 andor Arg = 0. Alternatively, all
the terms do contribute in the adiabatic regime. Therefoith, Eqgs. 8.113,
(B.114) the relevant caéicients areByq andBy ¢ - B4 q Which we combine as:

D +0p

B.g = €% m

{SL(t - ATL - ATLR)S (t)}q‘z

(B.120)

ATLR)S] (t)}q‘z.

Note the sign 4" or “-"is chosen depending on which sign{“or “-") is in
Eqg. B.114). For the geometry given in Figg.8itis At = Atg < 0. Therefore,
in Eq. B.114) the sign =" should be kept.

Taking into account that after &ll; = B, we can write the relevant cfie
cients as follows,

2
Bog + Coq = 2T§AL»ZOI>T§AR,ZC;>‘{SL(t—ATLR)Sg(t)}q‘ ., (B.121a)

oL+ D
B.q+Cag=2 cos<27r L(;O R) { (B.121b)

‘{SL(t — At — ATLR)SE(t)}q‘Z + ‘{SL(t + At — ATLR)SE(t)}q‘Z }

Let us consider the pafit!5"® of a cross-correlator due 8yq andCoy,
With Eqg. (B.1219 the integration in Eq.K.109 is trivial. Then summing up
overq by analogy with how we did in Se&.4.1we calculate:

9150 = - 2o TN (60 + dris) + 7 (M) + Arun)
(B.122)
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B.6 Two-particle interferencefiect

where the damping factor(At) is given in Eq. B.57).
Similarly we calculate the part due By  andC. g

+O
PEICD) —2?0§L4Rcos<2n%>{ (B.123)
0

Y (At(le’Q_) - ATL + ATLR> +y (At(ﬂ}:) - ATL + ATLR)

+y (At( -) + At + ATLR) +y (At(+ +) + At + ATLR) }

B.6.3.2 Total equation and its analysis

Using Egs.B.118), (B.122), and B.123 we find the total current cross-
correlation functionyPy, = P15 + PEHCO 4 pECO).

Pro = =279 T&zq)TlgﬂR’z?){ (At(lei_) + AT LR) +7y <At(+ D+ At LR) }

O +D
+2fPo{|_§R COS(ZJT%) {4

0
(B.124a)

-y (At(le’Q_) - ATL + ATLR> -y (At(le’Q_) + ATL + ATLR)

=Y (At(+ ) ATL + ATLR> -y <At( ) + ATL + ATLR) } .

Notice, the suppression of a magnetic-flux independentritoion and the
appearance of a contribution dependent on a magnetic fluxr @tadiferent

conditions.
If particles emitted by the sourc& andSg propagate through the circuit

without collisions between themselves then it is,
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B Mesoscopic capacitor as a particle emitter

Prp = —4PT TR, (B.125)

(compare to Eq.K.73) in an adiabatic regime without interferometers). Here
the factor 4 reflects the presence of four particles (twotedas and two holes)
emitted by the two sources during a pumping period. The fa”é\@ = Rj1Rj2+
T;1T;2 is a probability for an electron (a hole) to pass through tiberferometer
]. In the non-adiabatic regime under consideration, BdL13, this probability
iIs a sum of probabilities to pass through each arm of an erenfieter: The
probability R;1R;, is for the armU, and the probabilityj1 T, is for the armD,
see FigB.8.

To analyze theféect of particle collisions we consider the sources emitting
wave-packets with the same shapg, = I';r. If two emitted during a period
electrons collide at the central QPGt s + Arir = 0, then the correlator

is suppressedP;, = —2P,TEITRY |f in addition the two holes collide,
AR + Atr = 0, then it is suppressed down to zef®;, = 0. We already
discussed thisféect in previous sections.

B.6.3.3 Magnetic-flux dependent correlator

An interesting €ect arises if two electrons (or two holes) can collide at the
interferometer’s exit, i.e., at the quantum point contak{R2) for the interfer-
ometerL (R), see FigB.8. Because of Eq.H.114) the collision conditions are
satisfied for both interferometers simultaneously. Formiteiness we consider
an electron contribution and assume the following conditio

At(le’?_) - At + Aqir = 0, At = Atg. (8126)

Then we find,

)
P = —2P, {T&’Z"l)Tﬁ,,RZ?) — (LR cos(%f)} , (B.127)

that the current cross-correlator depends on magneticsflofkdistant interfer-
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B.6 Two-particle interferencefiect

ometers. This non-locali@ct is due to two-particle correlations being a conse-
guence of erasing which-path information for electrons/gng simultaneously

at contacts 1 and 2. As it was shown in Réfl17], these correlations are quan-
tum, since they violate the Bell inequalities2q].

To clarify the origin of this &ect and to relate the magnetic-flux dependent
part ofT(lez) to the two-electron probabiliti;, we consider in detail propagating
of two electrons through the circuit.

Let us consider two electrons going to the same, Isainterferometer.
From Eq. 8.126 we have,ripc + ¢ + t(()‘L = Tiyc + Tcr + th. This means
that an electron emitted by the sougeand going along the down arm of the
left interferometer, the pathip., does meet an electron emitted by the source
Sgr and going along the upper arm of the same interferometepabel ;yr.
Therefore, after the quantum point contadtwe do not know where an elec-
tron came from. The same happens if two electrons go to teef@nbmeteRR:
Again due to Eq.B.126) there is;ropc +TCL+tg‘L) = TZUC+TCR+tg‘R). Therefore,
an electron emitted by the sour8e and going along the down arm of the right
interferometer, the path,p, , and an electron emitted by the sou&gand go-
ing along the upper arm of the same interferometer, the pati, lose their
which-path information after the quantum point contR2t We stress these
events do not manifest themselves in the cross-correlator We considered
them only with a purpose to show an existence of two pairsrajlstparticle
trajectoriesLip1, Liur @andLop, Loyr, responsible for losing of which-path
information.

From these single-particle trajectories one can composepswticle tra-
jectories corresponding to particles going tdf@lient interferometers. These
trajectories are the followingl® = Lip Lour and L) = Lop Loy With
Eq. B.126 the trajectoriest.® and LE,Z) correspond to two-particle indistin-
guishable events: They have the same initial and final stdtes final state is
characterized by the places where electrons are appeateiti@times when
electrons are appeared at these places. Electrons goimg thiese trajectories
are responsible for magnetic-flux dependence of the crosmator?(lez). Since
there are a number of fliérent two-particle trajectories, the amplitudé&) for
mentioned trajectories defines only a part of the two-parpcobability which

we denote ad$3 = |A®@|*. Since the amplitudel® comprises contributions
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B Mesoscopic capacitor as a particle emitter

from two indistinguishable trajectories, it is the Slateterminant,

AipL A1ur
A® = det , (B.128)
AopL Aour

with following single-particle amplitudes,
AL = - \/me_i%%? CRa
Awr = 1V TcR2Ru 27 gkl ,
AopL = -l \/me—izn‘% girlaot
Aur = VRcRriRr2 2y eban
After squaring we find,

N(lzz) = RETL1TLRriRr + TERUR TR TR
(B.129)

O -D
+2RCTC{L§RCOS<271 - o R).
0

Note here it is a dierence of magnetic fluxes since we chdsg = Arg,
Eq.B.126 see explanation after EB(120.

Using Eg. 8.31) one can check that the magnetic-flux dependence
of the two-electron probabilitW(lzz), Eq. B.129, completely explains the
magnetic-flux dependence of the current cross-correlfhrEq. B.127).
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