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Chapter 1

Landauer-Büttiker formalism

The Landauer-Büttiker approach [1, 2, 3, 4, 5, 6] to transport phenomena
in mesoscopic [7, 8] conducting systems consists in treating of a propagation of
electrons through the system as a quantum-mechanical scattering problem. The
mesoscopic system is assumed to be connected to macroscopiccontacts playing
a role of electron reservoirs. The contacts are source of equilibrium particles
which are scattered by the mesoscopic sample. After scattering electrons return
to the same or to the different contact. Thus the problem of calculating of such
transport characteristics as, for example, an electrical conductivity or a thermal
conductivity is reduced to solving of a quantum-mechanicalscattering problem
with a potential profile corresponding to a sample under consideration. All
information concerning the transport properties of a sample is encoded in its
scattering matrix,̂S.

We concentrate on a single-particle scattering matrix but the multi-particle
scattering matrix is also can be introduced. Thus we neglectelectron-electron
interactions and use the Schrödinger equation for spinlesselectrons as a basic
equation. In principle interactions can be easily incorporated on the mean-field
level.

1.1 Scattering matrix

Accordingly to the quantum mechanics an electron (or more precisely its
state) is characterized by the wave function,Ψ(t, r ), dependent on a timet and
on a spatial coordinater . If the wave function,Ψ(in), for an electron incident to
the scatterer is known then solving the Schrödinger equation one can calculate
the wave function,Ψ(out), for a scattered electron.

In principle one can prepare an electron in different initial states,Ψ(in)
j .

Therefore, one can ask whether we need to solve the Schrödinger equation for
eachΨ(in)

j . The answer is no. It is enough to solve the scattering problem for
electrons in any of statesψ(in)

α constituting the full orthonormal basis. After that
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1.1 Scattering matrix

using the superposition principle one can find the scattering state for an electron
in an arbitrary initial state.

To this end we expand an incident electron wave function,Ψ(in), into the
series in the basis functionsψ(in)

α ,

Ψ(in) =
∑

α

aα ψ
(in)
α . (1.1)

Then we expand a wave function for scattered electron,Ψ(out), into the series in
the basis functionsψ(out)

α ,

Ψ(out) =
∑

β

bβ ψ
(out)
β . (1.2)

The set of functionsψ(in)
α andψ(out)

β constitutes the full orthonormal basis.
The problem is to find the coefficientsbβ if the set of coefficientsaα is

known. First we consider an auxiliary problem: Scattering of an electron with
initial stateΨ(in)

1 = ψ
(in)
1 . In this case the set of coefficients in Eq. (1.1) is the

following: (1, 0, 0, . . . ). The solution for this scattering problem we write as
Eq. (1.2) with coefficientsSβ1,

Ψ
(out)
1 =

∑

β

Sβ1ψ
(out)
β . (1.3)

The coefficientSβ1 is a quantum-mechanical transition amplitude from the ini-
tial stateψ(in)

1 to the final stateψ(out)
β . Note if the initial wave function is mul-

tiplied by the some constant factorA then the wave function for the scattered
state is also multiplied by the same factor,

Ψ
(in)
1 = Aψ(in)

1 ⇒ Ψ
(out)
1 = A

∑

β

Sβ1ψ
(out)
β . (1.4)

After solving the scattering problem with initial stateΨ(in)
γ = ψ(in)

γ we find the
coefficientsSβγ,

Ψ(out)
γ =

∑

β

Sβγ ψ
(out)
β . (1.5)
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1 Landauer-Büttiker formalism

With coefficientsSαβ we can solve the scattering problem with arbitrary
initial state. Formally the corresponding algorithm is thefollowing:

1. The wave function for an initial state is expanded into theseries in basis
functionsψ(in)

α , Eq. (1.1).
2. The scattered state wave function,Ψ(out), is represented as the sum of

partial contributions,Ψ(out)
α , due to scattering of partial initial waves,Ψ(in)

α =

aα ψ(in)
α ,

Ψ(out) =
∑
α

Ψ(out)
α ,

Ψ(out)
α = aα

∑
β

Sβα ψ
(out)
β .

(1.6)

3. The coefficients bβ for the scattered state of interest,Ψ(out) =∑
α

aα
∑
β

Sβα ψ
(out)
β ≡

∑
β

bβ ψ
(out)
β , are the following,

bβ =
∑

α

Sβα aα . (1.7)

The equation (1.7) solves the problem: It expresses the coefficientsbβ for
scattered wave function in terms of the coefficientsaα for incident wave func-
tion. It is convenient to treat the quantities,Sβα, entering Eq. (1.7) as elements
of some matrix,Ŝ, which is referred to asthe scattering matrix.

If the coefficientsaα andbβ are collected into the vector-columns,

b̂ =




b1

b2
...



 , â =




a1

a2
...



 , (1.8)

then the corresponding relations becomes short,

b̂ = Ŝâ . (1.9)

As we already mentioned, the scattering matrix elements,Sαβ, are
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1.1 Scattering matrix

quantum-mechanical amplitudes for a particle in the stateψ
(in)
β to pass into the

stateψ(out)
α . The order of indices is important. We use such a convention that the

first index (for the elementSαβ it is an indexα) corresponds to the final state
while the second index corresponds to the initial state.

1.1.1 Scattering matrix properties

The general physical principles put some constraints onto the scattering
matrix elements.

1.1.1.1 Unitarity

The particle number conservation during scattering requires the scattering
matrix to be unitary,

Ŝ†Ŝ = ŜŜ† = Î . (1.10)

Here Î is a unit matrix of the same dimension asŜ,

Î =




1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
. . .


 . (1.11)

The elements of the matrix̂S† are related to the elements of the scattering matrix
Ŝ in the following way:

(
Ŝ†
)
αβ
=
(
Ŝ
)∗
βα

. Therefore, the expanded equation
(1.10) reads,

Nr∑

α=1

S∗αβ Sαγ = δβγ , (1.12)

Nr∑

β=1

Sαβ S∗δβ = δαδ . (1.13)

To prove the unitarity, for instance, in the case if the wave function is
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1 Landauer-Büttiker formalism

normalized, i.e., it corresponds to scattering of a single particle, we use the
integral over the space for both the initial wave function and the scattered wave
function: �

d3r |Ψ(in)|2 =
�

d3r |Ψ(out)|2 = 1 . (1.14)

Then we use Eqs. (1.1) and (1.2). For instance, forΨ(in) we get,�
d3r |Ψ(in)|2 =

�
d3r
∑
α

aα ψ(in)
α

(∑
β

a∗β ψ
(in)
β

)∗

=
∑
α

∑
β

aα a∗β
�

d3r ψ(in)
α

(
ψ(in)
β

)∗
=
∑
α

∑
β

aα a∗β δαβ

=
∑
α

|aα|2 = 1 .

(1.15)

Here we took into account that the functionsψ(in)
α are orthonormal,�

d3r ψ(in)
α

(
ψ

(in)
β

)∗
= δαβ , (1.16)

whereδαβ is the Kronecker symbol,

δαβ =






1 , α = β ,

0 , α , β .
(1.17)

By analogy we find forΨ(out) :

∑

α

|bα|2 = 1 . (1.18)

Therefore, from Eqs. (1.15) and (1.18) it follows that,

∑

α

|aα|2 =
∑

α

|bα|2 . (1.19)
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1.1 Scattering matrix

Representing the coefficientsaα and bα as vector-columns, ˆa and b̂, we
write,

∑
α

|aα|2 = â† â ,

∑
α

|bα|2 = b̂† b̂ .
(1.20)

Next we take into account thatb̂ = Ŝ â and, correspondingly,̂b† = â† Ŝ† and
finally calculate,

b̂† b̂ = â† Ŝ†Ŝ â = â† â . (1.21)

From the last equality the required relation, Eq. (1.10), follows directly.
Note, however, that for the particles with continuous spectrum, which we

will consider, the wave function is normalized on the Dirac delta-function rather
than on a unity. In such a case scattering of particles with fixed incoming flow
is a more natural problem. For instance, a plane waveeikx corresponds to a flow
of particles with intensityv = ~k/m rather than to a single particle. The charge
conservation in this case (under the stationary conditions) implies a current con-
servation. Therefore, it is convenient to choose the basis functions normalized
to carry unit flux, see, e.g. [9, 5]. Then we can say more precisely:
The equation (1.9) defines the scattering matrix̂S if the vectorŝb and â are
calculated using the unit flux basis.
The square of modulus of a scattering matrix element defines an intensity of a
scattered flow if the intensity of an incident flow is unity. Then the unitarity of
the scattering matrix reflects the particle flow conservation.

1.1.1.2 Micro-reversibility

The micro-reversibility is an invariance of the equations of motion under
the time-reversal. Neither the classical physics nor the quantum physics makes
distinction between the forward time and the backward time.
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1 Landauer-Büttiker formalism

If to change simultaneously,t → −t andv → −v, then the classical equa-
tions of motion predict that the particle will move along thesame trajectory but
in opposite direction. From the scattering theory point of view the movement in
opposite direction means that the scattered particle becomes incoming and the
incoming particle becomes scattered.

The quantum-mechanical formalism deals with states ratherthan with par-
ticles. The additional complication comes from the fact that the wave function
is complex. To analyze the micro-reversibility in the quantum mechanics [10]
we consider the Schrödinger equation,

i~
∂Ψ

∂t
= HΨ , (1.22)

whereH is the Hamiltonian dependent on a momentump of a particle. The
velocity reversal within the classical physics is equivalent to a momentum re-
versal within the quantum physics. The Hamiltonian [and, correspondingly,
Eq. (1.22)] is invariant under the momentum reversal,H(p) = H(−p). While
under the time-reversal the sign on the left hand side (LHS) of Eq. (1.22) is
changed. On the other hand if simultaneously with it we go over to the complex
conjugate equation and take into account that the Hamiltonian is Hermitian,
H∗ = H, then we find that the transformed equation for the complex conjugate
wave functionΨ∗(−t) is identical to the original equation forΨ(t),

i~
∂
(
Ψ∗
)

∂(−t)
= H

(
Ψ∗
)
. (1.23)

We conclude: If the evolution in a forward time is described by the wave func-
tion Ψ(t) then the evolution in a backward time is described by the complex
conjugate functionΨ∗(−t). For the scattering theory it means the following. If
initially the incident particle is in the stateΨ(in)(t) and the scattered particle is

in the stateΨ(out)(t) then under the time-reversal the state
(
Ψ(out)(−t)

)∗
is for an

incident particle and the state
(
Ψ(in)(−t)

)∗
is for a scattered particle.

Such a symmetry results in some properties of the scatteringmatrix. To
clarify them we consider scattering in forward and backwardtimes in detail.
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1.1 Scattering matrix

The initial scattering process:Ψ(in)(t) =
∑
α

aα ψ(in)
α (t) is an incident wave

andΨ(out)(t) =
∑
β

bβ ψ
(out)
β (t) is a scattered wave. The coefficientsaα andbβ

are related through Eq.(1.9). The scattering process after the time-reversal:(
Ψ(out)(−t)

)∗
=
∑
β

b∗β
(
ψ

(out)
β (−t)

)∗
is an incident wave and

(
Ψ(in)(−t)

)∗
=

∑
α

a∗α
(
ψ(in)
α (−t)

)∗
is a scattered wave. Under both the time-reversal and the

complex conjugation the basis functions for incident and scatterer states replace

each other,
(
ψ

(out)
β (−t)

)∗
= ψ

(in)
β (t). Therefore, we can write,

(
Ψ(out)(−t)

)∗
=

(∑
β

bβ ψ
(out)
β (−t)

)∗
=
∑
β

b∗β ψ
(in)
β (t) ,

(
Ψ(in)(−t)

)∗
=

(∑
α

aα ψ(in)
α (−t)

)∗
=
∑
α

a∗α ψ
(out)
α (t) .

(1.24)

Since the Hamiltonian and the basis functions remain invariant the scatter-
ing matrix is invariant as well. Therefore, the coefficientsa∗α andb∗β in Eq. (1.24)
are related in the same way as the corresponding coefficients (bβ and aα) in
Eqs. (1.1) and (1.2),

â∗ = Ŝ b̂∗ . (1.25)

Thus the sets of coefficientsâ andb̂ have to fulfill two equations, (1.9) and
(1.25). From Eq. (1.9) we find,

â = Ŝ−1b̂ , (1.26)

whereŜ−1 is an inverse matrix,̂SŜ−1 = Ŝ−1Ŝ = Î . Comparing Eqs. (1.26) and
(1.25) we conclude that̂S∗ = Ŝ−1. Further, from the unitarity, Eq. (1.10), it
follows that,

Ŝ†Ŝ = Î

Ŝ−1Ŝ = Î




 ⇒ Ŝ† = Ŝ−1 . (1.27)
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1 Landauer-Büttiker formalism

Finally we arrive at the following. The micro-reversibility requires the scatter-
ing matrix to be invariant under the transposition operation. In other words, the
scattering matrix elements are symmetric in their indices,

Ŝ = ŜT ⇒ Sαβ = Sβα . (1.28)

Note the presence of a magnetic fieldH slightly changes the micro-
reversibility condition: In addition to a time and a momentum reversal we need
to inverse a magnetic field direction,H → −H. It is clear, for instance, from the
Hamiltonian of a free particle with massm and chargee propagating along the
axisx in the presence of a magnetic field,

H =
(px − eAx)2

2m
,

whereAx is a vector-potential projection onto the axisx. Note that it isH =
rotA. Thus in the presence of a magnetic field Eq. (1.28) is transformed, [5]

Ŝ(H) = ŜT(−H) ⇒ Sαβ(H) = Sβα(−H) . (1.29)

In particlar, the reflection amplitude,α = β, is an even function of a magnetic
field.

1.2 Current operator

Now we consider how the scattering matrix formalism can be applied to
transport phenomena in mesoscopic samples. The scatteringmatrix relies on
the single-electron approximation. Within this approximation the separate elec-
trons are considered as independent particles whose interaction with other elec-
trons, nuclei, impurities, quasi-particles, etc. can be described via the effective
potential energy,Ue f f(t, r ). Such an approach allows a simple and physically
transparent descriptions of transport phenomena on the qualitative level and in
many cases even on the quantitative level.
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1.2 Current operator

Ŝ

Σ

α = 1

α = 2

α = Nr

α = 3, · · · ,Nr − 1

Figure 1.1: Mesoscopic sample with scattering matrixŜ. The indexα = 1, 2, . . . ,Nr

numbers electron reservoirs. The arrows directed to (from)the scatterer show a
propagation direction for incident (scattered) electrons. An electron flow is calcu-
lated at the surfaceΣ shown as a dashed line.

Let us consider a mesoscopic sample connected to several,Nr , macro-
scopic contacts playing role of electrons reservoirs, Fig.1.1. Electrons, prop-
agating from some reservoir to the sample, enter it, are scattered inside it, and
at the end leave it to the same or any other reservoirs. To calculate a current
flowing between the sample and the reservoirs we do not need towatch what is
happening with an electron inside the sample. It is enough tolook at incoming
and outgoing electron flows. To this end we enclose a sample bya fictitious
surfaceΣ, see Fig.1.1, and consider electron flows crossing this surface in the
direction to the sample or back. In this case we, in fact, are dealing with the scat-
tering problem: Electrons propagating to the sample are incident, or in-coming,
particles [we denote them via an upper index (in)], while electrons propagating
from the sample are scattered, or out-going, particles [upper index (out)]. We
emphasize that we consider only elastic, i.e., energy conserving, scattering. To
neglect inelastic scattering we assume enough low temperatures when the phase
coherence length,Lϕ, is much larger than the size of a sample,Lϕ(T) ≫ L.
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1 Landauer-Büttiker formalism

It is convenient to choose the eigen-wave-functions for electrons in leads
connecting a scatterer to the reservoirs as the basis functions for defining the
scattering matrix elements. These wave functions can be represented as the
product of longitudinal and transverse terms. For the sake of simplicity we
assume the leads having only one conducting sub-band. Therefore, there is
only one type of transverse wave functions in each lead. As the longitudinal
wave functions we choose plane waves propagating to the scatterer (the wave
number−k) or from the scatterer (the wave numberk). The former (latter) wave
functions comprise the basis for incident,ψ(in)

α , (scattered,ψ(out)
α ) electrons.

To calculate a current flowing between the scatterer and the reservoirs we
use the second quantization formalism. This formalism deals with operators
creating/annihilating particles in some quantum state. We use different oper-
ators corresponding to incident electrons, ˆa†α(E)/âα(E), and to scatterer elec-
trons, b̂†α(E)/b̂α(E). The operator ˆa†α(E) creates one electron in the state with
wave functionψ(in)

α (E)/
√

vα(E), while the operator̂b†α(E) creates one electron
in the state with wave functionψ(out)

α (E)/
√

vα(E). The factor 1/
√

vα(E) takes
account of a unit flux normalization. Note the indexα can be composite, i.e.,
it can include, apart from the reservoir’s number, the additional sub-indices, for
instance, the number of a sub-band, an electron spin, etc.

Introduced fermionic operators are subject to the following anti-
commutation relations:

â†α(E) âβ(E
′) + âβ(E

′) â†α(E) = δαβ δ(E − E′) ,
(1.30)

b̂†α(E) b̂β(E
′) + b̂β(E

′) b̂†α(E) = δαβ δ(E − E′) .

Next we introduce the field operators for electrons in leadα,

Ψ̂α(t, r ) =
1√
h

∞�
0

dE e−i E
~
t

{
âα(E)

ψ(in)
α (E, r )√

vα(E)
+ b̂α(E)

ψ(out)
α (E, r )√

vα(E)

}
,

(1.31)

Ψ̂†α(t, r ) =
1√
h

∞�
0

dE ei E
~
t

{
â†α(E)

ψ(in)∗
α (E, r )√

vα(E)
+ b̂†α(E)

ψ(out)∗
α (E, r )√

vα(E)

}
.
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1.2 Current operator

Herevα(E) = ~kα(E)/m is an electrons velocity,r = (x, r⊥), with x longitudinal
andr⊥ tranverse spatial coordinates in the leadα. Note that 1/(hvα(E)) is the
density of states, (2π)−1dk/dE, for a one-dimensional conductor.

Using the field operators we write the operator,Îα, for a current flowing in
the leadα,

Îα(t, x) =
i~e
2m

�
dr⊥

{
∂Ψ̂†α(t, r )

∂x
Ψ̂α(t, r ) − Ψ̂†α(t, r )

∂Ψ̂α(t, r )
∂x

}
. (1.32)

Here the positive direction is from the scatterer to the reservoir.
Next we represent the basis wave functions as the product of transverse

and longitudinal parts,

ψ(in)(E, r ) = ξE(r⊥) e−ik(E) x ,

ψ(out)(E, r ) = ξE(r⊥) eik(E) x ,
(1.33)

and take into account that the transverse wave functions arenormalized,�
dr⊥ |ξE(r⊥)|2 = 1 . (1.34)

In what follows we are interested in currents flowing under the bias much
smaller that the Fermi energy,µ0. Therefore, in all the equations we use the
main contribution comes from energies within the interval much smaller that
the energy itself,

|E − E′| ≪ E ∼ µ0 . (1.35)

The last inequality allows us to simplify strongly the equation for a current.
We can put,v(E) ≈ v(E′) and k(E) ≈ k(E′). Moreover, within the same
sub-band the transverse wave functions are the same,ξE = ξE′. Note if the
functions ξE and ξE′ are from different sub-bands then they are orthogonal,
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1 Landauer-Büttiker formalism�
dr⊥ ξE(r⊥)

(
ξE′(r⊥)

)∗
= 0. That allows us to split the total current into the

sum of contributions from different sub-bands. Remind that we assume each
lead having only one sub-band.

Substituting Eq. (1.31) into Eq. (1.32) and taking into account Eq. (1.35)
we calculate,

Îα(t, x) = i~e
2m

�
dE dE′ e

i E−E′
~

t

hvα(E)

�
dr⊥ |ξE,α(r⊥)|2

×
{
∂
∂x

[
â†α(E)eikα(E)x + b̂†α(E)e−ikα(E)x

](
âα(E′)e−ikα(E)x + b̂α(E′)eikα(E)x

)

−
(

â†α(E)eikα(E)x + b̂†α(E)e−ikα(E)x

)
∂
∂x

[
âα(E′)e−ikα(E)x + b̂α(E′)eikα(E)x

]}
.

Differentiating overx and combining the similar terms we finally arrive at the
following equation for the current operator [5],

Îα(t) =
e
h

�
dE dE′ ei E−E′

~
t
{

b̂†α(E) b̂α(E
′) − â†α(E) âα(E

′)
}
. (1.36)

In what follows we use this equation and calculate, in particular, a measur-
able current,Iα = 〈Îα〉, flowing into the leadα. Here〈. . . 〉 stands for quantum-
statistical averaging over the state of incoming electrons. To calculate such
an average for the products of ˆa†â and b̂†b̂ we take into account the follow-
ing. The creation and annihilation operators, ˆa†α andâα, correspond to particles
propagating from the reservoir. We suppose that the presence of a mesoscopic
scatterer does not affect the equilibrium properties of reservoirs. Therefore, the
in-coming particles are equilibrium particles of macroscopic reservoirs. And
for them we can use the standard rules for calculating the quantum-statistical
average of the product of creation and annihilation operators. In addition we
suppose that electrons at different reservoirs,α , β, are not correlated. Then
we can write,
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1.2 Current operator

〈â†α(E) âβ(E′)〉 = δαβ δ(E − E′) fα(E) ,

〈âα(E) â†β(E
′)〉 = δαβ δ(E − E′)

{
1− fα(E)

}
,

(1.37)

where fα(E) is the Fermi distribution function [11] for electrons in the reservoir
α,

fα(E) =
1

1+ e
E−µα
kBTα

. (1.38)

HerekB is the Boltzmann constant,µα is the Fermi energy (the electro-chemical
potential) andTα is the temperature of the reservoirα.

In contrast the operatorsb̂†α andb̂α correspond to scattered particles which,
in general, are non-equilibrium particles. To calculate the quantum-statistical
average for (the product of) them we need to express then in terms of the opera-
tors for in-coming particles for which we know how to calculate a corresponding
average. To this end we consider both the field operator,Ψ̂(in), corresponding to
in-coming wave,

Ψ̂(in) =

Nr∑

α=1

âα
ψ(in)
α√
vα
,

and the field operator,̂Ψ(out), corresponding to scattered wave,

Ψ̂(out) =

Nr∑

β=1

b̂β
ψ

(out)
β√
vβ

.

These equations are similar to Eqs. (1.1) and (1.2) excepting the coefficients
being the second quantization operators now. Thus each of the operatorŝbβ is
expressed in terms of all the operators ˆaα through the elements of the scattering
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1 Landauer-Büttiker formalism

matrix beingNr × Nr unitary matrix. By analogy with Eq. (1.7) we write, [5]

b̂α =
Nr∑

β=1

Sαβ âβ ,

(1.39)

b̂†α =
Nr∑

β=1

S∗αβ â†β .

The equations (1.36) - (1.39) constitute the basis of the scattering matrix
approach to transport phenomena in mesoscopics.

1.3 DC current and the distribution function

Let us calculate a current,Iα,

Iα = 〈Îα〉 , (1.40)

flowing into the leadα under the dc bias,∆Vαβ = Vα − Vβ. In this case the
different reservoirs have different electro-chemical potentials,

µα = µ0 + eVα . (1.41)

Note we include the potential energyeVα into theµα. Then the energyE means
a total (kinetic plus potential) energy of an electron. The use of a total energy
(instead of a kinetic on) is convenient since it is conserved(in the stationary
case) while an electron propagates from one reservoir through the scatterer to
another reservoir.

The current operator,̂Iα(t), is given in Eq. (1.36). After averaging
Eq. (1.40) reads,

Iα =
e
h

�
dE
{

f (out)
α (E) − f (in)

α (E)
}
, (1.42)
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1.3 DC current and the distribution function

where we have introduced the distribution functions for incident electrons,f (in)
α ,

and for scattered electrons,f (out)
α ,

〈â†α(E) âα(E′)〉 = δ(E − E′) f (in)
α (E) ,

〈b̂†α(E) b̂α(E′)〉 = δ(E − E′) f (out)
α (E) .

(1.43)

The physical meaning for introduced distribution functions is the following:
The quantitydE

h f (in/out)
α (E) defines the average number of electrons with energy

within the intervaldE nearE crossing the cross-section of the leadα in unit
time to/from the scatterer. The dc current is obviously the difference of flows
times an electron chargee.

Accordingly to Eq. (1.37) the distribution function for in-coming electrons
is the Fermi function for a corresponding reservoir,

f (in)
α (E) = fα(E) . (1.44)

To calculate the distribution function for scattered electrons, f (out)
α (E), we use

Eqs. (1.39), (1.37) and find,

δ(E − E′) f (out)
α (E) ≡ 〈b̂†α(E) b̂α(E

′)〉 =

=

Nr∑

β=1

Nr∑

γ=1

S∗αβ(E) S∗αγ(E
′) 〈â†β(E) âγ(E

′)〉 =

=

Nr∑

β=1

Nr∑

γ=1

S∗αβ(E) S∗αγ(E
′) δ(E − E′) δβγ fβ(E) .

Therefore, the distribution function,f (out)
α (E), for electrons scattered into the

lead α depends on the Fermi functions,fβ(E), for all the reservoirs,β =
1, 2, . . . , Nr :

f (out)
α (E) =

Nr∑

β=1

∣∣Sαβ(E)
∣∣2 fβ(E) . (1.45)
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1 Landauer-Büttiker formalism

f (out)
1

1

µ1 µ2 E

Figure 1.2: The distribution function for electrons scattered into the contact
α = 1. The height of a step is|S12|2. The scatterer is connected to two
electron reservoirs being at zero temperature,T1 = T2 = 0, and having
chemical potentialsµ1 andµ2.

Note if all the reservoirs have the same electro-chemical potentials and tem-
peratures (hence the same Fermi functions),fβ = f0, ∀β, then the distribution
function for scattered electrons is the Fermi function as well, i.e., the scattered
elections are equilibrium. To show it we use the unitarity ofthe scattering ma-
trix,

ŜŜ† = Î ⇒
Nr∑

β=1

∣∣Sαβ(E)
∣∣2 = 1 , (1.46)

and find, f (out)
α (E) = f0(E)

Nr∑
β=1

∣∣Sαβ(E)
∣∣2 = f0(E). In contrast, if the potentials

and/or temperatures of different reservoirs are different then the scattered elec-
trons are characterized by the non-equilibrium distribution function, Fig.1.2.

Substituting Eqs.(1.44) and (1.45) into Eq.(1.42) and using Eq. (1.46) we
finally calculate a dc current,

Iα =
e
h

�
dE

Nr∑

β=1

∣∣Sαβ(E)
∣∣2
{

fβ(E) − fα(E)
}
. (1.47)

We see that the current flowing into the leadα depends on the difference of the
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1.3 DC current and the distribution function

Fermi functions times the corresponding square of the scattering matrix element
modulus. If all the reservoirs have the same potentials and temperatures then
the current is zero. Otherwise there is a current through thesample.

1.3.1 DC current conservation

Let us check whether Eq. (1.47) fulfills a dc current conservation law,

Nr∑

α=1

Iα = 0 , (1.48)

which is a direct consequence of no charge accumulation inside the mesoscopic
sample. This equation tells as that the sum of current flowinginto all the leads
is zero. To avoid misunderstanding we stress that in each lead the positive
direction is chosen from the scatterer to the correspondingreservoir. Therefore,
the current has a sign “+” or “−” if it is directed from or to the scatterer.

First of all we derive Eq. (1.48). To this end we use the electrical charge
continuity equation,

div j +
∂ρ

∂t
= 0 , (1.49)

wherej is a current density vector,ρ is a charge density. We integrate it over
the volume enclosed by the surfaceΣ (see, Fig.1.1). Then transforming the
volume integral of a current density divergence into the surface integral of a
current density and taking into account that the current flows into the leads only
we arrive at the following,

Nr∑

α=1

Iα(t) +
∂Q
∂t
= 0 . (1.50)

Here Q is the charge onto the scatterer. In the stationary case under consid-
eration there are only dc currents in the leads and the chargeQ is constant.
Then Eq. (1.50) results in Eq. (1.48). In the non-stationary case we should av-
erage Eq. (1.50) over the time. With the following definition of a dc current,

25



1 Landauer-Büttiker formalism

Iα = limT→∞
1
T

� T

0 dt Iα(t), and assuming that the chargeQ(t) is bounded we
again conclude that Eq. (1.48) is a consequence of Eq. (1.50).

Now we check whether Eq. (1.47) does satisfy to Eq. (1.48). We use the
unitarity of the scattering matrix in the form slightly different but still equivalent
to Eq. (1.46),

Ŝ†Ŝ = Î ⇒
Nr∑

α=1

∣∣Sαβ(E)
∣∣2 = 1 . (1.51)

Then from Eq. (1.47) we get,

Nr∑
α=1

Iα = e
h

�
dE

Nr∑
α=1

Nr∑
β=1

∣∣Sαβ(E)
∣∣2
{

fβ(E) − fα(E)
}
=

= e
h

�
dE

{
Nr∑
β=1

fβ(E)
Nr∑
α=1

∣∣Sαβ(E)
∣∣2 −

Nr∑
α=1

fα(E)
Nr∑
β=1

∣∣Sαβ(E)
∣∣2
}

= e
h

�
dE

{
Nr∑
β=1

fβ(E) −
Nr∑
α=1

fα(E)

}
= 0 ,

as expected. Therefore, we illustrated the earlier mentioned connection between
the unitarity and the current conservation. Further we use Eq. (1.47) and calcu-
late a current in two simple but generic cases.

1.3.2 Potential difference

Let the reservoirs have different potentials but the same temperatures,

µα = µ0 + eVα , eVα ≪ µ0 ,

Tα = T0 , ∀α .
(1.52)

If |eVα| ≪ kBT0 we can expand,
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1.3 DC current and the distribution function

fα = f0 − eVα
∂ f0
∂E
+ O(V2

α) ,

where f0 is the Fermi function with a chemical potentialµ0 and a temperature
T0. Using this expansion in Eq. (1.47) we calculate a current,

Iα =
Nr∑

β=1

Gαβ

{
Vβ − Vα

}
, (1.53)

where we introduce the elements of the conductance matrix,

Gαβ = G0

�
dE

(
−∂ f0
∂E

)∣∣Sαβ(E)
∣∣2 , (1.54)

with G0 = e2/h the conductance quantum (for spinless electrons). Taking into
account an electron spin the conductance quantum should be doubled.

At zero temperature,T0 = 0, it is,

−∂ f0
∂E
= δ(E − µ0) ,

and the integration over energy in Eq. (1.54) becomes trivial. In this case the
conductance matrix elements become especially simple, [5]

Gαβ = G0

∣∣∣Sαβ(µ0)
∣∣∣
2
. (1.55)

It is clear that the linear dependence of a current on the potential difference
is kept at a relatively small bias. The corresponding scale is dictated by the
energy dependence of the scattering matrix elements,Sαβ(E). To illustrate it we
calculate a dc current at zero temperature,T0 = 0, but finite potentials,eVα , 0.
In this case we can not expand the Fermi function in powers of apotential,
therefore, Eq. (1.47) becomes,
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Iα =
G0

e

Nr∑

β=1

µ0+eVβ�
µ0+eVα

dE
∣∣Sαβ(E)

∣∣2 . (1.56)

If the quantityGαβ changes only a little within the energy interval∼ |eVβ − eVα|
near the Fermi energyµ0 then we can useSαβ(E) ≈ Sαβ(µ0) in Eq. (1.56) that
results in a linearI − V characteristics, Eq. (1.53).

On the other hand if one can not ignore the energy dependence of Sαβ(E)
then the current becomes a non-linear function of a bias. As asimple example
we consider a sample with two leads (α = 1, 2) whose scattering properties are
governed by the resonance level of a widthΓ located at the energyE1:

|S12(E)|2 = Γ2

(E − E1)2 + Γ2
. (1.57)

For simplicity suppose thatE1 = µ0. Then substituting equation above into
Eq. (1.56) we find a current,

I1 =
e
h
Γ

{
arctg

(
eV2

Γ

)
− arctg

(
eV1

Γ

)}
. (1.58)

If the potentials are small compared to the resonance level width, |eV1|, |eV2| ≪
Γ, we recover the Ohm law,I12 = G0

(
V1 − V2

)
. While in the opposite case,

|eV1|, |eV2| ≫ Γ, the current is an essentially non-linear function of potentials,

I1 = (Γ2/h)
(

V−1
1 − V−1

2

)
. Therefore, we see that in this problem the level width

Γ is a relevant energy scale.

1.3.3 Temperature difference

The temperature difference also can result in a current. This is so called
the thermoelectric current. To calculate it we suppose that the reservoirs have
the same potentials but their temperatures are different,
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µα = µ0 , ∀α ,

Tα = T0 + Tα, Tα ≪ T0 .
(1.59)

Expanding the Fermi functions in Eq. (1.47) in powers ofTα,

fα = f0 + Tα
∂ f0
∂T
+ O(T2

α) ,

and taking into account that,

∂ f0
∂T
= −E − µ0

T0

∂ f0
∂E

,

we calculate the thermoelectric current flowing into the lead α,

Iα =
Nr∑

β=1

G(T)
αβ

{
Tβ − Tα

}
. (1.60)

Here we have introduced the thermoelectric conductance matrix elements,

G(T)
αβ (E) =

π2e
3h

kBT0
∂
∣∣Sαβ(E)

∣∣2

∂E
, (1.61)

and used the following integral,

∞�
0

dE
e

E−µ0
kBT0

(
1+ e

E−µ0
kBT0

)2

(
E − µ0

kBT0

)2

=
π2

3
kBT0 .

From Eq. (1.61) it follows that if the conductance is energy independent,
Gαβ(E) = const, then the thermoelectric conductance (and the thermoelectric
current) is zero.
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a

b

Figure 1.3: Single-channel scatterer.a is an amplitude of an incoming
wave; b is an amplitude of a reflected wave. The wave line denotes an
electron reservoir.

1.4 Examples

Now we consider several examples to clarify the physical meaning of the
scattering matrix elements. The scattering matrix is a square matrixNr × Nr ,
whereNr is a number of one-dimensional conducting sub-bands in all the leads,
connecting a mesoscopic sample to the reservoirs. We callNr as a number of
the scattering channels.

1.4.1 Scattering matrix 1× 1

Such a matrix has only one element,S11, and it describes a sample con-
nected to a single reservoirs via a one-dimensional lead, Fig. 1.3. Some-
times such a sample is referred to asa mesoscopic capacitor.1 The unitarity,
Eq. (1.10), requires,|S11|2 = 1. Therefore, quite generally the scattering matrix
1× 1 reads:

Ŝ = eiγ , (1.62)

wherei is an imaginary unity,γ is real. Scattering in this case is reduced to a
total reflection of an incident wave. Therefore, the elementS11 is the reflection
coefficient. Generally speaking any diagonal element,Sαα, of the scattering
matrix of a higher dimension is a reflection coefficient, since it defines both the

1More precisely it is one of the capacitor’s plates.
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a1

b1

a2

b2

Figure 1.4: Two-channel scatterer.aα (bα) are amplitudes of incoming
(scattered) waves,α = 1, 2.

amplitude and the phase of a wave coming back to the same reservoir where the
incident wave is originated from. In the case under consideration (1× 1) the
amplitude of a wave remains the same, while the phase is changed byγ which
only the quantity encoding information about the properties of a mesoscopic
sample. For instance, if the wave is reflected by the hard and infinite potential
well then the phase is changed byγ = π, while if the scatterer is a ring thenγ
depends on the magnetic flux threading the ring, and so on.

1.4.2 Scattering matrix 2× 2

This matrix has four in general complex elements, hence there are eight
real parameters. However the unitarity, Eq. (1.10), puts four constraints. As a
result there are only four independent parameters. It is convenient to choose the
following independent parameters:

1) R= |S11|2 – a reflection probability.
2) γ – a phase relating to an effective charge,Q, of a scatterer via the

Friedel sum rule,Q = e/(2πi) ln(detŜ) = eγ/π.[12]
3) θ – a phase characterizing the reflection asymmetry,θ =

i ln (S11/S22) /2.
4) φ – a phase characterizing the transmission asymmetry,φ =

i ln (S12/S21) /2. This phase depends on an external magnetic field or on an
internal magnetic moment of a scatterer.

Therefore, the general expression for the scattering matrix 2× 2, describ-
ing a sample connected to two electron reservoirs, Fig.1.4, can be written as
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follows,

Ŝ = eiγ





√
R e−iθ i

√
1− R e−iφ

i
√

1− R eiφ
√

R eiθ



 . (1.63)

Note the reflection probability is the same in both scattering channels,

|S11|2 = |S22|2 = R. (1.64)

The same is valid with respect to the transmission probabilities: They are inde-
pendent of the direction of movement,

|S12|2 = |S21|2 . (1.65)

In addition the symmetry condition, Eq. (1.29), puts some restrictions onto
a possible dependence of the parameters chosen on the magnetic field. Easy to
see thatγ(H), R(H), andθ(H) are even functions, whileφ(H) is an odd function,
φ(H) = −φ(−H). In particular, ifH = 0 then it isφ = 0 and, correspondingly,
the transmission amplitude is independent of a movement direction,

S12(H = 0) = S21(H = 0) . (1.66)

Stress that Eq. (1.65) holds also in the presence of a magnetic field.
Turning to the transport properties, we say that the conductance,G ≡

G12 = G21, of a sample with two leads is an even function of a magnetic field,

G(H) = G(−H) . (1.67)

As we will show this property holds also for a sample with two quasi-one-
dimensional leads. This symmetry is a consequence of micro-reversibility of
quantum-mechanical equations of motion which are valid in the absence of in-
elastic interactions breaking the phase coherence.
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a1

b1

a2

b2

a3

b3

Figure 1.5: Three-channel scatterer.aα (bα) are amplitudes of incoming
(scattered) waves,α = 1, 2, 3.

1.4.3 Scattering matrix 3× 3

Such a matrix describes a scatterer connected to three reservoirs, Fig.1.5.
It has already many, namely nine, independent real parameters, that makes it
difficult to find a general expression. Usually the particular expressions for the
scattering matrix elements are used. For instance, following to Ref. [13] one
can write a one-parametric scattering matrix,

Ŝ =




−(a+ b)

√
ǫ
√
ǫ√

ǫ a b√
ǫ b a



 , (1.68)

wherea = (
√

1− 2ǫ − 1)/2, b = (
√

1− 2ǫ + 1)/2, and the real parameterǫ
changes within the following interval, 0≤ ǫ ≤ 0.5. The parameterǫ char-
acterizes a strength of coupling between the leadα = 1 and the scatterer. At
ǫ = 0 this lead is decoupled completely from the scatterer,S11 = −1, while
electrons freely propagate from the leadα = 2 into the leadα = 3 and back,
S32 = S23 = 1. The limit ǫ = 0.5 corresponds to a reflectionless coupling
between the sample and the leadα = 1: S11 = 0.

Sometimes, solving the Schrödinger equation for the junction of three one-
dimensional leads, the Griffith boundary conditions are used [14]. These condi-
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tions include both the continuity of a wave function and the current conservation
at crossing point. Then the scattering matrix of a type givenin Eq. (1.68) with
parameterǫ = 4/9 arises. Other values of a parameterǫ, for instance, can be
understood as related to the presence of some tunnel barrierat crossing point.

It should be noted that in contrast to the two-lead case, see,Eq. (1.64), in
the case of thee leads, the reflection probabilities,Rαα ≡ |Sαα|2, α = 1, 2, 3,
for different scattering channels can be different. Moreover the current flowing
between some two leads depends not only on the correspondingtransmission
probability,Tαβ ≡ |Sαβ|2, α , β, but also on the transmission probabilities to the
third lead,Tγα andTγβ, γ , α, β.

1.4.4 Scatterer with two leads

Let us show that the conductance of a mesoscopic sample with two quasi-
one-dimensional leads is an even function of a magnetic field. Before we
showed it, see Eq. (1.67), for the case of two one-dimensional leads when the
scattering matrix is a 2× 2 unitary matrix. Now we generalize this result onto
the case when each lead has several conducting sub-bands. [15]

Let one of the leads, say left, hasNL conducting sub-bands while another
one, right, hasNR conducting sub-bands. The total number of scattering chan-
nels isNr = NL + NR, therefore, the scattering matrix is anNr × Nr unitary
matrix. It is convenient to number the scattering channels in such a way that
the firstNL scattering channels, 1≤ α ≤ NL, correspond to the left lead, while
the lastNR scattering channels,NL + 1 ≤ α ≤ Nr , correspond to the right lead.
We assume that the left reservoir has a potential−V/2 while the right reservoir
has a potentialV/2. Note for all the sub-bands belonging to the same lead the
corresponding potentialVα is the same,

Vα =






−V
2 , 1 ≤ α ≤ NL ,

V
2 , NL ≤ α ≤ Nr .

(1.69)

The current,Iα, carried by the electrons of the sub-bandα is given in
Eq. (1.53). For simplicity we consider a zero temperature case while the con-
clusion remains valid at finite temperatures also. So we write,
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Iα = G0

Nr∑

β=1

∣∣Sαβ

∣∣2{Vβ − Vα

}
. (1.70)

Here and below the scattering matrix elements are calculated at E = µ0. To
calculate a current,IL, flowing within the left lead we need to sum up the con-
tributions from all the sub-bands belonging to the left lead. These are sub-bands
with numbers from 1 untilNL. Therefore, the currentIL is,

IL =

NL∑

α=1

Iα . (1.71)

Substituting Eq. (1.70) into Eq. (1.71), we find,

IL = V G0

NL∑

α=1

Nr∑

β=NL+1

∣∣Sαβ

∣∣2 . (1.72)

Calculating in the same way a currentIR flowing into the right lead it is easy
to check that,IR = −IL, as it should be. Note the equations for currentsIL/R

depends only on the transmission probabilities,|Sαβ|2, between the scattering
channels belonging to the different leads. Neither intra-sub-bands reflections
nor inter-sub-bands transitions within the same lead do affect a current.

The conductance,G = IL/V, is,

G = G0

NL∑

α=1

Nr∑

β=NL+1

∣∣Sαβ

∣∣2 . (1.73)

Our aim is to show that this quantity is an even function of a magnetic field,
G(H) = G(−H). To this end we introduce some generalized reflection coeffi-
cients to the reservoirs,

RLL =

NL∑

α=1

NL∑

β=1

|Sαβ|2 , RRR=

Nr∑

α=NL+1

Nr∑

β=NL+1

|Sαβ|2 , (1.74)
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and transmission coefficients between the reservoirs,

TLR =

NL∑

α=1

Nr∑

β=NL+1

|Sαβ|2 , TRL =

Nr∑

α=NL+1

NL∑

β=1

|Sαβ|2 . (1.75)

These coefficients satisfy the following identities,

RLL + TLR =
NL∑
α=1

NL∑
β=1
|Sαβ|2 +

NL∑
α=1

Nr∑
β=NL+1

|Sαβ|2 =
NL∑
α=1

Nr∑
β=1
|Sαβ|2 =

NL∑
α=1

1 = NL ,

RLL + TRL =
NL∑
α=1

NL∑
β=1
|Sαβ|2 +

Nr∑
α=NL+1

NL∑
β=1
|Sαβ|2 =

NL∑
β=1

Nr∑
α=1
|Sαβ|2 =

NL∑
β=1

1 = NL ,

where we used the unitarity of the scattering matrix,
Nr∑
α=1
|Sαβ|2 = 1,

Nr∑
β=1
|Sαβ|2 =

1. From given above identities it also follows that,

TLR = TRL . (1.76)

Next we use the symmetry conditions, Eq. (1.29), for the scattering matrix ele-
ments in the magnetic field and find,

TLR(−H) =
NL∑
α=1

Nr∑
β=NL+1

|Sαβ(−H)|2 =
NL∑
α=1

Nr∑
β=NL+1

|Sβα(H)|2

=
Nr∑

β=NL+1

NL∑
α=1
|Sβα(H)|2 = TRL(H) .

Therefore, we have
TLR(−H) = TRL(H) . (1.77)

Combining together Eqs.(1.76) and (1.77) we finally arrive at the required rela-
tion,
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µ1 = µ0 + eV1 µ2 = µ0 + eV2

µ3

I3 = 0

Figure 1.6: Mesoscopic scatterer with potential lead.

TLR = TRL

TLR(−H) = TRL(H)




 ⇒ TLR(H) = TLR(−H),

which shows that the conductance,G = G0 TLR, of a sample with two quasi-
one-dimensional leads is an even function of a magnetic field.

1.4.5 Current in the presence of a potential contact

The phase coherent system represents itself some entity whose properties
sometimes quite sensitive to the measurement procedure. Ifone attaches an
additional contact, for instance to measure an electric potential inside the meso-
scopic sample, then the current, flowing through the sample,is changed. [16]

Let us consider a sample connected to three leads, Fig.1.6. Two of them,
having different electrochemical potentials,µ1 = µ0 + eV1 andµ2 = µ0 + eV2,
are used to let pass a current through the system. In contrastthe third lead plays
a role of a potential contact. As for any potential contacts the current, flowing
into it, is zero,I3 = 0. This condition defines the electrochemical potential,
µ3 = µ0 + eV3, of the third reservoir (which the third lead is connected to) as a
function of the bias between the first and the second reservoirs, V = V2 − V1.
One can say thatV3 is a potential of a mesoscopic sample at the point where the
third lead is attached to.

Now we calculate a current through the sample. Since,I3 = 0, then it
is I1 = −I2 like for the sample with two leads. Following this analogy we
would say that at a given biasV the current depends only on the probability
for an electron to go from the first lead to the second lead. However this is not
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the case. In the presence of a potential contact (the third lead) the conductance,
G12 = I1/V, in addition depends on the probability for an electron to bescattered
between the current-carrying and the potential leads,

I1 , G0T12V ⇒ G12 , G0T12 .

Using Eq. (1.53) we write,

I1 = G0

(
T12(V2 − V1) + T13(V3 − V1)

)
,

I2 = G0

(
T21(V1 − V2) + T23(V3 − V2)

)
,

I3 = G0

(
T31(V1 − V3) + T32(V2 − V3)

)
.

From the conditionI3 = 0 we find,

V3 =
T31V1 + T32V2

T31+ T32
.

Note the potentialV3 = 0 in the symmetric case, namely, ifV1 = −V2 andT31 =

T32. Using equation forV3, we can find a conductance,G12 = I1/(V2 − V1) :

G12 = G0

{
T12+

T13T32

T31+ T32

}
.

In the case of a weak coupling between the potential contact and the sample,
T31,T32≪ T12, we recover a result for the sample with two leads,G12 ≈ G0T12

.

1.4.6 Scatterer embedded in a ring

We consider two generic case: (i) the ring with a magnetic fluxΦ and (ii)
the ring with scatterer having different transmission amplitudes to the left and
to the right. For simplicity we suppose the scatterer located at x = 0 to be very
thin: Its width w is small compared to the lengthL of a ring. Then we can
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choose a wave function on a ring threaded by the magnetic fluxΦ, Fig. 1.7, as
follows,

ψ(x) =
(
Aeik(x−L) + Be−ikx

)
ei2π x

L
Φ
Φ0 , 0 ≤ x < L . (1.78)

The scattering matrix is,

Ŝ =

(
S11 S12

S21 S22

)
. (1.79)

The scatterer introduces the following boundary conditions (α = 1 for x→ L−0
andα = 2 for x→ +0),

Be−ikLeiφ = AeiφS11+ BS12 ,

(1.80)
Ae−ikL = AeiφS21+ BS22 .

Here we have introducedφ = 2πΦ/Φ0. We see that the magnetic flux can be
fully incorporated into the non-diagonal scattering matrix elements,

S′12 = S12 e−iφ , S′21 = S21eiφ . (1.81)

Therefore, in what follow we will ignore any magnetic flux andmere consider
the scattering matrix, Eq. (1.79), with S12→ S′12 andS21→ S′21.

1.4.6.1 Spectrum

Now we consider the spectrum of free electrons in a ring with embedded
scatterer. The dispersion equation is defined by the consistency condition for
Eq. (1.80). We rewrite this equation as follows (note that we incorporatedφ
into S′αβ, α , β),

AS11− B
(
e−ikL − S′12

)
= 0 ,

(1.82)
A
(
e−ikL − S′21

)
− BS22 = 0 .
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Aeiφ Ae−ikL

Be−ikLeiφ B

Φ

Figure 1.7: One-dimensional ring with scatterer.

The consistency condition means that the corresponding determinant is zero,

det≡
(
e−ikL − S′21

)(
e−ikL − S′12

)
− S11S22 = 0 . (1.83)

To solve it we make the following substitution,

S′12 = te−iφ , S′21 = teiφ . (1.84)

Next we divide Eq. (1.83) by S′12S
′
21 = t2 and use the equality,S11S′∗21 =

−S′12S
∗
22, following from the unitarity of the scattering matrix. Then we arrive

at the following,

(
e−ikL

t
− eiφ

)(
e−ikL

t
− e−iφ

)
= − |S22|2
|S′21|2

. (1.85)

Note the amplitudet can be complex.
Further, since the right hand side (RHS) of Eq. (1.85) is definitely real

the left hand side (LHS) of the same equation has to be real as well. After
decoupling of the real part from the imaginary part we obtaintwo equations,
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[
Re

(
e−ikL

t

)
− cos(φ)

]2

+ sin2(φ) −
[
Im

(
e−ikL

t

)]2

= − R
T
, (1.86a)

Im

(
e−ikL

t

)[
Re

(
e−ikL

t

)
− cos(φ)

]
= 0 . (1.86b)

where we introduced|S22|2 = R ≥ 0, |S′12|2 ≡ |t|2 = T ≥ 0. From Eq. (1.86a)
we conclude thatIm

(
e−ikL/t

)
, 0 otherwise the LHS of Eq. (1.86a) would be

positively defined but the RHS is strictly negative. Therefore, from Eq. (1.86b)
we conclude that the dispersion equation is the following,

Re

(
e−ikL

t

)
= cos(φ) , (1.87)

as it is well known from the literature. [17, 18]
One can check directly that Eq. (1.86a) does consistent with Eq. (1.87).

1.4.6.2 Circulating current

The current carried by an electron in the state with a wave function given
in Eq. (1.78) is the following,

I =
e~k
m

(
|A|2 − |B|2

)
. (1.88)

Note the magnetic fluxΦ does not enter this equation. Therefore, this equation
can be used no matter whether there is a magnetic flux through the ring or the
scattering matrix is merely asymmetric,S′12 , S′21.

To calculate a current, Eq. (1.88), we use both the normalization condition,

L�
0

dx|ψ|2 ≡ |A|2 + |B|2 = 1 , (1.89)

and one of the equations of the system (1.82), say, the second one,
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B = A
e−ikL − S′21

S22
≡ A

e−ikL − teiφ

S22
. (1.90)

Substituting Eqs. (1.89) and (1.90) into Eq. (1.88) we find,

I =
e~k
mL

1− |F|2
1+ |F|2 , |F|2 = T

R

∣∣∣∣
e−ikL

t
− eiφ

∣∣∣∣
2

. (1.91)

Note atφ = 0, i.e., in a symmetric caseS′12 = S′21, the current, Eq. (1.91),
is identically zero, because|F|2 = 1. The latter follows from Eqs. (1.86) and
(1.87). The dispersion equation, Eq. (1.87), gives,Re

(
e−ikL/t

)
= 1. Then at

φ = 0 we find from Eq. (1.86a),
[
Im
(
e−ikL/t

)]2
= R/T. Therefore,|F|2 =

T
[
Im
(
e−ikL/t

)]2
/R= TR/(TR) = 1.

If the scatterer is not symmetric,S′12 , S′21, (i.e.,φ , 0), then the current
is not zero. Using the dispersion equation (1.87), Re

(
e−ikL/t

)
= cos(φ), we

calculate|F|2:

R
T
|F|2 =

[
Im

(
e−ikL

t

)]2

+ sin2(φ) − 2Im

(
e−ikL

t

)
sin(φ) . (1.92)

Then from Eqs.(1.86) we find,

[
Im

(
e−ikL

t

)]2

= sin2(φ) +
R
T
,

Substituting equation above into Eq. (1.92) and then into Eq. (1.91) we calculate
a current,

I = − e~k
mL

T sin(φ)

T sin(φ) +
R

sin(φ) − Im
(

e−ikL

t

)
. (1.93)

If we denotet = it0eiχ then the dispersion equation gives: sin(kL + χ) =
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−t0 cos(φ). We write a solution as follows,knL+χ = πn+(−1)n arcsin[t0 cos(φ)].
In this case we calculate,Im

(
e−iknL/t

)
= − cos(knL + χ)/t0. Then the current,

Eq. (1.93), reads,

In = −
e~kn

mL

√
T sin(φ)

√
T sin(φ) +

R√
T sin(φ) + cos(knL + χ)

, (1.94)

where we uset0 =
√

T.
Note in equation aboveφ is either an enclosed magnetic flux or an asym-

metry in transmission to the left and to the right, Eq. (1.84), caused, for instance,
by the internal magnetic moment. In generalR andT = 1 − R can depend on
kn.
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Chapter 2

Current noise

One of the manifestations of a change quantization is fluctuating of a cur-
rent, that is a deviation of an instant value of a current,I , from its average value,
〈I〉. The magnitude of fluctuations, or the noise value, is characterized by the
mean square fluctuations,

〈δI2〉 =
〈(

I − 〈I〉
)2
〉
. (2.1)

On the other hand this quantity can be represented as the difference between the
average square current,〈I2〉, and the square of an average current,

〈δI2〉 = 〈I2〉 − 〈I〉2 . (2.2)

Below we concentrate on two sources of noise in mesoscopics.First, it is a
thermal noise, or the Nyquist-Johnson noise, due to finite temperature,T0 > 0,
of reservoirs, see e.g., [11, 19]. This noise exists even in equilibrium. If the
sample is connected to the reservoirs with the same potentials then the average
current through such a sample is zero,〈I〉 = 0. Nevertheless there is a fluctuat-
ing current with non-zero mean square fluctuations,

〈δI2〉(th)

∆ν
= 2kBT0G , (2.3)

whereG is the conductance of a sample,∆ν is a frequency band-width within
which the current fluctuations are measured. This noise is due to fluctuations
of the occupation numbers of quantum states in the macroscopic reservoirs,
see e.g., Ref. [11], that results in fluctuating of electron flows incident to the
scatterer. At zero temperature the quantum state occupation numbers do not
fluctuate and, therefore, the thermal noise is absent.
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Second, it is a shot noise, see Ref. [20]. As it was first shown by Schot-
tky [21], who investigated the current flow in electronic lamps, theprobabilistic
character of a propagation of electrons through the system results in current
fluctuations. In mesoscopics samples the shot noise arises due to quantum-
mechanical probabilistic nature of scattering. The shot noise arises only in
non-equilibrium case, if the current flows through the sample. If the biasV
is applied to the sample then the average current is,〈I〉 = G V. While this
current fluctuates even at zero temperature,

〈δI2〉(sh)

∆ν
= |e〈I〉| (1− T12) , (2.4)

The termT12, a probability for an electron came from one reservoir to be scat-
tered into another one, reflects the probabilistic nature ofthe shot noise. More-
over, taking into account that〈I〉 = VG andG ∼ T12, one can easily show
that the shot noise is maximum if the reflection and the transmission probabil-
ities are equal,R11 = T12 = 1/2. Then we conclude: The larger uncertainty in
the scattering outcome the larger the shot noise is. If the outcome of scatter-
ing is definite, i.e., an electron is always either transmitted through the sample,
T12 = 1, or reflected from the sample,R11 = 1, the shot noise is zero [22].

We stress the two mentioned sources of noise are not independent. The
presence of a current changes a thermal noise and the shot noise is modified at
finite temperatures. This fact points out that the physics underlying the thermal
noise and the shot noise is of the same nature. Before we present a formal
theory of current fluctuations we give simple physical arguments illustrating
appearance of a current noise in mesoscopic systems.

2.1 Nature of a current noise

We consider the extremely simplified model, a sample transmitting only
electrons with energyE. To clarify physics we first consider separately cases
with either thermal or shot noise present.
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2.1.1 Thermal noise

Let the sample be a channel connecting two reservoirs. Electrons with
energyE propagate ballistically,T12(E) = T21(E) = 1, while electrons with any
other energy do not propagate at all,T12(E′) = T21(E′) = 0, ∀E′ , E. Then the
electrons propagating in a channel, say, from the first reservoirs to the second
one, carry a current,

〈I→〉 = I0 P→ , (2.5)

where I0 = ev/L is a current supporting by the stateΨ→(E) of an electron
with energyE in the channel,e is an electron charge,v is an electron velocity,
L−1 is an electron density for a unite length,P→ is a probability that the state
Ψ→(E) is occupied. Since in the ballistic case any electron propagating to the
second reservoir came from the first reservoir, the probability P→ is equal to
the occupation probability for electrons with energyE within the first reservoir.
The latter is given by the Fermi distribution function,f1(E), see Eq. (1.38),

P→ = f1(E) . (2.6)

The occupation probability can be defined as the ratio of a time,∆t→, when
the stateΨ→(E) is occupied and the total time (the observation time),T → ∞,

P→ = lim
T→∞

∆t→
T

. (2.7)

Using this definition we can say that during a time∆t→ there is a currentI→(t) =
I0 in a channel, while during the rest time,T−δt→ , there is no current,I→(t) = 0.
Therefore, the current varies in time. With Eq. (2.7) we calculate the mean
current,

〈I→〉 = lim
T→∞

1
T

T�
0

dt I→(t) = lim
T→∞

I0∆t→
T
= I0P→ , (2.8)
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that coincides with Eq. (2.5). The mean square current is,

〈I2
→〉 = lim

T→∞

1
T

T�
0

dt I2
→(t) = lim

T→∞

I2
0∆t→
T
= I2

0P→ . (2.9)

And finally, using Eq. (2.2), we calculate the mean square current fluctuations,

〈δI2
→〉 = I2

0P→
(
1− P→

)
. (2.10)

We see the current fluctuations are absent,〈δI2
→〉 = 0, in those cases when the

state of interest,Ψ→(E), is either always occupied,P→ = 1, or always empty,
P→ = 0. In contrast if the presence of an electron in a current-carrying state has
a probabilistic character, 0< P→ < 1, the current fluctuates.

Let us express〈δI2
→〉, Eq. (2.10), in terms of a temperatureT1 of a reser-

voirs where electrons come from. To this end we use Eq. (2.6) and take into
account the following identity for the Fermi function,

f1(E)
(
1− f1(E)

)
=

(
−∂ f1(E)

∂E

)
kBT1 . (2.11)

As a result we get,

〈δI2
→〉 = I2

0

(
−∂ f1(E)

∂E

)
kBT1 . (2.12)

Thus the fluctuations under consideration vanish at zero temperature,T1 = 0, as
it should be for the thermal noise, see Eq. (2.3).

Next we take into account electrons propagating in oppositedirection, i.e.,
from the second reservoir to the first one. Then we calculate the mean total
current,〈I〉, and current fluctuations,〈δI2〉 of the total current,I (t) = I→(t) −
I←(t),
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〈I〉 = 〈I→〉 − 〈I←〉 = I0
{

f1(E) − f2(E)
}
,

〈δI2〉 = 〈δI2
→〉 + 〈δI2

←〉

= I2
0

[
f1(E)

{
1− f1(E)

}
+ f2(E)

{
1− f2(E)

}]
,

(2.13)

where f2(E) is the Fermi distribution function for electrons in the second reser-
voir. Calculating〈δI2〉 we took into account that in the ballistic case electrons
propagating from the first reservoir to the second one and back originate from
different reservoirs, which are assumed to be uncorrelated. Therefore, the corre-
sponding fluctuating currents,I→(t) andI←(t), are statistically independent and
have to be averaged independently,〈I→(t)I←(t)〉 = 〈I→(t)〉〈I←(t)〉.

If both reservoirs have the same temperatures,T1 = T2 ≡ T0, and po-
tentials, then the corresponding distribution functions are the same as well,
f1(E) = f2(E) ≡ f0(E). In this case Eq. (2.13) gives,

〈I〉 = 0 ,

〈δI2
→〉 = 2I2

0

(
−∂ f0(E)

∂E

)
kBT0 .

(2.14)

We see that current is zero, as it should be without bias. While the mean square
current fluctuations is not zero due to fluctuations of occupation of quantum
states in the macroscopic reservoirs with finite temperature,T0 > 0.

2.1.2 Shot noise

Now we analyze a zero temperature case when the thermal noisevanishes.
However additionally we assume that there is scatterer in the otherwise ballistic
channel, see Fig.1.4. This scatterer is characterized by the same probabili-
ties to transmit electrons with energyE from one side to another and back,
T12(E) = T21(E). Let us assume also that the reservoirs have different poten-
tials. More precisely, we assume that electrons with energyE are present in the
first reservoir only:µ2 + eV2 < E < µ1 + eV1⇒ f1(E) = 1, f2(E) = 0.
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2.1 Nature of a current noise

From the first reservoirs electrons with velocityv and linear density 1/L
fall onto the scatterer. They hit the scatterer with frequency v/L. Each electron
can be either transmitted or reflected. In the former case an electron reaches
the second reservoir and causes a current pulse,I→(t) = I0. While there is no
current in the latter case,I→(t) = 0, since an electron returns to original reser-
voir. The quantity,T21(E), being a probability for electron to tunnel through the
scatterer, defines a relative time period,∆t→, when the current flows between
the reservoirs,

T21 = lim
T→∞

∆t→
T

. (2.15)

Repeating reasoning of Sec.2.1.1we can calculate a mean current and a
mean square current fluctuations, see Eqs. (2.7) - (2.10):

〈I〉 = I0 T21(E) ,

〈δI2〉 = I0 〈I〉
{

1− T21(E)
}
.

(2.16)

Comparing Eq. (2.10) with Eq. (2.16) we conclude that the structure of
expressions for the thermal noise and for the shot noise is the same. The differ-
ence is only in the source of stochasticity: In the former case it comes from the
distribution function of electrons in macroscopic reservoirs, while in the latter
case it comes from the quantum-mechanical scattering processes.

2.1.3 Mixed noise

Finally we consider a case when both the thermal noise and theshot noise
are present. We assume that the channel with a scatterer is connected to the
reservoirs having non-zero temperatures and different potentials. In this case
the probability,P→, that an electron, moving from the first reservoir to the sec-
ond one, does contribute to a current, is a product of two factors, namely, a
probability, f1(E), that the state with energyE is occupied in the first reservoirs
and a probability,T21(E), that an electron tunnel through the scatterer,

P→ = T21(E) f1(E) . (2.17)
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In the same way, it is,

P← = T12(E) f2(E) . (2.18)

Thus the total current,〈I〉 = 〈I→〉 − 〈I←〉, flowing through the channel is equal
to

〈I〉 = I0 T12(E)
{

f1(E) − f2(E)
}
, (2.19)

where we used,T12(E) = T21(E).
Next we consider current fluctuations. If the currentsI→(t) andI←(t) would

be statistically independent then we could say, see Eq. (2.13), that〈δI2〉 is equal
to the sum of〈δI2

→〉 and〈δI2
←〉, where

〈δI2
→〉 = I2

0 P→
(
1− P→

)
= I2

0 T12(E) f1(E)
{

1− T12(E) f1(E)
}
,

〈δI2
←〉 = I2

0 P←
(
1− P←

)
= I2

0 T12(E) f2(E)
{

1− T12(E) f2(E)
}
.

(2.20)

However, as we show, this is not the case,

〈δI2〉 , 〈δI2
→〉 + 〈δI2

←〉 . (2.21)

This is because the currentsI→(t) and I←(t) are correlated. These correlations
arising between the scattered electrons are a manifestation of the Pauli exclu-
sion principle. Due to this principle two electrons can not be in the same state.
Let us consider the state corresponding to an electron propagating from the
scatterer to the first reservoir. There are two ways to arriveat this state: Either
an electron incident from the first reservoir is reflected, oran electron incident
from the second reservoir is transmitted. Since this state can not be occupied
by two electrons we conclude that the result of scattering ofan electron came
from the first reservoir depends on the result of scattering of an electron came
from the second reservoir. Therefore, the initially uncorrelated electrons at two
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2.1 Nature of a current noise

reservoirs after scattering at the same obstacle become correlated. Hence the
currents carrying scattered electrons are correlated. In particular, these correla-
tions result in vanishing of the shot noise in the case if there are equal electrons
flow falling upon the scatterer from both sides.

To take into account mentioned correlations due the Pauli principle
we should describe electrons quantum-mechanically. We usethe second-
quantization formalism and introduce creation/annihilation operators, ˆa†α/âα, for
electrons with energyE incident from the reservoirα = 1, 2, and operators
b̂†α/b̂1 for electrons scattered into the reservoirα. The reflection and transmis-
sion at the obstacle we describe with the help of the unitary 2× 2 scattering
matrix Ŝ. As we showed before, the operators for scattered and for incident
electrons are related as follows,

b̂α =
2∑

β=1

Sαβâβ , b̂†α =
2∑

β=1

S∗αβâ
†
β . (2.22)

For definiteness we calculate a current and its fluctuations on the left from
the scatterer. As positive we choose a direction from the scatterer to the first
reservoir. Then the current operator,Î1, reads,

Î1 = I0(b̂
†
1b̂1 − â†1â1) . (2.23)

The measured current,I1, and its mean square fluctuations,〈δI2
1〉, are the fol-

lowing,
I1 = 〈Î1〉 , 〈δI2

1〉 = 〈Î2
1〉 − 〈Î1〉2 . (2.24)

where〈. . . 〉 stands for a quantum-statistical average over the incomingstate
with energyE we consider. To calculate it we take into account that the prod-
uct n̂α = â†αâα is a particle number density operator. Averaging quantum-
mechanically ˆnα over the state with energyE we get a particle number density,
nα in this state in the reservoirα. While after statistical averaging of the particle
number density we arrive at the Fermi distribution function, fα, of the reser-
voir α = 1, 2, where an incident electron (describing by the operatoraα) came
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from. Taking into account that electrons at different reservoirs are statistically
independent, i.e.,〈a†αaβ〉 = 0,α , β, we have,

〈â†αâβ〉 = δαβ fα , fα =
1

1+ e
E−µα
kBTα

, α = 1, 2 . (2.25)

Also we take into account the anti-commutation relation forthe Fermi particle
operators,

â†αâβ + âβâ
†
α = δαβ . (2.26)

First, we calculate a current,

〈Î1〉 = I0〈b̂†1b̂1 − â†1â1〉 = I0

〈
2∑
β=1

S∗1βâ
†
β

2∑
γ=1

S1γâγ − â†1â1

〉

= I0

{
2∑
β=1

2∑
γ=1

S∗1βS1γ〈â†βâγ〉 − 〈â†1â1〉
}
= I0

{
2∑
β=1
|S1β|2 fβ − f1

}
.

Using the unitarity of the scattering matrix,|S11|2 + |S12|2 = 1, and introducing
the transmission probability,T12 = |S12|2, we finally find,

〈Î1〉 = I0T12( f2 − f1) . (2.27)

This equation is different form the current in a ballistic case, Eq. (2.13), by the
evident factorT12 < 1, which reduces a current due to a partial reflection of an
electron flow from the scatterer.

Next we calculate the mean square current fluctuations,〈δI2
1〉. To simplify

calculations we write the current operator,Î1 directly in terms of operators for
incident electrons,

b̂1 = S11â1 + S12â2 , b̂†1 = S∗11â
†
1 + S∗12â

†
2 ,
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Î1/I0 = b̂†1b̂1 − â†1â1 =

(
S∗11â

†
1 + S∗12â

†
2

)
(S11â1 + S12â2) − â†1â1 =

= T12(â
†
2â2 − â†1â1) + S∗11S12â

†
1â2 + S∗12S11â

†
2â1 .

Note the last two term do not contribute to a measured current, I1 = 〈Î1〉, since
after averaging they give zero, see Eq. (2.25). However namely these terms are
responsible for current fluctuations.

The square of the current operator is the following,Î2
1 =

(
Î1

)2
:

Î2
1/I

2
0 =

(
T12(â

†
2â2 − â†1â1) + S∗11S12â

†
1â2 + S∗12S11â

†
2â1

)2
=

= T2
12

(
â†2â2â

†
2â2 + â†1â1â

†
1â1 − â†2â2â

†
1â1 − â†1â1â

†
2â2

)

+R11T12

(
â†1â2â

†
2â1 + â†2â1â

†
1â2

)

+T12S
∗
11S12

(
â†2â2â

†
1â2 + â†1â2â

†
2â2 − â†1â1â

†
1â2 − â†1â2â

†
1â1

)

+T12S
∗
12S11

(
â†2â2â

†
2â1 + â†2â1â

†
2â2 − â†1â1â

†
2â1 − â†2â1â

†
1â1

)

+
(
S∗11S12

)2
â†1â2â

†
1â2 +

(
S∗12S11

)2
â†2â1â

†
2â1 .

Here the reflection coefficient, R11 = |S11|2, was introduced. Note the terms
in the last three lines give zero after averaging since they include a different
number of creation and annihilation operators with the sameindices. To average
remaining terms we use Eq. (2.26),

〈â†αâαâ†αâα〉 = 〈â†α
(
1− â†αâα

)
âα〉 = 〈â†αâα〉 − 〈â†αâ†αâαâα〉 = fα − 0 = fα ,

〈â†αâαâ†βâβ〉 = 〈â†αâα〉〈â†βâβ〉 = fα fβ, α , β ,

〈â†αâβâ†βâα〉 = 〈â†α
(

1− â†βâβ
)

âα〉 = 〈â†αâα〉 − 〈â†αâ†βâβâα〉 =

= fα − 〈â†αâαâ†βâβ〉 = fα − 〈â†αâα〉〈â†βâβ〉 = fα(1− fβ) , α , β .
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With these equations we calculate,

〈Î2
1〉/I2

0 = T2
12( f2 + f1 − 2 f1 f2) + R11T12

{
f1(1− f2) + f2(1− f1)

}
.

And finally we find the mean square current fluctuations,

〈δI2
1〉/I2

0 = 〈I2
1〉/I2

0 − 〈I1〉2/I2
0

= T2
12( f2 + f1 − 2 f1 f2) + R11T12

{
f1(1− f2) + f2(1− f1)

}
− T2

12( f2 − f1)2

= T2
12

{
f1(1− f1) + f2(1− f2)

}
+ R11T12

{
f1(1− f2) + f2(1− f1)

}
.
(2.28)

Let us analyze where the different terms in this equation originate from.
First we consider the term with squared transmission probability,

T2
12

{
f1(1 − f1) + f2(1 − f2)

}
. This term originates from averaging those pairs

of creation and annihilation operators which do contributeto current. Since the
current is due to electrons transmitted from one reservoir to another one, we
can attribute this part of a noise to fluctuations in incidentelectron flows. The
effect of scattering in this case is rather trivial: It reduces an electron flow by
the factorT12 and, correspondingly, it reduces a noise (a squared current) by the
factorT2

12. This is evident for electrons flowing from the second reservoir and
transmitted through the scatterer before we calculated their contribution to the
currentI1. However the same is also true for electrons flowing from the first
reservoir, since their current is reduced by the factorT21 = T12 = 1−R11 due to
reflection at the scatterer. As a result the (part of the) meansquare current fluc-
tuations due to fluctuating of the occupation numbers of states in the reservoirs
are proportional to the transmission probability square. Since these fluctua-
tions are present at non-zero temperature only, this part could be considered as
the thermal noise in the system under consideration (the scatterer connected to
reservoirs). Comparing it to Eq. (2.13) we see that these two results are consis-
tent atT12 = 1. However atT12 < 1 this part of a noise is different from what we
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2.1 Nature of a current noise

called as the thermal noise, Eq. (2.3), since the conductanceG is proportional
to the transmission probability,G = G0T12, not its square.

To resolve a seemingly contradiction and to find a correct expression for
the thermal noise, i.e., for the part of a noise vanishing at zero temperature, we
should consider the remaining part in Eq. (2.28) due to reflection at the scat-
terer,R11T12

{
f1(1− f2)+ f2(1− f1)

}
. This part originates from averaging those

operators which do not contribute to a current and, therefore, they do not cor-
respond to any real single-particle processes. While they correspond to some
two-particle processes. To clarify them we introduce a notion of a hole whose
distribution function is 1− fα. Then one can say that there are two kind of
particles incident to the scatterer: There is incoming either an electrons (with
probability fα) or a hole (with probability 1− fα). Then the corresponding part
of a noise is due to following two-particle processes: An electron/hole incoming
from the first reservoir is reflected (with probabilityR11) while a hole/electron
incoming from the second reservoir is transmitted (with probability T12). Ap-
parently these processes do not contribute to current. Notice the fluctuations in
reservoirs and fluctuations due to scattering are statistically independent, there-
fore, they contribute additively into the mean square current fluctuations. This
fact justifies splitting present in Eq. (2.28). On the other hand one can rearrange
these terms in another way,

〈δI2
1〉/I2

0 = T2
12

{
f1(1− f1) + f2(1− f2)

}

+R11T12

{
f1(1− f1 + f1 − f2) + f2(1− f2 + f2 − f1)

}
=

=
(
T2

12+ R11T12

){
f1(1− f1) + f2(1− f2)

}

+R11T12

{
f1( f1 − f2) + f2( f2 − f1)

}
=

= T12

{
f1(1− f1) + f2(1− f2)

}
+ R11T12( f2 − f1)

2 .

One can see that the first terms vanishes at zero temperature,therefore, we call
it as the thermal noise. The second term vanishes with vanishing of a current,
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Eq. (2.27), flowing through the scatterer. Therefore, following to Schottky one
can attribute it to the stochasticity in scattering of indivisible particles at the
obstacle. We call such a noise as the shot noise. Thus we write,

〈δI2
1〉/I2

0 = 〈δI2
1〉(th)/I2

0 + 〈δI2
1〉(sh)/I2

0 , (2.29)

where
〈δI2

1〉(th)/I2
0 = T12

{
f2(1− f2) + f1(1− f1)

}
,

〈δI2
1〉(sh)/I2

0 = R11T12( f2 − f1)
2 .

Notice the given above equation for the thermal noise is proportional to
the fist power of a transmission probability,T12, in agreement with Eq. (2.3).
The shot noise equation is proportional to the product of a transmission and
reflection probabilities, that by virtue of Eq. (2.27) is consistent with Eq. (2.4).
Moreover, the equation (2.29) reproduces correctly equations for the thermal
noise and for the shot noise in all particular cases we considered earlier.

2.2 Sample with continuous spectrum

Now using the scattering matrix approach we present a formaltheory for
current fluctuations in mesoscopic sample connected via one-dimensional leads
to Nr reservoirs. The essential difference from a simple model considered above
is that the incident electrons are particles with continuous spectrum. This fact
complicates calculations but qualitatively the answer remains the same.

2.2.1 Current correlator

The mathematical quantity which is usually considered in connection with
noise is a correlation function of currents,

Pαβ(t1, t2) =
1
2

〈
∆Îα(t1)∆Îβ(t2) + ∆Îβ(t2)∆Îα(t1)

〉
. (2.30)

The operator∆Îα = Îα −
〈
Îα
〉

describes a deviation of an instant current,Îα,
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from its mean value,
〈
Îα
〉
. The quantityPαα is referred to asthe current auto-

correlator, while the quantityPαβ, α , β, is referred to asthe current cross-
correlator.

At t1 = t2 andα = β the equation (2.30) defines the mean square fluctua-
tions of a current within a leadα, Pαα(t1, t1) =

〈
∆Î2

α

〉
, which strictly speaking

diverges due to quantum fluctuations in the system with continuous unbounded
spectrum. To overcome this difficulty usually in an experiments the fluctuations
are measured within some frequency window∆ω.

To calculate the spectral contents of fluctuations we go overfrom the real-
time to the frequency representation,

Pαβ(ω1, ω2) =

∞�
−∞

dt1 eiω1t1

∞�
−∞

dt2 eiω2t2Pαβ(t1, t2) , (2.31)

Pαβ(t1, t2) =

∞�
−∞

dω1

2π
e−iω1t1

∞�
−∞

dω2

2π
e−iω2t2Pαβ(ω1, ω2) . (2.32)

Note in the stationary case the correlation function depends on the differ-
ence of times only,Pαβ(t1, t2) = Pαβ(t1 − t2), that reads in frequency representa-
tion as follows:

Pαβ(ω1, ω2) = 2π δ(ω1 + ω2) Pαβ(ω1) , (2.33)

whereδ(X) is the Dirac delta-function. The spectral noise power,Pαβ(ω1), is
related to the correlatorPαβ(t1 − t2) = Pαβ(t) in the following way:

Pαβ(ω) =

∞�
−∞

dt eiωt Pαβ(t) , (2.34)

Pαβ(t) =

∞�
−∞

dω
2π

e−iωt Pαβ(ω) . (2.35)
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As we already mentioned the quantityPαα(t = 0), defining the mean square
current fluctuations, diverges. However if we restrict the frequency interval,
±∆ω/2, where the current fluctuations are measured, then we obtain a finite
quantity,

〈
δI2
α

〉
=

∆ω/2�
−∆ω/2

dω
2π

Pαα(ω) . (2.36)

Further simplification arises if the scattering propertiesof a sample depend on
energy only a little. In this case the spectral noise power,Pαβ(ω), depends
weakly on frequency,Pαβ(ω) ≈ Pαβ(0), and we can evaluate Eq. (2.36),

〈δI2
α〉
∆ν
= Pαα(0) , (2.37)

where∆ν = ∆ω/(2π). In the same way the cross-correlator of currents flowing
into the leadsα andβ measured within the frequency window∆ω becomes,

〈δIαδIβ〉
∆ν

= Pαβ(0) , (2.38)

We see that the mean square current fluctuations is defined by the zero fre-
quency noise power. Below we calculatePαβ(0) and confirm announced earlier
Eqs. (2.3) and (2.4).

2.2.2 Current correlator in frequency domain

Let us calculate a quantityPαβ(ω1, ω2) and show that indeed it can be rep-
resented as Eq. (2.33).

Substituting Eq. (2.30) into Eq. (2.31) we get,

Pαβ(ω1, ω2) =
1
2

〈
∆Îα(ω1)∆Îβ(ω2) + ∆Îβ(ω2)∆Îα(ω1)

〉
, (2.39)

58



2.2 Sample with continuous spectrum

where∆Îα(ω) = Îα(ω) −
〈
Îα(ω)

〉
, and Îα(ω) is a current operator in frequency

representation. To calculate it we apply the Fourier transformation to Eq. (1.36)
and find the following,

Îα(ω) = e

∞�
0

dE
{

b̂†α(E)b̂α(E + ~ω) − â†α(E)aα(E + ~ω)
}
. (2.40)

For convenience we represent a current as the sum of two contributions.
The first one is due to scattered electrons, while the second one is due to incident
electrons. To distinguish these contributions we use the upper indices (out) and
(in) for the former and latter contributions, respectively. So, the total current is,
Îα(ω) = Î (out)

α (ω) + Î (in)
α (ω), where

Î (out)
α (ω) = e

∞�
0

dEb̂†α(E)b̂α(E + ~ω) , (2.41)

Î (in)
α (ω) = − e

∞�
0

dEâ†α(E)âα(E + ~ω) . (2.42)

Then the current correlator,Pαβ(ω1, ω2), is the sum of four terms,

Pαβ(ω1, ω2) =
∑

i, j=in,out

P(i, j)
αβ (ω1, ω2) ,

(2.43)

P(i, j)
αβ (ω1, ω2) =

1
2

〈
∆Î (i)

α (ω1)∆Î ( j)
β (ω2) + ∆Î ( j)

β (ω2)∆Î (i)
α (ω1)

〉
.

We calculate each of these terms separately.
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2.2.2.1 Correlator for incoming currents

The part of a current correlation function dependent only onincoming cur-
rents is:

P(in,in)
αβ (ω1, ω2) = e2

∞�
0

dE1 dE2
J(in,in)
αβ (E1,2, ω1,2) + J(in,in)

βα (E2,1, ω2,1)

2
,

(2.44)

where

J(in,in)
αβ (E1,2, ω1,2) =

〈{
â†α(E1) âα(E1 + ~ω1) −

〈
â†α(E1) âα(E1 + ~ω1)

〉}

×
{

â†β(E2) âβ(E2 + ~ω2) −
〈

â†β(E2) âβ(E2 + ~ω2)
〉}〉

.

Taking into account that the average of the product of four operators is the sum
of products of pair correlators we finally find,

J(in,in)
αβ (E1,2, ω1,2) =

〈
â†α(E1) âβ(E2 + ~ω2)

〉〈
âα(E1 + ~ω1) â†β(E2)

〉
.

Using Eq. (1.37), we calculate pair correlators,
〈

â†α(E1) âβ(E2 + ~ω2)
〉
= δαβ δ(E1 − E2 − ~ω2) fα(E1) ,

〈
âα(E1 + ~ω1) â†β(E2)

〉
= δαβ δ(E1 + ~ω1 − E2) {1− fα(E1 + ~ω1)} ,

and correspondingly,

J(in,in)
αβ (E1,2, ω1,2) = δαβ δ(E1 − E2 − ~ω2) δ(E1 + ~ω1 − E2)

× fα(E1) {1− fα(E1 + ~ω1)} .
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In the same way we get,

J(in,in)
βα (E2,1, ω2,1) = δαβ δ(E1 + ~ω1 − E2) δ(E1 − E2 − ~ω2)

× fα(E1 + ~ω1) {1− fα(E1)} .

Substituting equations above into Eq. (2.44) and integrating over energyE2, we
represent this part of a current correlation function in thefollowing way,

P(in,in)
αβ (ω1, ω2) = 2π δ(ω1 + ω2) P

(in,in)
αβ (ω1) ,

(2.45)

P
(in,in)
αβ (ω1) = δαβ

e2

h

∞�
0

dE1 Fαα(E1,E1 + ~ω1) .

Here we have introduced the following short notation,

Fαβ(E,E
′) =

1
2

{
fα(E)

[
1− fβ(E

′)
]
+ fβ(E

′)
[
1− fα(E)

]}
. (2.46)

As it follows from Eq. (2.45), the currents flowing into the different leads,
α , β, to the scatterer are uncorrelated,P(in,in)

α,β = 0. This is a consequence of
our assumption that electrons at different reservoirs are uncorrelated.

2.2.2.2 Correlator for incoming and out-going currents

The part of a correlator dependent on an incoming current in the leadα
and an out-going current in the leadβ reads,
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2 Current noise

P(in,out)
αβ (ω1, ω2) = − e2

∞�
0

dE1 dE2
J(in,out)
αβ (E1,2, ω1,2) + J(out,in)

βα (E2,1, ω2,1)

2
.

(2.47)

To calculate, for instance,

J(in,out)
αβ (E1,2, ω1,2) =

〈{
â†α(E1) âα(E1 + ~ω1) −

〈
â†α(E1) âα(E1 + ~ω1)

〉}

×
{

b̂†β(E2) b̂β(E2 + ~ω2) −
〈

b̂†β(E2) b̂β(E2 + ~ω2)
〉}〉

=

〈
â†α(E1) b̂β(E2 + ~ω2)

〉〈
âα(E1 + ~ω1) b̂†β(E2)

〉
,

we expressb−operators in terms ofa−operators, see Eq. (1.39),

b̂†β(E) =
Nr∑

γ=1

S∗βγ(E)â†γ(E) , b̂β(E) =
Nr∑

γ=1

Sβγ(E)âγ(E) ,

and calculate pair correlators,

〈
â†α(E1) b̂β(E2 + ~ω2)

〉
= δ(E1 − E2 − ~ω2) Sβα(E2 + ~ω2) fα(E1) ,

〈
âα(E1 + ~ω1) b̂†β(E2)

〉
= δ(E1 + ~ω1 − E2) S∗βα(E2) {1− fα(E1 + ~ω1)} .

After that we find,

J(in,out)
αβ (E1,2, ω1,2) = δ(E1 − E2 − ~ω2) δ(E1 + ~ω1 − E2)

× Sβα(E2 + ~ω2) S∗βα(E2) fα(E1) {1− fα(E1 + ~ω1)} .
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2.2 Sample with continuous spectrum

The similar calculations give us the second term in Eq. (2.47):

J(out,in)
βα (E2,1, ω2,1) = δ(E1 + ~ω1 − E2) δ(E1 − E2 − ~ω2)

× S∗βα(E2) Sβα(E2 + ~ω2) fα(E1 + ~ω1) {1− fα(E1)} .

Using these equations in Eq. (2.47) and integrating overE2, we calculate,

P(in,out)
αβ (ω1, ω2) = 2π δ(ω1 + ω2) P

(in,out)
αβ (ω1) ,

(2.48)

P
(in,out)
αβ (ω1) = −

e2

h

∞�
0

dE1 Fαα(E1,E1 + ~ω1) S∗βα(E1 + ~ω1) Sβα(E1) .

This equation shows us that the current carrying by the electrons scattered
into the leadβ is correlated with a current carrying by the electrons incoming
from the reservoirα. In fact these correlations are due to electrons scattered
from the leadα into the leadβ. That is indicated by the corresponding scattering
matrix elements,Sβα.

In the same way we calculate the third term in Eq. (2.43):

P(out,in)
αβ (ω1, ω2) = 2π δ(ω1 + ω2) P

(out,in)
αβ (ω1) ,

(2.49)

P
(out,in)
αβ (ω1) = −

e2

h

∞�
0

dE1 Fββ(E1,E1 + ~ω1) S∗αβ(E1) Sαβ(E1 + ~ω1) .

This term is due to correlations between electrons coming from the reservoirβ
and electrons scattered in the reservoirsα.
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2 Current noise

2.2.2.3 Correlator for out-going currents

Finally we calculate the last term in Eq. (2.43):

P(out,out)
αβ (ω1, ω2) =

e2

2

∞�
0

dE1 dE2 (2.50)

×
{〈

b̂†α(E1) b̂β(E2 + ~ω2)
〉〈

b̂α(E1 + ~ω1) b̂†β(E2)
〉

+

〈
b̂†β(E2) b̂α(E1 + ~ω1)

〉 〈
b̂β(E2 + ~ω2) b̂†α(E1)

〉}
.

To calculate a pair correlator withb−operators we use Eqs. (1.39), (1.37) and
obtain, for example,

〈
b̂†α(E1) b̂β(E2 + ~ω2)

〉
= δ(E1 − E2 − ~ω2)

×
Nr∑

γ=1

S∗αγ(E1) Sβγ(E2 + ~ω2) fγ(E1) ,

〈
b̂α(E1 + ~ω1) b̂†β(E2)

〉
= δ(E1 + ~ω1 − E2)

×
Nr∑

δ=1

Sαδ(E1 + ~ω1) S∗βδ(E2) {1− fδ(E2)} .

Other pair correlators are calculated in the similar way. Then Eq. (2.50) results
in the following:

P(out,out)
αβ (ω1, ω2) = 2π δ(ω1 + ω2) P

(out,out)
αβ (ω1) , (2.51)

P
(out,out)
αβ (ω1) =

e2

h

∞�
0

dE1

Nr∑

γ=1

Nr∑

δ=1

Fγδ(E1,E1 + ~ω1) .

× S∗αγ(E1) Sβγ(E1) Sαδ(E1 + ~ω1) S∗βδ(E1 + ~ω1) .
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2.2 Sample with continuous spectrum

Note the correlator of scattered currents depends on the Fermi functions for
all the reservoirs. In addition it depends not only on amplitudes of scattering
between the leadsα andβ, where the currents are measured, but rather on all the
possible scattering amplitudes. It emphasizes a non-locality inherent to phase-
coherent systems.

Summing up Eqs. (2.45), (2.48), (2.49), and (2.51), we arrive at Eq. (2.33),
where

Pαβ(ω) =
e2

h

∞�
0

dE

{
Fαα(E,E + ~ω)

[
δαβ − S∗βα(E + ~ω) Sβα(E)

]

− Fββ(E,E + ~ω) S∗αβ(E) Sαβ(E + ~ω) (2.52)

+

Nr∑

γ=1

Nr∑

δ=1

Fγδ(E,E + ~ω) S∗αγ(E) Sβγ(E) Sαδ(E + ~ω) S∗βδ(E + ~ω)

}
.

The frequency dependence of a noise is due to internal and external fac-
tors. The internal factor is an energy dependence of the scattering amplitudes.
The external factors, represented by the combination of theFermi functions,
Fγδ(E,E + ~ω), are chemical potentials and temperatures of reservoirs.The
joint effect of internal and external factors is rather sample-specific. However
in some simple cases the effect of bias and temperature can be analyzed.

2.2.3 Spectral noise power for energy independent scattering

Let the reservoirs have different potentials but the same temperature,

eVαβ = µα − µβ ; Tα = T0 , ∀α . (2.53)

We assume a bias and a temperature small compared to the Fermienergy,

|eVαβ| , kBT0 ≪ µ0 . (2.54)
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2 Current noise

Suppose also that the scattering matrix varies with energy only a little within
the energy window of orderkBT0, |eVαβ| near the Fermi energyµ0. Then the
scattering matrix elements in Eq. (2.52) can be calculated at the Fermi energy,
E ≈ E + ~ω = µ0. The integration over energy becomes trivial,

∞�
0

dE Fαβ(E,E + ~ω) =
eVαβ + ~ω

2
cth

(
eVαβ + ~ω

2kBT0

)
, (2.55)

and we calculate the spectral noise power,

Pαβ(ω) = e2

h

{
~ω
2 cth

(
~ω

2kBT0

) [
δαβ −

∣∣Sβα(µ0)
∣∣2 −

∣∣Sαβ(µ0)
∣∣2
]

(2.56)

+
Nr∑
γ=1

Nr∑
δ=1

eVγδ+~ω
2 cth

(
eVγδ+~ω

2kBT0

)
S∗αγ(µ0) Sβγ(µ0) Sαδ(µ0) S∗βδ(µ0)

}
.

Let us consider a particular case ofNr = 2. [23] Then we find,

P11(ω) = e2

h

{
~ω cth

(
~ω

2kBT0

)
T2

12

(2.57)

+R11T12

[
eV+~ω

2 cth
(

eV+~ω
2kBT0

)
+ eV−~ω

2 cth
(

eV−~ω
2kBT0

)]}
.

whereV = V12 = −V21, T12 = |S12(µ0)|2, R11 = |S11(µ0)|2 = 1− T12. Note in the
two-terminal case the calculated quantity defines all othercorrelation functions:
P12 = P21 = −P22 = −P11.

The noise depends on a frequencyω at which the current is measured, on a
biasV, and on a temperatureT0. If one of these factors exceeds other ones then
we get,
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2.2 Sample with continuous spectrum

P11(ω) =






2kBT0G , kBT0≫ |eV|, ~ω ,

|eI|R11 , |eV| ≫ ~ω, kBT0 ,

e2

2π |ω|T12 , ~ω ≫ kBT0, |eV| ,

(2.58)

whereG = (e2/h)T12 is a conductance,I = VG is a current through the sample.
The first line represents a thermal noise which is linear in temperature. The
coefficient 2 arises due to two reservoirs having the same temperature. If the
temperatures are different then we should make a replacement, 2T0→ T1 + T2.
Taking into account Eq. (2.37) we see that this equation is exactly Eq. (2.3).
The second line in Eq. (2.58) corresponds to a regime when the shot noise dom-
inates. It reproduces Eq. (2.4). And, finally, the third line represents so called
a quantum noisedependent on the measurement frequencyω. [24] Namely
this last contribution is responsible for divergence of themean square current
fluctuations〈I2

1〉 = P11(t = 0), see Eq. (2.35).
As it follows from Eq. (2.58) the frequency dependence of a noise can be

ignored if,

~ω≪ max
{

kBT0, |eVαβ|
}
, ∀α, β . (2.59)

In this case the quantum noise becomes negligible and the main sources of
current fluctuations are thermal and shot noises. AtT0 ∼ 10−2 K and/or V ∼
10−6 V the quantum noise can be ignored up to the frequenciesω ∼ 109 Hz.

2.2.4 Zero frequency noise power

If the measurement is doing at enough small frequencies, Eq.(2.59), then
the value of current fluctuations is defined by the noise powerat zero frequency,
ω = 0, see Eq. (2.37). The quantityPαα(0) is usually referred to asthe noise
power.

Let us represent a quantityPαβ(0), Eq. (2.52), as the sum of two terms such
that one of them vanishes at zero temperature, while anotherone vanishes in the
absence of a current through the sample. To this end we write,
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2 Current noise

Fγδ(E,E) =
1
2

{
Fγγ(E,E) + Fδδ(E,E) +

[
fγ(E) − fδ(E)

]2}
.

Then in Eq. (2.52) in the term with factorFγγ(E,E) we sum up overδ and,
taking into account Eq. (1.13), find,

Nr∑

γ=1

Fγγ S∗αγ Sβγ

Nr∑

δ=1

Sαδ S∗βδ = δαβ

Nr∑

γ=1

Fγγ

∣∣Sαγ

∣∣2 .

The term with factorFδδ(E,E) reads exactly the same. After then we write, [4]

Pαβ(0) = P
(th)
αβ + P

(sh)
αβ , (2.60)

where

P
(th)
αβ =

e2

h

∞�
0

dE

{
δαβ

[
Fαα(E,E) +

Nr∑

γ=1

Fγγ(E,E)
∣∣Sαγ(E)

∣∣2
]

− Fαα(E,E)
∣∣Sβα(E)

∣∣2 − Fββ(E,E)
∣∣Sαβ(E)

∣∣2
}
, (2.61)

P
(sh)
αβ =

e2

h

∞�
0

dE
Nr∑

γ=1

Nr∑

δ=1

[
fγ(E) − fδ(E)

]2

2
S∗αγ(E) Sβγ(E) Sαδ(E) S∗βδ(E) .

(2.62)

The quantityP(th)
αα can be referred to asthe thermal noise power. This

quantity vanishes at zero temperature, since atTα = 0 it is Fαα(E,E) = 0, ∀α.
While the quantityP(sh)

αα can be called asthe shot noise power. Since it vanishes
in the absence of a current through the system. Remind that the current is driven
by the Fermi function difference.

It should be noted that asP(th)
αβ asP

(sh)
αβ depend on both the temperature

and the bias voltage. That emphasizes the universal probabilistic nature of a
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2.2 Sample with continuous spectrum

noise. However there is an essential difference between the equilibrium (ther-
mal) noise and the non-equilibrium (shot) noise. The thermal noise depends
on the probabilities|Sαβ|2 like the conductanceGαβ, Eq. (1.55), does. This is a
consequence of the fluctuation-dissipation theorem, see e.g., Ref. [11]. While
the shot noise depends on different combinations of the scattering matrix ele-
ments. That in general allows to extract additional information concerning the
properties of a sample from the shot noise measurements. Further we consider
general properties of the noise power.

2.2.4.1 Noise power conservation law

The sum of the zero-frequency current correlation functionpower over
either incoming or outgoing indices is zero, [5]

Nr∑

α=1

Pαβ(0) =
Nr∑

β=1

Pαβ(0) = 0 . (2.63)

These conservation laws are quite analogous to the dc current conservation law,
(1.48). They are due to particle number conservation at scattering (due to uni-
tarity of the scattering matrix).

Remarkably the thermal noise and the shot noise are subject to these con-
servation laws separately. So using Eq. (1.51) we find for the thermal noise,
Eq. (2.61),1

Nr∑

α=1

P
(th)
αβ ∼

Nr∑

α=1

δαβ

[
Fαα(E,E) +

Nr∑

γ=1

Fγγ(E,E)
∣∣Sαγ(E)

∣∣2
]

−
Nr∑

α=1

Fαα(E,E)
∣∣Sβα(E)

∣∣2 − Fββ(E,E)
Nr∑

α=1

∣∣Sαβ(E)
∣∣2 =

1We drop an integration over energy since the conservation laws hold not only integrally but also separately for
each energy
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2 Current noise

= Fββ(E,E) +
Nr∑

γ=1

Fγγ(E,E)
∣∣Sβγ(E)

∣∣2

−
Nr∑

α=1

Fαα(E,E)
∣∣Sβα(E)

∣∣2 − Fββ(E,E) = 0 .

In the same way using Eq. (1.46) we show that
∑Nr

β=1 P
(th)
αβ (0) = 0.

In the case of a shot noise, Eq. (2.62), we use Eq. (1.12) and get,

Nr∑

α=1

P
(sh)
αβ ∼

Nr∑

γ=1

Nr∑

δ=1

[
fγ(E) − fδ(E)

]2

2
Sβγ(E) S∗βδ(E)

Nr∑

α=1

S∗αγ(E) Sαδ(E) .

=

Nr∑

γ=1

Nr∑

δ=1

[
fγ(E) − fδ(E)

]2

2
Sβγ(E) S∗βδ(E) δγδ = 0 .

Then with Eq. (1.13) we also prove,
∑Nr

β=1 P
(sh)
αβ (0) = 0.

The conservation laws, Eq. (2.63), show that the auto-correlator and cross-
correlators at zero frequency are not independent from eachother. Some of
them can be calculated if other were measured.

2.2.4.2 Sign rule for noise power

The auto-correlator is positive (or zero) while the cross-correlator is nega-
tive (or zero) [5],

Pαα(0) ≥ 0 , (2.64a)

Pαβ(0) ≤ 0 , α , β . (2.64b)

The positiveness ofPαα(0) is clear, since this quantity is a mean square of
a real quantity, Eq. (2.37). The negative sign of a cross-correlator is a conse-
quence, first, of an indivisibility of electrons and, second, of the Pauli exclu-
sion principle requiring (spinless) electrons with some energy pass one by one
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2.2 Sample with continuous spectrum

through the one-dimensional lead. Therefore, we can look atscattering of a
single electron with given energy and forget about other electrons. Let us con-
sider scattering of an electron flow moving to the sample in the leadγ. Elec-
trons from this flow can be scatterer to any leadδ with probability |Sδγ(E)|2.
In particular some electrons will be scattered into the leads α and β. These
electrons define the mean currents,〈I (γ)

α 〉 and 〈I (γ)
β 〉. On the other hand each

particular electron can be scatterer to only one lead. It canbe either leadα, or
β, or any other leadδ. In any case the current pulse due to scattering of this
particular electron arises only in one lead. Therefore, theproduct of instant
currents in any two leads, for example inα andβ, is zero,I (γ)

α I (γ)
β = 0. Then

we immediately conclude that the cross-correlator of currents in leadsα andβ
due to single electrons coming with energyE from the reservoirγ is negative,
P

(γ)
αβ (E) ∼ 〈I (γ)

α I (γ)
β 〉 − 〈I (γ)

α 〉〈I
(γ)
β 〉 ∼ 0− |Sαγ(E)|2|Sβγ(E)|2 ≤ 0. In different reser-

voirs and at different energies electrons are statistically independent. Therefore,
we can sum up correlation functionsP

(γ)
αβ(E) overγ and integrate overE. Then

we arrive at Eq. (2.64b).
Let us show that the thermal noise, Eq. (2.61), and the shot noise,

Eq. (2.62), do satisfy the sign rule, Eqs. (2.64). We will omit an integration
over energy which does not affect a sign of a current correlation function. First
we consider a thermal noise. The auto-correlator gives,

P(th)
αα ∼ Fαα(E,E) +

Nr∑

γ=1

Fγγ(E,E)
∣∣Sαγ(E)

∣∣2 − 2Fαα(E,E) |Sαα(E)|2 =

= Fαα(E,E)
[
1− |Sαα(E)|2

]
+

Nr∑

γ,α=1

Fγγ(E,E)
∣∣Sαγ(E)

∣∣2 ≥ 0 .

Here we took into account 0≤ Fαα(E,E) ≤ 1 and|Sαα(E)|2 ≤ 1. For the cross-
correlator,α , β, we find a definitely negative expression,P(th)

α,β ∼ −|Sβα|2 fα[1−
fα] − |Sαβ|2 fβ[1 − fβ] ≤ 0.

Next we consider a shot noise. The auto-correlator is definitely positive,
P(sh)
αα ∼

∑Nr

γ=1

∑Nr

δ=1
1
2

(
fγ − fδ

)2 |Sαγ|2 |Sαδ|2 ≥ 0. To calculate a cross-correlator

we use,
(

fγ − fδ
)2
= f 2

γ + f 2
δ − 2 fγ fδ, use Eq. (1.13), and get,
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P
(sh)
α,β ∼

1
2

Nr∑

γ=1

Nr∑

δ=1

(
f 2
γ + f 2

δ − 2 fγ fδ
)

S∗αγ Sβγ Sαδ S∗βδ

=
1
2

Nr∑

γ=1

f 2
γ S∗αγ Sβγ

Nr∑

δ=1

Sαδ S∗βδ +
1
2

Nr∑

γ=1

S∗αγ Sβγ

Nr∑

δ=1

f 2
δ Sαδ S∗βδ

−
Nr∑

γ=1

fγ S∗αγ Sβγ

Nr∑

δ=1

fδ Sαδ S∗βδ = −

∣∣∣∣∣∣

Nr∑

γ=1

fγ S∗αγ Sβγ

∣∣∣∣∣∣

2

≤ 0 .

In the second line we used
∑

δ Sαδ S∗βδ = δαβ = 0. Thus the sign rule for the
current correlator power at zero frequency has proven.

To illustrate given above general properties we consider a simple example.

2.2.4.3 Scatterer with two leads

From Eq. (2.63) it follows that for N2 = 2 the whole noise power matrix,
P̂(0), is defined by only a single element. This is true for the thermal noise and
for the shot noise separately,

P
(th)
11 = P

(th)
22 = −P

(th)
12 = −P

(th)
21 ≡ P(th) ,

P
(sh)
11 = P

(sh)
22 = −P

(sh)
12 = −P

(sh)
21 ≡ P(sh) ,

(2.65a)

where

P(th) =
e2kB

h

∞�
0

dE

(
−T1

∂ f1(E)
∂E

− T2
∂ f2(E)
∂E

)
T12(E) , (2.65b)

P(sh) =
e2

h

∞�
0

dE
[

f1(E) − f2(E)
]2

T12(E) R11(E) . (2.65c)
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2.2 Sample with continuous spectrum

HereT12(E) =
∣∣S12(E)

∣∣2, R11(E) = 1 − T12(E) are, respectively, transmission
and reflection probabilities for electrons with energyE. While transforming an
expression forP(th) we used the following identity for the Fermi distribution
function,

Fαα(E,E) ≡ fα(E)[1 − fα(E)] = − kBTα
∂ fα(E)
∂E

. (2.66)

From Eqs. (2.65) it follows that the character of a dependence of a trans-
mission coefficient on energy is crucial for the dependence of a noise on both the
temperature and the bias voltage. For instance, if the transmission coefficient
T12(E) changes only a little within a relevant energy window (maximum of two,
the reservoir temperature and the bias) then the thermal noise is linear in reser-
voir temperaturesT1, T2 and it is independent of a bias:P(th) = kB (T1 + T2) G,
whereG = (e2/h)T12(µ0). In contrast, the shot noise,P(sh), is a non-linear func-
tion of both the temperature and the bias. And only in the limit of a large bias,
|eV| ≫ kBT1 , kBT2, the shot noise becomes merely proportional to a current,
I = VG: P(sh) = |eI|R11(µ0).

2.2.5 Fano factor

The Fano factor,F, is a ratio of the shot noise to the dc current times the
charge of carriers, see e.g., Ref. [20]:

F =
P(sh)

|qI| . (2.67)

As it was shown by Schottky [21], for statistically independent carriers the
Fano factor is unity. In the presence of correlations and/or interactions between
carriers the Fano factor is generally different from unity.

In mesoscopics also one can introduce the Fano factor. However, as it
follows from Eqs. (1.47) (for Nr = 2) and (2.65c), in generalF , 1. Even
in the simplest case,T(E) = const andeV ≫ kBT, the Fano factorF = 1 −
T12 < 1. At T12 → 0 the quantityF ≈ 1, therefore, one can say that in the
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2 Current noise

case of a small conductance,G/G0 = T12 ≪ 1, the current is carried by the
statistically independent particles. While with increasing conductance the factor
Fano decreases, that is due to correlations between carriers. These correlations
are consequence of the Pauli exclusion principle forcing electrons to pass a lead
one by one.
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Chapter 3

Non-stationary scattering theory

Applying a time-dependent bias or varying in time the properties of a sam-
ple we create conditions when the time-dependent currents flow through the
system. Our aim is to consider how the non-stationary transport can be de-
scribed within the scattering matrix formalism.

To calculate the scattering matrix elements, which are quantum-
mechanical amplitudes, we need to solve the Schrödinger equation. Therefore,
we first consider the methods of solution of the non-stationary Schrödinger
equation and then analyze the properties of the scattering matrix of a non-
stationary sample. We are interested in a particular case when the dependence
on time is periodic.

3.1 Schrödinger equations with periodic in time potential

Let us consider the Schrödinger equation for the wave function Ψ of a
particle with massm in the case of a time-dependent Hamiltonian,H(t,~r),

i~
∂Ψ(t,~r)
∂t

= H(t,~r)Ψ(t,~r) ,

(3.1)
H(t,~r) = H0(~r) + V(t,~r) .

Here we split Hamiltonian into the two parts, a time-independent,H0(~r), and
dependent on time,V(t,~r). The corresponding boundary conditions are assumed
to be stationary. We suppose that the solution to the stationary problem with
HamiltonianH0(~r),

Ψ(t,~r) = e−
iEt
~ ψ(~r) ,

(3.2)
H0(~r)ψ(~r) = Eψ(~r) .
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3 Non-stationary scattering theory

and with the same boundary conditions is known. That is, we found all the
eigen-functions,ψn(~r), and eigen-energies,En,

H0(~r)ψn(~r) = Enψn(~r) . (3.3)

Note that it isΨn(t,~r) = e−
iEnt
~ ψn(~r). The indexn (non necessary integer) num-

bers the states belonging to both discrete and continuous part of a spectrum.
We compare two method for solving of a non-stationary problem. The first

method is the perturbation theory by P.A.M. Dirac [25], see, e.g., Ref. [10],
which is applicable for a weak time-dependent potential with arbitrary de-
pendence on time. The second one, based on the Floquet theorem, see, e.g.,
Ref. [26, 27], is applied for periodic in time potentials with arbitrarystrength.

3.1.1 Perturbation theory

Let the time-dependent potential is small,

V(t,~r)→ 0 , (3.4)

and, therefore, can be considered as a perturbation which changes only a little
the state of a quantum system with HamiltonianH0(~r).

We are looking for a solution to Eq. (3.1) as a series in stationary eigen-
wavefunctions,

Ψ(t,~r) =
∑

n

an(t)Ψn(t,~r) . (3.5)

Substituting Eq. (3.5) into Eq. (3.1) and using Eq. (3.3) we find,

i~
∑

n

Ψn(t,~r)
dan(t)

dt
=
∑

n

an(t) V(t,~r)Ψn(t,~r) . (3.6)

Further we multiply both parts of this equation withΨ∗k(t,~r) and integrate over
space. Since the eigen-functions of the Hamiltonian are orthogonal,
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3.1 Schrödinger equations with periodic in time potential�
d3r ψ∗k(~r)ψn(~r) = δn,k ,

we arrive at the following equation for the coefficientsak:

i~
dak(t)

dt
=
∑

n

Vkn(t) an(t) , (3.7)

where the perturbation matrix elements are:

Vkn(t) =
�

d3r ψ∗k(~r) V(t,~r)ψn(~r) ei Ek−En
~

t . (3.8)

To find the coefficientsan(t) we need to solve the system of an infinite number
of differential equations of the first order, Eq. (3.7).

Up to now we did not use a fact that the perturbation is weak. Now we use
it and solve the system of equations to the linear order inV(t,~r). To be more
precise we consider the following problem:
The perturbationV(t,~r) is switched on att = 0. We consider a particle which
was in the stateΨm(t,~r) with energyEm at t ≤ 0. We need to calculate its wave
functionΨ(m)(t,~r) at t > 0.
We will use an upper index (m) to show an initial state. So, we have a problem
with following initial conditions,

Ψ(m)(t = 0,~r) = Ψm(t = 0,~r)⇒






a(m)
m (0) = 1 ,

a(m)
n (0) = 0 , n , m,

where a(m)
n (t) are coefficients in Eq. (3.5) for the wave function of interest,

Ψ(m)(t,~r). After the perturbation is switched on the coefficients become func-
tions of time,a(m)

n (t), which we look for as a series in powers of a small param-
eterV(t,~r). In the linear order we have,
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3 Non-stationary scattering theory

a(m)
m (t) = 1+ a(m,1)

m (t) ,
(3.9)

a(m)
n (t) = 0+ a(m,1)

n (t) , n , m.

Substituting these equations into Eq. (3.7) and keeping only linear inV terms
we find,

i~
da(m,1)

k (t)
dt

= Vkm(t) . (3.10)

This linear first order equation can be easily integrated out,

a(m,1)
k (t) = − i

~

t�
0

dt′ Vkm(t′) . (3.11)

Accordingly to the basic principles of the quantum mechanics the absolute
value square,|a(m)

k (t)|2, defines a probability to observe a particle in the state
Ψk(t,~r) with energyEk at timet. Note at initial timet = 0 the particle was in the
state with energyEm. The change of particle’s energy is due to the interaction
with a time-dependent potentialV(t,~r). The particle can either gain energy,
Ek > Em, or lose it,Ek < Em.

Now we clarify when the potential can be treat as small, Eq. (3.4). Let us
consider a uniform in space and periodic in time potential,V(t,~r) = U(t) R(~r),
where

U(t) = 2U cos(Ω0t) . (3.12)

Then we can solve Eq. (3.11),

a(m,1)
k (t) = −URkm

(
ei(ωkm−Ω0)t − 1
~(ωkm− Ω0)

+
ei(ωkm+Ω0)t − 1
~(ωkm+ Ω0)

)
, (3.13)
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3.1 Schrödinger equations with periodic in time potential

whereRkm =
�

d3rψ∗k(~r)R(~r)ψn(~r) and~ωkm = Ek−Em. The perturbation theory
is correct if the absolute value ofa(m)

k,m(t) is small compared to a unity:

Vkm

~(ωkm± Ω0)
∼ URkm

~(ωkm±Ω0)
≪ 1 . (3.14)

In this case the particle with a large probability stays in its initial state and the
effect of a time-dependent potential is really small as it was supposed.

If the perturbation frequency,Ω0, is close to some difference,±(Ek0 −
Em)/~, then the equation (3.14) can be easily violated and the perturbation the-
ory fails. In such a case the time-dependent potential will cause a particle to
pass over from the initial stateΨm(t,~r) to the stateΨk0(t,~r) and back, since the
coefficientsa(m)

m (t) anda(m)
k0

(t) are of the same order.
Substituting Eqs. (3.13) and (3.9) into Eq. (3.5), written for the function

Ψ(m)(t,~r), we finally calculate,

Ψ(m)(t,~r) = e−i Em
~

t
∑

n

ψn(~r) (3.15)

×
{
δnm−

URnm

(
e−iΩ0t − e−iωnmt

)

~(ωnm−Ω0)
−

URnm

(
eiΩ0t − e−iωnmt

)

~(ωnm+ Ω0)

}
.

Thus we found that the periodic perturbation results in additional terms in the
expression for the wave function which correspond to initial energy shifted by
±~Ω0. Easy to understand that the spectral contents of the perturbation defines
energies of additional side-bands of a wave function.

3.1.2 Floquet functions method

This method overcomes the restrictions put by Eq. (3.14) and allows to
consider an arbitrary but periodic in time potential. The main idea is to use the
Floquet theorem. Accordingly to this theorem the solution for the Schrödinger
equation with periodic in time Hamiltonian,

H(t,~r) = H(t + T,~r) , (3.16)
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can be written as follows,

Ψ(t,~r) = e−i E
~
tφ(t,~r) ,

(3.17)
φ(t,~r) = φ(t + T,~r) .

To outline the proof of this theorem we consider the general solution Ψ(t,~r)
to Eq. (3.1) with Hamiltonian, Eq. (3.16). Let us shift a time by one period,
t → t + T. Then the wave functionΨ(t + T,~r) is also a solution to the same
equation,

i~
∂Ψ(t + T,~r)

∂t
= H(t + T,~r)Ψ(t + T,~r)

= H(t,~r)Ψ(t + T,~r) .

Therefore, two general solutions have to be proportional each other,

Ψ(t + T,~r) = CΨ(t,~r) . (3.18)

Since the wave function is normalized,�
d3r |Ψ(t,~r)|2 = 1 ,�

d3r |Ψ(t + T,~r)|2 = |C|2
�

d3r |Ψ(t,~r)|2 = 1 ,

we find for the constantC,

|C|2 = 1 ⇒ C = e−iα . (3.19)
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3.1 Schrödinger equations with periodic in time potential

The general expression for the function subject to Eq. (3.18) with coefficient
given in Eq. (3.19) is the following,

Ψ(t,~r) = e−i α
T

tφ(t,~r) ,
(3.20)

φ(t,~r) = φ(t + T,~r) .

Let us check that Eq. (3.18) holds,

Ψ(t + T) = e−i α
T

(t+T)φ(t + T) = e−iα
{

e−i α
T

tφ(t)
}
= e−iαΨ(t) .

Finally introducingE = ~α/T instead ofα we see that Eq. (3.20) is reduced to
Eq. (3.17). The Floquet theorem has proven.

Next we expand a periodic in time functionφ(t,~r) into the Fourier series,

φ(t,~r) =
∞∑

q=−∞
e−iqΩ0tψq(~r) , (3.21a)

ψq(~r) =

T�
0

dt
T

eiqΩ0tφ(t,~r) , (3.21b)

whereΩ0 = 2π/T. Then the Floquet wave function, Eq. (3.17), becomes,

Ψ(t,~r) = e−i E
~
t
∞∑

q=−∞
e−iqΩ0tψq(~r) . (3.22)

In the case of a stationary Hamiltonian the solution corresponding to en-
ergy E has a factore−i E

~
t. Therefore, in the stationary case in Eq. (3.22) only

the term withq = 0 survives. In the case of a time-dependent Hamiltonian the
energy is a quantity which is not uniquely defined. For instance, if we changeE
in Eq. (3.22) by any numberp of energy quanta~Ω0, E → E + p~Ω0, then we
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arrive at the same wave function. To show it we need only to redefine functions
ψq(~r) changing its indices,q → q + p. Since the quantityE is defined up to
energy quantum~Ω0, then it is referred to asthe quasi-energyor the Floquet
energy. In each particular problem the quantityE is fixed just as it is conve-
nient. For numerical calculations people often use, 0≤ E < ~Ω0. On the other
hand, exploring a problem how some stationary state evolvesunder the action
of a periodic potential, it is convenient to chooseE equal to energy of this initial
stationary state. We will follow the latter way when we will consider scattering
of electrons with fixed energyE onto the dynamic sample.

Comparing Eqs. (3.15) and (3.22) we conclude that the Floquet theorem
predicts an existence of multi-photon processes when the energy changes by
several quanta~Ω0 in addition to single-photon processes taking place already
in the case of a weak perturbation. The Floquet theorem givesan ansatz for the
solution to the Schrödinger equation with periodic Hamiltonian. The unknown
functionψq(~r) is a solution to some stationary problem. It should be notedin
general case the functionsψq(~r) with differentq are not independent. Therefore,
the non-stationary problem is reduced to multi-channel stationary problem.

3.1.3 Uniform in space and oscillating in time potential

Let us consider a simple exactly solvable example to show that the solution
of a period problem is really of a Floquet function type and ata weak perturba-
tion only single-photon processes are allowed. So we consider the Schrödinger
equation with a uniform potential, Eq. (3.12),

i~
∂Ψ(t,~r)
∂t

=
{

H0 + 2U cos(Ω0t)
}
Ψ(t,~r) . (3.23)

The solution to this equation reads,

Ψ(t,~r) = e
−i
{

E
~
t+ 2U
~Ω0

sin(Ω0t)
}

ψE(~r) , (3.24)

whereψE(~r) is a solution to the following stationary equation,
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3.2 Floquet scattering matrix

H0ψE(~r) = EψE(~r) . (3.25)

Next we use the following Fourier series,

e−iα sin(Ω0t) =

∞∑

q=−∞
e−iqΩ0tJq(α) , (3.26)

whereJq is the Bessel function of the first kind of theqth order, and rewrite
Eq. (3.24) as follows,

Ψ(t,~r) = e−i E
~
t
∞∑

q=−∞
e−iqΩ0tJq

(
2U
~Ω0

)
ψE(~r) . (3.27)

Comparing equation above with Eq. (3.22) we see that really the obtained solu-
tion is the Floquet function withψq(~r) = Jq(2U/~Ω0)ψE(~r).

Let us analyze Eq. (3.27) at small amplitude,U/(~Ω0) ≪ 1. To this end we
expand the Bessel functions into the Tailor series in powersof a small parameter
α = 2U/(~Ω0),

J0(α) ≈ 1− α2/4 , J±1(α) ≈ ±α/2 , J±|n| ∼ ±α|n|, |n| > 1 .

Then up to linear inU terms the solution Eq. (3.27) becomes,

Ψ(t,~r) ≈ e−i E
~
tψE(~r)

{
1+

Ue−iΩ0t

~Ω0
− UeiΩ0t

~Ω0

}
.

This equation is exactly Eq. (3.15) with Rnm = δnm andψm(~r) = ψE(~r).

3.2 Floquet scattering matrix

The main difference of a dynamic scatterer compared to a stationary one
is that it can change an energy of incident electrons. We are interested in a
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3 Non-stationary scattering theory

particular case when the parameters of a scatterer vary periodically in time.
This variation can be caused by some external (classical) influence affecting the
scattering properties of a sample. For instance, it can be anelectric potential
forming a barrier for propagating electrons.

We assume that the Hamiltonian describing an interaction ofelectrons with
a scatterer depends periodically on time. Then the wave function of a scattered
electron is of the Floquet function type, Eq. (3.22), having components corre-
sponding to different energies. It is convenient to choose an energyE of an
incident electron as the Floquet energy. Then the absolute value square of its
qth side-band integrated over space defines a probability to absorb,q > 0, or
emit,q < 0, an energy|q|~Ω0 during scattering.

From the scattering theory point of view the fact that the scattering prop-
erties periodically vary in time results in scattering matrix dependent on two
energies, incident and scattered. Such a scattering matrixis referred to asthe
Floquet scattering matrix, ŜF. The elementSF,αβ (En,E) is a photon-assisted
propagation amplitude times

√
kn/k, wherekn =

√
2mEn/~2. This amplitude

describes a process when an electron with energyE incident from the leadβ
is scattered into the leadα and its energy is changed toEn = E + n~Ω0. [28]
As in the stationary case we define scattering amplitudes as describing tran-
sitions between the states (carrying a unit flux) with fixed energy, which are
eigen-wavefunctions for Hamiltonian in leads assumed to bestationary.

3.2.1 Floquet scattering matrix properties

3.2.1.1 Unitarity

Since the particle flow is conserved at scattering, the Floquet scattering
matrix is unitary, [29]

∑

n

Nr∑

α=1

S∗F,αβ (En , Em) SF,αγ (En , E) = δm0 δβγ , (3.28a)

∑

n

Nr∑

β=1

SF,γβ (Em , En) S∗F,αβ (E , En) = δm0 δαγ . (3.28b)
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3.2 Floquet scattering matrix

In the sum overn we keep only those terms which correspond to current-
carrying states (withEn > 0). Therefore, it isn > − [E/~Ω0], where [X] stands
for an integer part ofX. In the case if

ǫ =
~Ω0

E
≪ 1 (3.29)

the sum overn in Eq. (3.28) in fact runs from−∞ to ∞. In what follows we
assume this case.

Note the negative values,En < 0, correspond to the states localized on
the scatterer. These states do not contribute to current. Strictly speaking the
transitions between these localized states and current carrying states,E > 0,
are also described by the Floquet scattering matrix elements. However in the
steady state such transitions do not contribute to current.Therefore, they do not
enter Eqs. (3.28). In below we use only a part of the Floquet scattering matrix
corresponding to transitions between delocalized states and for shortness name
it the Floquet scattering matrix.

3.2.1.2 Micro-reversibility

The invariance of the motion equations under the time reversal put some
constraints onto the Floquet scattering matrix elements. As we considered ear-
lier, see, Sec.1.1.1.2, in the stationary case the Schrödinger equation remains
invariant undert → −t if simultaneously to reverse a magnetic field direction
and to replace the wave function by its complex conjugate. Note that the incom-
ing and out-going scattering channels are interchanged.

In the case of a dynamical scattering the time reversal can change a time-
dependent Hamiltonian. Let us assume that the Hamiltonian depends onNp

parameterspi(t), i = 1, . . . ,Np, which are all periodic in time,

pi(t) = pi,0 + pi,1 cos(Ω0t + ϕi) . (3.30)

Then under the time reversal,t → −t, the Hamiltonian remains invariant if in

85



3 Non-stationary scattering theory

addition we change the signs of all the phases,ϕi → −ϕi, ∀i. Thus the micro-
reversibility results in the following symmetry conditions, [30]

SF,αβ (E,En; H, {ϕ}) = SF,βα (En,E;−H, {−ϕ}) , (3.31)

where{ϕ} is a set of phasesϕi.

3.3 Current operator

To calculate a current operator, Eq. (1.36), one needs to express the op-
erators for scattered electrons,b̂α(E), in terms of operators for incident elec-
trons, âα(E). These operators annihilate an electron in the state with definite
energy. Taking into account that during scattering an electron can change its
energy by several energy quanta~Ω0, we arrive at the following generalization
of Eq. (1.39) onto the case of periodic in time scattering, [28]

b̂α (E) =
∞∑

n=−∞

Nr∑

β=1

SF,αβ (E ,En) âβ (En) , (3.32a)

b̂†α (E) =
∞∑

n=−∞

Nr∑

β=1

S∗F,αβ (E ,En) â†β (En) . (3.32b)

Note the summation over energy scattering channels is quitesimilar to a
summation over orbital scattering channels. Given above equations together
with unitarity conditions, Eqs. (3.28), guarantee anti-commutation relations for
b−operators similar to ones fora−operators, (1.30).

It is natural to assume that the periodic in time varying of scattering prop-
erties results in periodic currents flowing in the system. [31] This guessing
remains true even in the absence of both a bias voltage and a temperature differ-
ence. To analyze periodic currents it is convenient to go over to the frequency
representation,
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Îα (t) =

∞�
−∞

dω
2π

e−iωt Îα (ω) , (3.33a)

Îα (ω) =

∞�
−∞

dt eiωt Îα (t) . (3.33b)

Using Eq. (1.36) we calculate,

Îα (ω) = e

∞�
0

dE
{

b̂†α (E) b̂α (E + ~ω) − â†α (E) âα (E + ~ω)
}
, (3.34)

where we used,

∞�
−∞

dt ei E−E′+~ω
~

t = 2π~ δ
(
E − E′ + ~ω

)
, (3.35)

and,
∞�

0

dE′ δ
(
E − E′ + ~ω

)
X
(
E′
)
= X (E + ~ω) , (3.36)

with X = b̂α(E′), âα(E′).

3.3.1 AC current

Substituting Eqs. (3.32) into Eq. (3.34) and averaging over the equilibrium
state of reservoirs, we calculate a current spectrum,Iα(ω) = 〈Îα(ω)〉, [32]

Iα (ω) =
∞∑

l=−∞
2πδ (ω − lΩ0) Iα,l , (3.37a)
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Iα,l =
e
h

∞�
0

dE






Nr∑

β=1

∞∑

n=−∞
S∗F,αβ (E ,En) SF,αβ (El,En) fβ (En) − δl0 fα (E)




.

(3.37b)

Taking into account Eq. (3.28b) we rewriteI l,α as follows,

Iα,l =
e
h

∞�
0

dE
Nr∑

β=1

∞∑

n=−∞
S∗F,αβ (En,E) SF,αβ (El+n,E)

{
fβ (E) − fα (En)

}
,

(3.38)

where we additionally replacedEn → E andn→ −n. The convenience of the
last equation containing the difference of the Fermi functions becomes evident
in the case of a slow variation of the scatterer parameters,Ω0 → 0, when a
current can be expanded in powers ofΩ0.

Substituting Eq. (3.37a) into Eq. (3.33a) we finally arrive at a time-
dependent current,

Iα (t) =
∞∑

l=−∞
e−ilΩ0t Iα,l , (3.39)

which is really periodic in time,Iα(t) = Iα(t + 2π/Ω0).

3.3.2 DC current

Of a special interest is a case when a currentIα(t) has a time-independent
part. Emphasize, while an ac current is always generated by the dynamic scat-
terer, the dc current exists only under some specific conditions which we will
discuss later on. Now we just give general expressions for a dc current, the term
with l = 0 in Eq. (3.39).

Using l = 0 in Eq. (3.37b) we find,
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Iα,0 =
e
h

∞�
0

dE






∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (E ,En)
∣∣2 fβ (En) − fα (E)




 . (3.40)

The dc current is subject to the conservation law, Eq. (1.48). To show it we
transform expression above as follows. In the part with a factor fβ(En) we shift
E→ E − n~Ω0 andn→ −n,1 [28]

Iα,0 =
e
h

∞�
0

dE
∞∑

n=−∞

Nr∑

β=1

{∣∣SF,αβ (En ,E)
∣∣2 fβ (E) − fα (E)

}
. (3.41)

Then using Eq. (3.28a) one can easily check that
∑Nr

α=0 Iα,0 = 0.
Another expression for a dc current can be found if to substitute Eq.(3.28b)

with m= 0 andα = γ into Eq. (3.41) as a unity in front offα(E) and to make a
shift E→ E − n~Ω0 and a substitutionn→ −n: [28]

Iα,0 =
e
h

∞�
0

dE
∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (En ,E)
∣∣2{ fβ (E) − fα (En)

}
. (3.42)

From this equation it follows that (for~Ω0 ≪ µ) only electrons with energy
close to the Fermi energy contribute to current. Because only for such electrons
the difference of the Fermi functions is noticeable,fβ(E) − fα(E + n~Ω0) , 0.
Note the energy window where the current flows is defined by themaximum of
the following quantities, the energy quantum~Ω0 dictated by the frequency of
a drive, a possibly present bias|eVαβ|, and a temperature,kBTα.

And finally an intuitively clear expression for a current canbe derived in
the same way as Eq. (3.42) was derived from Eq. (3.41). We use Eq. (3.28a)
instead of Eq. (3.28b) and replaceα→ β andβ = γ → α: [28]

1The limits of integration over energy are nor changed, because, as we already mentioned, only those elements
of the Floquet scattering matrix contribute to current for which bothE > 0 andEn > 0
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Iα,0 =
e
h

∞�
0

dE
∞∑

n=−∞

Nr∑

β=1

(3.43){∣∣SF,αβ (En ,E)
∣∣2 fβ (E) −

∣∣SF,βα (En ,E)
∣∣2 fα (E)

}
.

This equation represents a dc current in the leadα as a difference of two electron
flows. First one is composed by the flows incident from variousleadsβ and
scattered with probability

∣∣SF,αβ (En ,E)
∣∣2 into the leadα. And the second one

is incident from the leadα and with probability
∣∣SF,βα (En ,E)

∣∣2 scattered into
various leadsβ.

We emphasize all the equations (3.40) – (3.43) are equivalent. Which of
them to use is dictated by the convenience reasons in each particular case.

3.4 Adiabatic approximation for the Floquet scattering matrix

To calculate the Floquet scattering matrix elements one needs to solve the
non-stationary Schrödinger equation, that in general caseis more complicated
than to solve a stationary problem. In particular, the stationary scattering ma-
trix Ŝ hasNr × Nr elements, while the Floquet scattering matrixŜF, in addition
depending on two energies, has much more elements,Nr × Nr × (2nmax+ 1)2,
wherenmax is a maximum number of energy quanta~Ω0 which an electron
can absorb/emit interacting with a dynamic scatterer. Formally an electron can
change its energy byn → ∞ energy quanta~Ω0. However in practice there is
some numbernmax such that the probability to absorb/emit nmax+ 1 and more
energy quanta is negligible within a given accuracy. For instance, if the am-
plitudeδU of an oscillating potential is small compared to~Ω0 thennmax = 1,
that is only single-photon processes are relevant. In contrast if δU ≫ ~Ω0 then
nmax≫ 1.

In general the multi-photon processes become important if parameters of a
scatterer vary slowly. Therefore, atΩ0→ 0 we should calculate a huge number
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of scattering amplitudes that can be impossible in practice. On the other hand
it is natural to expect that the scattering properties of a sample with parameters
varying enough slowly should be close to scattering properties of a strictly sta-
tionary sample. Because atT = 2π/Ω0→ ∞ any finite time, spend by an elec-
tron within the scattering region, is always small comparedto T and an electron
should not feel that the scatterer is dynamic. However, as weshow below, there
is a principial difference between the properties of a dynamic scatterer and the
properties of a stationary scatterer. [29, 30] For instance, a dynamic scatterer
can generate a dc current in the absence of a bias applied to reservoirs.

3.4.1 Frozen scattering matrix

Let the stationary scattering matrix̂S depends on several parameters,pi ∈
{p}, i = 1, 2, . . . ,Np, which are varied periodically in time, Eq. (3.30). Then the
matrix Ŝ becomes a periodic function of time,Ŝ(t,E) = Ŝ({p(t)}; E), Ŝ(t,E) =
Ŝ(t+T,E). We stress the matrix̂S(t) does not describe scattering onto a dynamic
scatterer. Its physical meaning is the following. Let us fix all the parameters at
a time t = t0 and will not change them any more. Then the matrixŜ(t0,E)
does describe scattering onto such a frozen scatterer. Treating a timet in this
sense we can name a matrixŜ(t,E) asthe frozen scattering matrix. Emphasize
a variablet here is a parameter, relating to a given variation of the properties of
a scatterer, rather than a true dynamical time entering the motion equation.

As we pointed out the frozen scattering matrixŜ(t,E) has not a direct
relation to scattering onto a dynamic sample, since it depends on a single energy
only. However atΩ0→ 0 there exists some relation between the frozen and the
Floquet scattering matrices. It becomes more clear if to expandŜF in powers
of Ω0,

ŜF =

∞∑

q=0

(~Ω0)
q Ŝ(q)

F . (3.44)

Below we relate the first and the second terms in thisadiabatic expansionto the
frozen scattering matrix.
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3 Non-stationary scattering theory

3.4.2 Zeroth order approximation

To zeroth order,q = 0 in Eq. (3.44), all the terms proportional toΩ0 (or
its higher power) should be dropped. Within this accuracy aninitial energy,
E, and a final energy,En = E + n~Ω0, are the same. Therefore, the termŜ(0)

F
depends, in fact, on only a single energy similar to the frozen scattering matrix.
To establish a connection between these two matrices we takeinto account the
following. The elementSF,αβ (En ,E) describe a scattering process when an

electron energy is changed:Ψ(out)
En,α
∼ SF,αβ(En,E)Ψ(in)

E,β, with Ψ(in)
E,β ∼ e−iEt/~ and

Ψ
(out)
En,α
∼ e−iEnt/~ = e−iEt/~e−inΩ0t. On the other hand if to consider scattering onto

the frozen scatterer,Ψ(out)
E,α ∼ Sαβ(t,E)Ψ(in)

E,β, and to use the following Fourier
expansion,

Ŝ(t,E) =
∞∑

n=−∞
e−inΩ0tŜn(E) , (3.45)

then one can see that the part of a wave function of a scatteredelectron propor-
tional toSαβ,n has a time-dependent phase factore−iEnt/~, the same as that of due
to SF,αβ(En,E). These simple arguments allow to conclude that to zeroth order
inΩ0 the Floquet scattering matrix elements are equal to the Fourier coefficients
of the Frozen scattering matrix,

Ŝ(0)
F (En ,E) = Ŝn (E) , (3.46a)

Ŝ(0)
F (E ,En) = Ŝ−n (E) . (3.46b)

To prove that this approximation does not violate unitaritywe substitute
equations above into Eq. (3.28). Then after the inverse Fourier transformation
we find,

Ŝ (t,E) Ŝ† (t,E) = Ŝ† (t,E) Ŝ (t,E) = Î , (3.47)

that is completely consistent with a unitarity condition, Eq. (1.10), for the sta-
tionary scattering matrix.
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3.4 Adiabatic approximation for the Floquet scattering matrix

3.4.3 First order approximation

Up to terms of the first order inΩ0 the initial energy,E, is different from
the final energy,En. The simplest generalization of Eq. (3.46) could be the
same relation but with frozen scattering matrix calculatedat the middle energy,
(E + En)/2. However it is easy to check that such a matrix is not unitary. To
recover unitarity we need to introduce an additional term,~Ω0Ân(E), where
Ân(E) is a Fourier transform of some matrix̂A(t,E). Therefore, we arrive at
the following ansatz for the first order inΩ0 corrections to the frozen scattering
matrix, the term withq = 1 in Eq. (3.44),

~Ω0Ŝ
(1)
F (En ,E) =

n~Ω0

2
∂Ŝn (E)
∂E

+ ~Ω0Ân (E) , (3.48a)

~Ω0Ŝ
(1)
F (E ,En) =

n~Ω0

2
∂Ŝ−n (E)
∂E

+ ~Ω0Â−n (E) . (3.48b)

Notice the right hand side (RHS) of Eq. (3.48a) is calculated at the energy of an
incident electron, while the RHS of Eq. (3.48b) is calculated at the energy of a
scattered electron.

The equations (3.48) point out on the actual expansion parameter in
Eq. (3.44). This, so calledan adiabaticity parameter, is

̟ =
~Ω0

δE
≪ 1 , (3.49)

whereδE is a characteristic energy scale over which the stationary scattering
matrix changes significantly. For instance, if the energy,E, of an incident elec-
tron is close to the transmission resonance energy thenδE is a width of a res-
onance. While ifE is far from the resonance thenδE is of the order of the
distance between the resonances. In the case when the scatterer does not show
a resonance transmission then, as a rule,δE is of orderE. Emphasize, such
a definition of adiabaticity is in general different from the one usually used in
the Quantum mechanics and requiring a smallness of an energyquantum~Ω0

compared to the difference between the energy levels.
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3 Non-stationary scattering theory

The matrixÂ in Eqs. (3.48) can not be expressed in terms of the frozen
scattering matrix̂S. However the unitarity of the Floquet scattering matrix leads
to some relation between these two matrix. [29] To find it we use

SF,αβ(En,E) = Sαβ,n(E) +
n~Ω0

2
∂Sαβ,n

∂E
+ ~Ω0Aαβ,n + O

(
̟2
)
, (3.50)

in Eq. (3.28a) :

∞∑

n=−∞

Nr∑

α=1

{
S∗αγ,n−m(E) +

(n+m)~Ω0

2

∂S∗αγ,n−m(E)

∂E
+ ~Ω0 A∗αγ,n−m(E)

}

×
{

Sαβ,n(E) +
n~Ω0

2

∂Sαβ,n(E)

∂E
+ ~Ω0 Aαβ,n(E)

}
= δβγδm0 .

Taking into account that the matrix̂S(t,E) is unitary and omitting the terms of
orderΩ2

0, we get

∞∑

n=−∞

Nr∑

α=1

{
Sαβ,n

(
n− n−m

2

) ∂S∗αγ,n−m

∂E
+

n
2

∂Sαβ,n

∂E
S∗αγ,n−m+

[
Sαβ,n A∗αγ,n−m+ Aαβ,n S∗αγ,n−m

]}
= 0 .

Next we make the inverse Fourier transformation using the following properties,

n Xn =
i
Ω0

(
∂X
∂t

)

n

, n X∗n = −
i
Ω0

(
∂X∗

∂t

)

−n

,

(3.51)

X∗n = (X∗)−n ,

∞∑

n=−∞
X−nYn−m = (X Y)−m .
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3.4 Adiabatic approximation for the Floquet scattering matrix

and arrive at the following matrix equation,

i
Ω0

∂Ŝ†

∂E
∂Ŝ
∂t
+

i
2Ω0

{
∂2Ŝ†

∂t∂E
Ŝ + Ŝ†

∂2Ŝ
∂t∂E

}
+ Â†Ŝ + Ŝ†Â = 0̂ .

To simplify it we use the identity,∂2(Ŝ†Ŝ)/∂t∂E = 0̂, following from Eq. (3.47),
which can be rewritten as follows,

∂2Ŝ†

∂t∂E
Ŝ + Ŝ†

∂2Ŝ
∂t∂E

= −∂Ŝ†

∂t
∂Ŝ
∂E
− ∂Ŝ†

∂E
∂Ŝ
∂t

.

Then we arrive finally at the following equation (a consequence of the unitarity
of scattering) for the matrix̂A, [29]

~Ω0

[
Ŝ†(t,E) Â(t,E) + Â†(t,E) Ŝ(t,E)

]
=

1
2

P
{

Ŝ†(t,E), Ŝ(t,E)
}
, (3.52)

whereP{Ŝ†, Ŝ} is the Poisson bracket with respect to energy and time,

P
{

Ŝ†, Ŝ
}
= i~

(
∂Ŝ†

∂t
∂Ŝ
∂E
− ∂Ŝ†

∂E
∂Ŝ
∂t

)
. (3.53)

It is a self-adjoint and traceless matrix„

P
{

Ŝ†, Ŝ
}
=
(
P
{

Ŝ†, Ŝ
})†

, (3.54)

Tr
[
P
{

Ŝ†, Ŝ
}]
≡

Nr∑

α=1

Pαα

{
Ŝ†, Ŝ

}
= 0 . (3.55)

To prove Eq. (3.54) we use
(
X̂†Ŷ

)†
= Ŷ†X̂. To prove Eq. (3.54) we use a

95



3 Non-stationary scattering theory

unitarity, Ŝ†Ŝ = ŜŜ† = Î , its consequence,
(
∂Ŝ†/∂E

)
Ŝ = −Ŝ† (∂S/∂E), and a

property of the trace, Tr
[
X̂Ŷ
]
= Tr

[
ŶX̂
]
:

Tr [P] = i~Tr

[
∂Ŝ†

∂t
∂Ŝ
∂E
− ∂Ŝ†

∂E
ŜŜ†

∂Ŝ
∂t

]
= i~Tr

[
∂Ŝ†

∂t
∂Ŝ
∂E
− Ŝ†

∂Ŝ
∂E

∂Ŝ†

∂t
Ŝ

]

= i~Tr

[
∂Ŝ†

∂t
∂Ŝ
∂E
− ∂Ŝ†

∂t
ŜŜ†

∂Ŝ
∂E

]
= i~Tr

[
∂Ŝ†

∂t
∂Ŝ
∂E
− ∂Ŝ†

∂t
∂Ŝ
∂E

]
= 0 .

Note if we start from Eq. (3.28b) then we arrive at the following equation,
[30]

~Ω0
[
Â(t,E) Ŝ†(t,E) + Ŝ(t,E) Â†(t,E)

]
=

1
2

P
{

Ŝ(t,E), Ŝ†(t,E)
}
, (3.56)

which is equivalent to Eq. (3.52). If we multiply Eq. (3.52) by Ŝ from the left
and byŜ† from the right we arrive at Eq. (3.56).

The symmetry conditions for the Floquet scattering matrix,Eq. (3.31), re-
sult in some symmetry conditions for the matrixÂ(t,E). To derive them we
proceed as follows. With parameters from Eq. (3.30) we have for the frozen
scattering matrix,Ŝ(t,E; H, {ϕ}) = Ŝ(−t,E; H, {−ϕ}). Then from Eq. (3.52)
we find, Â(t,E; H, {ϕ}) = − Â(−t,E; H, {−ϕ}). In terms of the Fourier coeffi-
cients these equations read,Ŝn(E; H, {ϕ}) = Ŝ−n(E; H, {−ϕ}) andÂn(E; H, {ϕ}) =
− Â−n(E; H, {−ϕ}). Finally substituting the sum of Eqs. (3.46) and (3.48) into
Eq. (3.31) and taking into account given above relations between the Fourier
coefficients we find the following symmetry condition, [30]

Aαβ (t,E; H, {ϕ}) = −Aβα (t,E;−H, {ϕ}) . (3.57)

The analogous condition for the frozen scattering matrix follows from
Eq. (1.29),

Sαβ (t,E; H, {ϕ}) = Sβα (t,E;−H, {ϕ}) . (3.58)
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3.5 Beyond the adiabatic approximation

Let us consider the case withH = 0. The non-diagonal elements of the
matrix Â change a sign under the reversal of incoming and out-going channels,
that is in striking difference to the behavior of the non-diagonal elements of
the frozen scattering matrix. Therefore, we name the matrixÂ as the anoma-
lous scattering matrix. Such a sign reversal results in different probabilities for
direct, α → β, and reverse,β → α, transmission through the dynamic scat-
terer. The diagonal elements of the anomalous scattering matrix are zero (in the
absence of a magnetic field). Therefore, the reflection amplitudes up to terms
of orderΩ0 are defined entirely by the frozen scattering matrix. This last cir-
cumstance justifies our representation for the elements of the Floquet scattering
matrix in Eq. (3.48).

3.5 Beyond the adiabatic approximation

In some simple cases the Floquet scattering matrix can be calculated ana-
lytically. To this end it is convenient to turn to the mixed representation when
the scattering matrix depends on energy and time.

3.5.1 Scattering matrix in mixed energy-time representation

Let us introduce the following scattering matrix,Ŝin(t,E) andŜout(E, t), in
such a way that their Fourier coefficients are related to the Floquet scattering
matrix elements as follows, [33]

ŜF(En,E) = Ŝin,n(E) ≡
T�

0

dt
T

einΩ0tŜin(t,E) , (3.59a)

ŜF(E,En) = Ŝout,−n(E) ≡
T�

0

dt
T

e−inΩ0tŜout(E, t) . (3.59b)

As we will see later on in examples, the elements of the matrixŜin(t,E)
are scattering amplitudes for particles incident with energy E and leaving the
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3 Non-stationary scattering theory

scattering region at timet. The dual matrixŜout(E, t) composed of the scat-
tering amplitudes for particles incident at timet and leaving the scatterer with
energyE. Note this interpretation is consistent with the Heisenberg uncertainty
principle. For instance, if the time when an electron leavesa scatterer is defined
then its energy is not defined. In this case, in accordance with Eq. (3.59a), an
electron energy can be one ofEn = E + n~Ω0. Similarly, if an initial time is
defined then the initial energy does not. This energy can differ from the energy
E which an electron leaves the scatterer with. The probability, that an initial
energy of an electron incident from the leadβ and scattered into the leadα was
Em = E +m~Ω0, is equal to

∣∣Sout,αβ,−m(E)
∣∣2.

Substituting the definition for̂Sin into Eq. (3.28a) and the definition for
Ŝout into Eq. (3.28b) and making the inverse transformation we get the following
unitarity conditions, [30, 33]

T�
0

dt
T

eimΩ0t Ŝ†in(t,Em) Ŝin(t,E) = δm,0 Î , (3.60a)

T�
0

dt
T

eimΩ0t Ŝout(Em, t) Ŝ†out(E, t) = δm,0 Î . (3.60b)

To the zeroth order in the adiabaticity parameter,̟ → 0, as it follows
from Eq. (3.46), the matriceŝSin andŜout are the same and they are equal to the
frozen scattering matrix. Already in the first order in̟these matrices become
different. From Eq. (3.48) we can find, [30]

Ŝin (t,E) = Ŝ (t,E) +
i~
2
∂2Ŝ (t,E)
∂t∂E

+ ~Ω0Â (t,E) + O
(
̟2
)
, (3.61a)

Ŝout (t,E) = Ŝ (t,E) − i~
2
∂2Ŝ (t,E)
∂t∂E

+ ~Ω0Â (t,E) + O
(
̟2
)
, (3.61b)

whereO
(
̟2
)

stands for the rest of order̟2.
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3.5 Beyond the adiabatic approximation

Despite their difference, the matriceŝSin andŜout are related due to micro-
reversibility. From Eqs. (3.31) and (3.59) it follows, [33]

Ŝin(t,E; H, {ϕ}) = ŜT
out(E,−t;−H, {−ϕ}) . (3.62)

Moreover, from Eq. (3.59) one can find,

Ŝin, n(E) = Ŝout, n(En) , (3.63)

that in time representation reads,

Ŝin(t,E) =
∞∑

n=−∞

T�
0

dt′

T
einΩ0(t′−t) Ŝout(En, t

′) , (3.64a)

Ŝout(E, t) =
∞∑

n=−∞

T�
0

dt′

T
e−inΩ0(t′−t) Ŝin(t′,En) . (3.64b)

For the sake of completeness we give a current in terms ofŜin. To this end
we use Eq. (3.59a) in Eq. (3.38) and then in Eq. (3.39) and finally calculate,
[41]

Iα(t) =
e
h

∞�
0

dE
Nr∑

β=1

∞∑

n=−∞

{
fβ(E) − fα(En)

}

(3.65)

×
T�

0

dt′

T
einΩ0(t−t′)Sin,αβ(t,E)S∗in,αβ(t

′,E) .

We transform this equation to exclude a reference to the periodicity of a
driving potential. To this end we use the following correspondences,

99



3 Non-stationary scattering theory

nΩ0 → ω ,

∞∑

n=−∞
→ T

2π

∞�
−∞

dω , (3.66)

T�
0

dt′ einΩ0t′ →
∞�
−∞

dt′ eiωt′ .

which in fact means a passage from the discrete Fourier transformation to the
continuous Fourier transformation. After that the currentreads,

Iα(t) =
e
h

�
dE

1
2π

∞�
−∞

dω
Nr∑

β=1

[
fβ(E) − fα(E + ~ω)

]

(3.67)

×
∞�
−∞

dt′eiω(t−t′)Sin,αβ(t,E)S∗in,αβ(t
′,E) .

Thus we derived an expression which can be used to calculate atime-
dependent current in terms of the scattering matrix elements in the case of driv-
ing with arbitrary (not necessarily periodic) dependence on time. In a particular
case of a drive with periodT = 2π/Ω0 we have,

∞�
−∞

dt′e−iωt′S∗in,αβ(t
′,E) =

∞∑

n=−∞
2π δ(ω − nΩ0)S

∗
in,αβ,n(E) . (3.68)

The use of this equation transforms Eq. (3.67) into Eq. (3.65) as expected.
Further we consider several simple examples and calculate analytically the

elements of the scattering matrixŜin.
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3.5 Beyond the adiabatic approximation

3.5.2 Point-like scattering potential

Let us consider a one-dimensional Schrödinger equation,

i~
∂Ψ

∂t
=

{
− ~

2

2m
∂2

∂x2
+ V (t, x)

}
Ψ , (3.69)

with point-like potentialV(t, x) whose strength oscillates in time,

V(t, x) = δ(x) V(t) , V(t) = V0 + 2V1 cos(Ω0t + ϕ) . (3.70)

Accordingly to the Floquet theorem the solution to Eq. (3.69) with periodic in
time potential, Eq. (3.70) is of the following form,

Ψ (t, x) = e−i E
~
t
∞∑

n=−∞
e−inΩ0tψn (x) , (3.71)

whereψn (x) is a general solution of the corresponding stationary problem. In
all the places butx = 0 the potential is zero. Therefore, as a functionψn (x , 0)
we can take a general solution to the Schrödinger equation for a free particle,

ψn (x) =






a(−)
n eiknx + b(−)

n e−iknx , x < 0 ,

a(+)
n eiknx + b(+)

n e−iknx , x > 0 ,
(3.72)

with kn =
√

2m(E + n~Ω0)/~.
To match the wave function on the left and on the right fromx = 0 we use

the following. At x = 0 the wave function should be continuous. To relate it’s
derivative we integrate out Eq. (3.69) over an infinitesimal vicinity of a point
x = 0. We find that the derivative has a jump at this point. Therefore, we have
the following boundary conditions,
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Ψ (t, x = −0) = Ψ (t, x = +0) ,
(3.73)

∂Ψ (t, x)
∂x

∣∣∣∣
x=+0

− ∂Ψ (t, x)
∂x

∣∣∣∣
x=−0

=
2m
~2

V(t)Ψ (t, x = 0) ,

which connect unknown coefficients of the wave function, Eq. (3.72) at x > 0
and atx < 0.

Now we formulate a proper scattering problem, which in particular in-
cludes the boundary conditions atx → ±∞. The coefficientsa(−)

n andb(+)
n in

Eq. (3.72) correspond to incident waves, while the coefficientsa(+)
n andb(−)

n cor-
respond to out-going (scattered) waves. So we can write,

ψn (x) = ψ(in)
n (x) + ψ(out)

n (x) , (3.74)

where

ψ(in)
n (x) =






a(−)
n eiknx , x < 0 ,

b(+)
n e−iknx , x > 0 ,

(3.75a)

and

ψ(out)
n (x) =






b(−)
n e−iknx , x < 0 ,

a(+)
n eiknx , x > 0 ,

(3.75b)

Correspondingly the wave function, Eq. (3.71) can be written as the sum,
Ψ (t, x) = Ψ(in) (t, x) + Ψ(out) (t, x). Note the coefficientsa(−)

n andb(+)
n are de-

fined by a given incident wave. In contrast the coefficientsa(+)
n andb(−)

n should
be calculated.

First we consider scattering of a wave with unit amplitude2 corresponding
to a particle with energyE incident from the left, Fig.3.1,

Ψ
(in)
1 (t, x) = e−i E

~
t






eikx , x < 0 ,

0 , x > 0 .
(3.76)

2This wave is not normalized on unite flux. Hence there is a factor
√

kn/k ≡
√

vn/v in Eq. (3.78).
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1

b(−)
1,n a(+)

1,n

Figure 3.1: Scattering of a wave with unit amplitude onto thepoint-like potential
barrier. Arrows and letters show the propagation directionand the amplitude of
corresponding waves: 1 is an amplitude of an incoming wave,b(−)

1,n is an amplitude
of a reflected wave,a(+)

1,n is an amplitude of a transmitted wave. Only a single (nth)
component of the Floquet wave function for a scattered stateis shown.

Comparing it with Eqs. (3.71) and (3.75a) we find, a(−)
1,n = δn0 andb(+)

1,n = 0.
To calculate the coefficientsa(+)

1,n, b(−)
1,n of the scattered waveΨ(out)

1 we use the
boundary conditions, Eq. (3.73), and collect the coefficients having the same
dependence on time,∼ e−i

E+n~Ω0
~

t. As a result we arrive at the following set of
linear equations,n = 0,±1,±2, . . . ,






δn0 + b(−)
1,n = a(+)

1,n ,

(kn + ip0) a(+)
1,n = kδn0 − i

(
p+1a

(+)
1,n−1 + p−1a

(+)
1,n+1

)
,

(3.77)

where p0 = mV0/~
2 and p±1 = mV1e∓iϕ/~2 are the Fourier coefficients for

p (t) = mV(t) /~2.
The coefficientsb(−)

1,n/a
(+)
1,n define the corresponding Floquet scattering ma-

trix elements for a point-like potential barrier,Ŝ(1)
F (En,E), and, correspondingly,

the elements of a matrix̂S(1)
in (E),

S(1)
F,11 (En,E) = S(1)

in,11,n (E) =

√
kn

k
b(−)

1,n , (3.78a)
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S(1)
F,21 (En,E) = S(1)

in,21,n (E) =

√
kn

k
a(+)

1,n . (3.78b)

Here the lower indices 1 and 2 correspond to left (x→ −∞) and right (x→ +∞)
reservoirs, respectively. The square root

√
kn/k appeared because the absolute

value square of the scattering matrix element is defined as a ratio of the cur-
rent of scattered particles,∼ kn

∣∣ψ(out)
n

∣∣2, to the current of incident particles,

∼ k
∣∣ψ(in)

n

∣∣2.
Substituting Eq. (3.78) into Eq. (3.77) we find,






δn0 + S(1)
in,11,n (E) = S(1)

in,21,n (E) ,

(kn + ip0) S(1)
in,21,n (E) = kδn0

−ip+1

√
kn

kn−1
S(1)

in,21,n−1 (E) − ip−1

√
kn

kn+1
S(1)

in,21,n+1 (E) ,

(3.79)

Let us solve this system of equations with accuracy to the first order in the
parameterǫ = ~Ω0/E introduced in Eq. (3.29). Notice in the problem under
consideration the energyE only is a characteristic energy. Therefore, in this
case the parameterǫ coincides with the adiabaticity parameter,ǫ ∼ ̟.

To the first order inǫ we can approximate,

kn = k+
nΩ0

v
+ O

(
ǫ2
)
,

√
kn

kn∓1
= 1± Ω0

2vk
+ O

(
ǫ2
)
, (3.80)

wherev = ~k/m is a velocity of an electron with energyE. Using these ex-
pansions in Eq. (3.79) and omitting terms of orderǫ2 we find after the inverse
Fourier transformation,
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3.5 Beyond the adiabatic approximation






1+ S(1)
in,11 (t,E) = S(1)

in,21 (t,E) ,

{k+ ip (t)}S(1)
in,21 (t,E) = k− i

v

∂S(1)
in,21 (t,E)

∂t
+

1
2vk

dp(t)
dt

S(1)
in,21 (t,E) ,

(3.81)

Since these equations are derived to the first order inǫ ∼ Ω0, we can solve them
by iterations in those terms which have a time derivative. Omitting such terms
we get a zero-order solution, i.e., the elements of the frozen scattering matrix,

S(1)
11 (t,E) =

−ip (t)
k+ ip (t)

, S(1)
12 (t,E) =

k
k+ ip (t)

. (3.82)

Using this solution in Eq. (3.81) we calculate the elementŝS(1)
in up to the first

order inǫ terms, [30]

S(1)
in,11 (t,E) =

−ip (t)
k+ ip (t)

− 1
2v

dp(t)
dt

k− ip (t)
[
k+ ip (t)

]3 ,

S(1)
in,21 (t,E) =

k
k+ ip (t)

− 1
2v

dp(t)
dt

k− ip (t)
[
k+ ip (t)

]3 .
(3.83)

With Eq. (3.82) we show that,

∂2S(1)
11 (t,E)
∂t∂E

=
∂2S(1)

21 (t,E)
∂t∂E

=
i
~v

dp(t)
dt

k− ip (t)
[
k+ ip (t)

]3 .

Therefore, Eq. (3.83) can be rewritten as follows,

S(1)
in,11 (t,E) = S(1)

11 (t,E) +
i~
2
∂2S(1)

11 (t,E)
∂t∂E

,

S(1)
in,21 (t,E) = S(1)

21 (t,E) +
i~
2
∂2S(1)

21 (t,E)
∂t∂E

.

(3.84)
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3 Non-stationary scattering theory

Solving the same problem but with a wave incident from the right,

Ψ
(in)
2 (t, x) = e−i E

~
t






0 , x < 0 ,

e−ikx , x > 0 ,
(3.85)

(or just using the symmetry reasons), we calculate,

S(1)
22 (t,E) = S(1)

11 (t,E) , S(1)
12 (t,E) = S(1)

21 (t,E) ,

S(1)
in,22 (t,E) = S(1)

in,11 (t,E) , S(1)
in,12 (t,E) = S(1)

in,21 (t,E) .
(3.86)

Thus using Eq. (3.84) we can write down the following relation between the
scattering matrix̂S(1)

in (t,E) and the frozen scattering matrix̂S (t,E):

Ŝ(1)
in (t,E) = Ŝ(1) (t,E) +

i~
2
∂2Ŝ(1) (t,E)

∂t∂E
, (3.87)

with

Ŝ(1) (t,E) =
1

k+ ip (t)

(
−ip (t) k

k −ip (t)

)
. (3.88)

Remind the equation (3.87) is derived with accuracy of orderǫ which, in
the case under consideration, is of the same order as the adiabaticity param-
eter̟. Comparing Eqs. (3.87) and (3.61a) we conclude that the anomalous
scattering matrix is identically zero for a point-like scatterer,

Â(1) (t,E) = 0 . (3.89)

Therefore, the dynamic point-like scatterer does not breaka symmetry of scat-
tering with respect to a spatial direction reversal inherent to stationary scatter-
ing. To break such a symmetry dynamically it is necessary a scatterer of a finite
size which is able to keep an electron for a finite time [34, 35, 36, 37, 38] com-
parable with a period,T = 2π/Ω0, of a drive.
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3.5 Beyond the adiabatic approximation

In conclusion we give relations between the coefficients of a scattered wave
and the elements of the Floquet scattering matrix in the casewith incident waves
from both the left and the right,

Ψ(in) (t, x) = e−i E
~
t






a(−)
0 eikx , x < 0 ,

b(+)
0 e−ikx , x > 0 .

(3.90)

Because of the superposition principle if the incident waveisΨ(in) = a(−)
0 Ψ

(in)
1 +

b(+)
0 Ψ

(in)
2 then the scatterer wave isΨ(out) = a(−)

0 Ψ
(out)
1 + b(+)

0 Ψ
(out)
2 . Using

Eqs. (3.78) for the coefficients ofΨ(out)
1 and the analogous relations between

the coefficients ofΨ(out)
2 andS(1)

F,2 j (En,E), j = 1, 2 we find the coefficients of the
scattered wave,

Ψ(out) (t, x) = e−i E
~
t
∞∑

n=−∞
e−inΩ0t






b(−)
n e−iknx , x < 0 ,

a(+)
n eiknx , x > 0 ,

(3.91)

as follows,

b(−)
n =

√
k
kn

S(1)
F,11 (En,E) a(−)

0 +

√
k
kn

S(1)
F,12 (En,E) b(+)

0 , (3.92a)

a(+)
n =

√
k
kn

S(1)
F,21 (En,E) a(−)

0 +

√
k
kn

S(1)
F,22 (En,E) b(+)

0 . (3.92b)

Thus if the scattering matrix is known, then the solution to the boundary prob-
lem (3.73) with a wave functionΨ (t, x) = Ψ(in) (t, x) + Ψ(out) (t, x), Eqs. (3.90)
and (3.91), can be written down using the Floquet scattering matrix elements
as it is given in Eq. (3.92). These equations can be written more compactly if
to introduce a vector-column,̂Ψ(in)

0 , for coefficients of an incident wave with
energyE and a vector-column,̂Ψ(out)

n , for coefficients of a scattered wave with
energyEn,

Ψ̂
(in)
0 =

(
a(−)

0

b(+)
0

)
, Ψ̂(out)

n =

(
b(−)

n

a(+)
0

)
. (3.93)
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3 Non-stationary scattering theory

Then the equation (3.92) becomes,

Ψ̂(out)
n =

√
k
kn

ŜF (En,E) Ψ̂(in)
0 . (3.94)

In the case if the incident wave is also of the Floquet function type having
side-bands with different energiesEm,

Ψ(in) (t, x) = e−i E
~
t
∞∑

m=−∞
e−imΩ0t






a(−)
m eikmx , x < 0 ,

b(+)
m e−ikmx , x > 0 ,

(3.95)

we introduce corresponding vector-columns,

Ψ̂(in)
m =

(
a(−)

m
b(+)

m

)
, (3.96)

and, using the superposition principle, generalize Eq. (3.94) as follows,

Ψ̂(out)
n =

∞∑

m=−∞

√
km

kn
ŜF (En,Em) Ψ̂(in)

m . (3.97)

This equation we need to consider a system comprising a set ofpoint-like dy-
namic scatterers.

3.5.3 Double-barrier potential

Let the potentialV (t, x), in the Schrödinger equation (3.69), consists of
two oscillating in time point-like potentials,Vj (t), j = L,R, located at a distance
d from each other and a uniform oscillating in time potentialU (t) between the
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3.5 Beyond the adiabatic approximation

1

b(−)
n a(+)

nal bl

d

Figure 3.2: Two point-like potentials separated by a ballistic wire of lengthd. Ar-
rows and letters indicate propagation direction and amplitude corresponding waves.

first two, Fig.3.2,

V (t, x) = VL (t) δ (x) + VR (t) δ (x− d) + U (t) θ (x) θ (d − x) ,

Vj (t) = Vj,0 + 2Vj,1 cos
(
Ω0t + ϕ j

)
, j = L,R, (3.98)

U (t) = 2U cos(Ω0t + ϕU) ,

where the Heaviside step functionθ (x) = 1 atx > 0 andθ (x) = 0 atx < 0. Our
aim is to calculate the Floquet scattering matrixŜ(2)

F (En,E) for such a potential.
[33]

To calculate the elementsS(2)
F,11 (En,E) andS(2)

F,21 (En,E) we consider the
scattering problem for a particle with energyE incident from the left. Its wave
function is,

Ψ(in) (t, x) = e−i E
~
t






eikx , x < 0 ,

0 , x > 0 .
(3.99)

The scattered wave is of the Floquet function type,
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3 Non-stationary scattering theory

Ψ(out) (t, x) = e−i E
~
t
∞∑

n=−∞
e−inΩ0t






b(−)
n e−iknx , x < 0 ,

a(+)
n eiknx , x > d ,

(3.100)

where the coefficientsb(−)
n anda(+)

n define the elements of the Floquet scattering
matrix,

S(2)
F,11 (En,E) = S(2)

in,11,n (E) =

√
kn

k
b(−)

n , (3.101a)

S(2)
F,21 (En,E) = S(2)

in,21,n (E) =

√
kn

k
a(+)

n eiknd . (3.101b)

Notice in the case of a finite-size structure the transmission amplitude includes
a factor with corresponding propagation phase. In our case it is eiknd.

The wave function inside the scattering region, 0< x < d, is also can
be represented as the Floquet function, Eq. (3.71). To find the corresponding
functionsψn (x) we take into account the follows. In Sec.3.1.3we calculated the
general solution to the Schrödinger equation with uniform oscillating potential,
Eq. (3.24). In a one-dimensional case for the potentialU (t), Eq. (3.98), it reads
as follows,

ΨE(t, x) = e
−i
{

E
~
t+ 2U
~Ω0

sin(Ω0t+ϕU )
} (

aE eikx + bE e−ikx
)
, (3.102)

whereaE andbE are constants (independent oft and x). This wave function
corresponds to a particle with energyE and wave numberk =

√
2mE/~ in the

region with a uniform oscillating in time potentialU (t). We useΨE(t, x) as
a basis for calculating of a wave function at 0< x < d. In should be noted
that interacting with a potentialVL (t) an incident electron can change its initial
energyE and, correspondingly, its initial wave numberk. In such a case an
electron enters a region with potentialU (t) having energyEl = E + l~Ω0 and
wave numberkl. Therefore, the most general solution within the region 0< x <
d is the following,
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3.5 Beyond the adiabatic approximation

Ψ(mid) (t, x) =
∞∑

l=−∞
ClΨEl (t, x) . (3.103)

Next in Eq. (3.102) we expand a function,

Υ (t) = e−i 2U
~Ω0

sin(Ω0t+ϕU )
, (3.104)

into the Fourier series,Υ (t) =
∑∞

q=−∞ e−iqΩ0tΥq, with

Υq = Jq

(
2U
~Ω0

)
e−iqϕU , (3.105)

(Jq is the Bessel function of the first kind of theqth order). Then collecting
together all the terms with the same dependence on time in Eq.(3.103) and
introducing the following notation,al = Cl aEl andbl = Cl bEl , we finally get a
required equation,

Ψ(mid) (t, x) = e−i E
~
t
∞∑

n=−∞
e−inΩ0t ψn (x) , (3.106)

ψn (x) =
∞∑

l=−∞
Υn−l

(
al e

ikl x + bl e
−ikl x
)
, 0 < x < d ,

which was suggested in Ref. [39, 40].
The sum of Eqs. (3.99), (3.100), and (3.106) determines an electron wave

function,

Ψ (t, x) = Ψ(in) (t, x) + Ψ(out) (t, x) + Ψ(mid) (t, x) , (3.107)

at all the points butx = 0 andx = d. In these two points we should use the
boundary conditions similar to ones given in Eq. (3.73):
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3 Non-stationary scattering theory

Ψ (t, x = −0) = Ψ (t, x = +0) ,
(3.108)

∂Ψ (t, x)
∂x

∣∣∣∣
x=+0

− ∂Ψ (t, x)
∂x

∣∣∣∣
x=−0

=
2m
~2

VL(t)Ψ (t, x = 0) ,

Ψ (t, x = d− 0) = Ψ (t, x = d + 0) ,
(3.109)

∂Ψ (t, x)
∂x

∣∣∣∣
x=d+0

− ∂Ψ (t, x)
∂x

∣∣∣∣
x=d−0

=
2m
~2

VR(t)Ψ (t, x = d) .

Collecting terms having the same dependence on time we obtain an infinite
system of equations for coefficientsb(−)

n , a(+)
n , al andbl.

The same system of equations can be derive in another way withthe help of
scattering matrices for constituting potentials. We designate asL̂F the Floquet
scattering matrix for a potentialVL(t). Correspondingly,̂RF is the Floquet scat-
tering matrix for a potentialVR(t). Further reasoning is quite analogous to what
we used deriving Eq. (3.97) from the boundary conditions given in Eq. (3.73).

First we consider Eq. (3.108). Nearx = 0 the wave function can be rep-
resented as follows,Ψ (t, x) = Ψ(in)

L (t, x) + Ψ(out)
L (t, x), whereΨ(in)

L (t, x) corre-
sponds to a wave incident to the barrierVL (t), whileΨ(out)

L (t, x) corresponds to
a wave scattered by it. From Eqs. (3.99), (3.100), and (3.106) we find,

Ψ
(in)
L (t, x) = e−i E

~
t
∞∑

n=−∞
e−inΩ0t






δn0 eikx , x < 0 ,

∞∑
l=−∞
Υn−l bl e−ikl x , x > 0 ,

(3.110)

Ψ
(out)
L (t, x) = e−i E

~
t
∞∑

n=−∞
e−inΩ0t






b(−)
n e−iknx , x < 0 ,

∞∑
l=−∞
Υn−l al eikl x , x > 0 ,

(3.111)
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3.5 Beyond the adiabatic approximation

Collecting all the wave function amplitudes correspondingto the same energy
En into the vector-columns,

Ψ̂
(in)
Ln =




δn0

∞∑
l=−∞
Υn−l bl



 , Ψ̂
(out)
Ln =




b(−)

n
∞∑

l=−∞
Υn−l al



 , (3.112)

and using Eq. (3.97) we obtain the following matrix equation,




b(−)

n
∞∑

l=−∞
Υn−l al



 =
∞∑

m=−∞

√
km

kn
L̂F (En,Em)




δm0

∞∑
l=−∞
Υm−l bl



 , (3.113)

which is completely equivalent to the boundary conditions given in Eq. (3.108)
for the wave function given in Eq. (3.107).

The second pair of boundary conditions, Eq. (3.109), relate the coeffi-
cients of the wave function, Eq. (3.107), at x = d. Near this point the incident,
Ψ

(in)
R (t, x), and scattered,Ψ(out)

R (t, x), waves are,

Ψ
(in)
R (t, x) = e−i E

~
t
∞∑

n=−∞
e−inΩ0t






∞∑
l=−∞
Υn−l al eikl x , x < d ,

0 , x > d ,

(3.114)

Ψ
(out)
R (t, x) = e−i E

~
t
∞∑

n=−∞
e−inΩ0t






∞∑
l=−∞
Υn−l bl e−ikl x , x < d ,

a(+)
n eiknx , x > d .

(3.115)

The corresponding vector-columns are,
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3 Non-stationary scattering theory

Ψ̂
(in)
Rn =




∞∑

l=−∞
Υn−l al eikld

0



 , Ψ̂
(out)
Rn =




∞∑

l=−∞
Υn−l bl e−ikld

a(+)
n eiknd



 . (3.116)

Applying Eq. (3.97) to the right point-like potential, we get an equation,




∞∑

l=−∞
Υn−l bl e−ikld

a(+)
n eiknd



 =
∞∑

m=−∞

√
km

kn
R̂F (En,Em)




∞∑

l=−∞
Υm−l al eikld

0



 ,

(3.117)

which is equivalent to Eq. (3.109) for the wave function given in Eq. (3.107).
Let us solve the system of equations (3.113) and (3.117) with accuracy

of the zeroth order in the parameterǫ = ~Ω0/E ≪ 1, Eq. (3.29). Notice, in
contrast to the case with a point-like scatterer, when the adiabaticity parameter
̟ coincides with a parameterǫ, in the case of a finite-size scatterer, whose
lengthd is much larger than the de-Broglie wave length,λE = h/

√
2mE, of

an electron with energyE, the adiabaticity parameter is larger compared toǫ:
̟ ∼ ǫd/λE ≫ ǫ. This fact allows us to analyze both adiabatic,̟ ≪ 1, and
non-adiabatic,̟ ≫ 1, regimes within the approach used.

So, to the zeroth order inǫ we write,

km

kn
= 1+ O (ǫ) ,

(3.118)
e±ikld = e±ikd e±ilΩ0τ[1+O(ǫ)] ,

whereτ = L/v is a time of flight between the barriers for an electron with energy
E. Further simplification is related to the following. As we showed earlier, the
Floquet scattering matrix elements for a point-like barrier to the zeroth order in
ǫ are the Fourier coefficients for the frozen scattering matrix, see, Eqs. (3.78)
and (3.82). Designating the frozen scattering matrices for left and right barriers
asL̂ (t,E) andR̂(t,E), respectively, we have,
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3.5 Beyond the adiabatic approximation

X̂F (En,Em) = X̂n−m (E) + O (ǫ) , X = L,R. (3.119)

Then using Eqs. (3.118), (3.119), and (3.101) we can rewrite the system of
equations (3.113) and (3.117) in the following way,




S(2)

in,11,n (E)
∞∑

l=−∞
Υn−l al



 =

∞∑

m=−∞
L̂n−m (E)




δm0

∞∑
l=−∞
Υm−l bl



 ,

(3.120)

e−ikd
∞∑

l=−∞
Υn−l bl e−ilΩ0τ

S(2)
in,21,n (E)



 =

∞∑

m=−∞
R̂n−m (E)



eikd
∞∑

l=−∞
Υm−l al eilΩ0τ

0



 .

Next we use the following trick. We assume that the quantities al andbl

are the Fourier coefficients for some periodic in time functionsa (t) = a (t + T)
andb (t) = b (t + T). With these functions we can apply the inverse Fourier
transformation to Eqs.(3.120) and calculate,

(
S(2)

in,11 (t,E)
Υ (t) a (t)

)
= L̂ (t,E)

(
1

Υ (t) b (t)

)
,

(3.121)(
e−ikdΥ (t) b (t + τ)

S(2)
in,21 (t,E)

)
= R̂(t,E)

(
eikdΥ (t) a (t − τ)

0

)
,

where we took into account that the quantitiesbl e−ilΩ0τ and al eilΩ0τ are the
Fourier coefficients forb (t + τ) anda (t − τ), respectively. It is easy to check.
For instance,

[
b (t + τ)

]
l
=

T�
0

dt
T

eilΩ0t b (t + τ) =

T�
0

dt′

T
eilΩ0(t′−τ) b

(
t′
)
= bl e

−ilΩ0τ .
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3 Non-stationary scattering theory

Note the system of equations (3.121) contains only four equations, while
initially we have an infinite system of equations, Eq. (3.120). The first and
the fourth equations in (3.121) define the quantities of interest,S(2)

in,11 (t,E) and
S(2)

in,21 (t,E), while the second and the third equations allow us to calculate a (t)
andb (t). Substituting the third equation into the second one we get the follow-
ing (for shortness we omitE),

a (t) = Υ∗ (t) L21 (t) + ei2kLL22 (t) R11 (t − τ) a (t − 2τ) . (3.122)

In addition here we usedΥ−1 (t) = Υ∗ (t), because it is|Υ (t)|2 = 1 for the
functionΥ (t) introduced in Eq. (3.104). Since the absolute value of quantities
entering Eq. (3.122) is less than unity, we can write down the solution for this
equation as the following series,

a (t) =
∞∑

q=0

ei2qkdλ(q) (t)Υ∗ (t − 2qτ) L21 (t − 2qτ) ,

(3.123)

λ(q>0) (t) =
q−1∏

j=0

L22 (t − 2 jτ) R11

(
t −
[
2 j + 1

]
τ
)
,

λ(0) (t) = 1 .

This series can be found if to consider formally the second term on the right
hand side of Eq. (3.122) as a perturbation and to sum up the terms in all the
orders of the perturbation theory.

Using Eq. (3.123) in Eq. (3.121) we calculateb (t) and then the Floquet
scattering matrix elements, [33]

S(2)
in,α1 (t,E) =

∞∑

q=0

ei2qα1kdS
(q)
α1 (t,E) , α = 1, 2 . (3.124)
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3.5 Beyond the adiabatic approximation

where 2qα1 = 2q+ 1− δα1 and

S
(q)
α1 (t,E) = e−iΦqαβ σ

(q)
α1 (t,E) , (3.125)

Φqα1 =
1
~

t�
t−2qα1τ

dt′U
(
t′
)
. (3.126)

σ
(0)
11 (t) = L11 (t) , (3.127)

σ
(q>0)
11 (t) = L12 (t) R11 (t − τ) L21 (t − 2qτ) λ(q−1) (t − 2τ) ,

σ
(q)
21 (t) = R21 (t) L21

(
t −
[
2q+ 1

]
τ
)
λ(q) (t − τ) . (3.128)

For shortness in Eqs. (3.127) and (3.128) we do not show an argumentE.
Note the time-dependent phase factor in Eq. (3.125) can be written as follows,
e−iΦqα1 = Υ (t)Υ∗ (t − 2qα1τ).

Let us analyze Eq. (3.124). The scattering matrix elementŜ(2)
in,α1 (t,E) is

the sum of partial amplitudes,ei2qα1kd S
(q)
in,α1 (t,E). Each such an amplitude cor-

responds to some pathL(q)
α1 inside the scattering region. An electron with en-

ergyE enters the system through the lead 1, follows along this pathundergoing
2qα1 − 1 reflections, and leaves the system through the leadα at a time moment
t. The trajectoryL(q)

α1 consists of 2qα1 segments of lengthd. The partial scatter-
ing amplitudeei2qα1kd S

(q)
in,α1 (t,E) is the product of some number of amplitudes

Lαα andRαα, corresponding to an instant reflection from the point-likebarriers,
amplitudesLα,β andRα,β, corresponding to an instant tunneling through the

point-like barriers, and amplitudese
i
{

kd−~−1
� t j

t j−τ dt′U(t′)
}

, corresponding to a prop-
agation (starting at timet j−τ and lasting a time periodτ = d/v) between the two
barriers in a uniform oscillating potentialU(t). The time moments,t j = t− jτ, at
which the instantaneous reflection/transmission amplitudes are calculated, are
counted backwards along the pathL

(q)
α1 in a descending order starting from the

time momentt when the particle leaves the system through the left (forα = 1)
or right (forα = 2) barrier.
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3 Non-stationary scattering theory

SinceS
(q)
α1 (t,E) depends on scattering amplitudes calculated at different

times, the scattering matrix̂S(2)
in (t,E) is non-local in time, in contrast to the (lo-

cal in time) frozen scattering matrix̂S (t,E). This non-locality arises as a con-
sequence of a finite (minimal) timeτ spent by an electron inside the scattering
region. If the periodT becomes as small asτ the system enters a non-adiabatic
scattering regime. Therefore, a natural adiabaticity parameter for the system
under consideration is the product,̟0 = Ω0τ/(2π).

To calculate remaining elementsS(2)
F,α2 (En,E), α = 1, 2, and, correspond-

ingly, S(2)
in,α2,n, we have to consider scattering of an electron with energyE inci-

dent from the right. Then the corresponding elements of the scattering matrix
Ŝ(2)

in (t,E) are given by equations analogous to Eqs. (3.124) – (3.126) with

σ
(q)
12 = L12 (t) R12

(
t −
[
2q+ 1

]
τ
)
ρ(q) (t − τ) , (3.129)

σ
(0)
22 = R22 (t) , (3.130)

σ
(q>0)
22 = R21 (t) L22 (t − τ) R12 (t − 2qτ) ρ(q−1) (t − 2τ) .

Here the quantityρ(q) (t) is,

ρ(q>0) (t) =
q−1∏

j=0

R11 (t − 2 jτ) L22

(
t −
[
2 j + 1

]
τ
)
,

ρ(0) = 1 . (3.131)

Thus, we have calculated the scattering matrix,

Ŝ(2)
in (t,E) =

∞∑

q=0

ei2qα1kdŜ
(q) (t,E) , (3.132)

allowing a description of the transport through the dynamicdouble-barrier as in
adiabatic as in non-adiabatic regimes.
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3.5 Beyond the adiabatic approximation

3.5.3.1 Adiabatic approximation

Let us consider the limit,̟ → 0, and calculate the anomalous scatter-
ing matrix, see, Eq. (3.48), for the double-barrier structure. We denote it as
Â(2)(t,E). Remind this matrix is responsible for a chiral asymmetry of scatter-
ing at slow driving.

To the zeroth order in̟ the matrixŜ(2)
in (t,E) coincides with the frozen

scattering matrix, which we denote asŜ(2)(t,E) for the double-barrier under
consideration. To calculate it we use Eq. (3.132) where we ignore a change of
all the quantities during a time periodτ. Then in Eqs. (3.123), (3.127) - (3.131)
all the quantities are calculated at a time momentt, while the equation (3.126)
(for β = 1) and an analogous one forβ = 2, becomes,

Φqαβ ≈ U(t)τ~−1(2q + 1 − δαβ) .

As a result we get,

S(2)
αβ(t,E) =

∞∑

q=0

S̄(q)
αβ(t,E) ,

(3.133)

S̄(q)
αβ(t,E) = ei(kd−U(t)τ/~)(2q+ 1− δαβ)σ̄(q)

αβ(t,E) .

Here the elements of a matrix̄̂σ(q)(t,E) are given in Eqs. (3.127) - (3.130) where
we putτ = 0.

To calculate the matrix̂A(2)(t,E) we calculateŜ(2)
in (t,E) in the first order in

̟. To this end we expand the right hand side of Eq. (3.132) up to the linear inτ
terms. Then we use Eq. (3.133) for the frozen scattering matrix and Eq. (3.61a)
to extract the anomalous scattering matrix. Calculating the time and energy
derivatives we take into account the following. The frozen matrix Ŝ(2) depends
on time via the potentialU(t) and the matriceŝL(t) andR̂(t). The energy de-
pendence of̂S(2), within the approximations used, Eqs. (3.118) and (3.119), is
defined by the phase factore2iqkd only.3 Then after the simple algebra we find,

3The energy dependence of the scattering matricesL̂ andR̂ results in corrections of orderǫ which we ignore.
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3 Non-stationary scattering theory

~ΩA(2)
αβ(t,E) =

∞∑

q=0

S̄(q)
αβ(t,E)A(q)

αβ(t, µ) , (3.134a)

where

A
(q)
11 = τ0q

∂

∂t
ln

(
L12

L21

)
, (3.134b)

A
(q)
21 = −

τ0(2q+ 1)
2

∂

∂t
ln

(
L21

R21

)
− τ0q

2
∂

∂t
ln

(
R11

L22

)
, (3.134c)

A
(q)
12 = −

τ0(2q+ 1)
2

∂

∂t
ln

(
R12

L12

)
− τ0q

2
∂

∂t
ln

(
L22

R11

)
, (3.134d)

A
(q)
22 = τ0q

∂

∂t
ln

(
R21

R12

)
. (3.134e)

The equations above show that the anomalous scattering matrix Â(2) pos-
sesses symmetry properties with respect to interchange of lead indices which
are different from those of the frozen scattering [30]. The symmetry of thêA(2)

matrix depends on differences between the matrix elements of theL̂ andR̂ ma-
trices. The main point is that the symmetry of the anomalous scattering matrix
is fundamentally different from the frozen scattering matrix symmetry.

3.5.4 Unitarity and the sum over trajectories

One can expect that the scattering matrix elements for any structure com-
prising point-like scatterers connected via ballistic segments can be represented
as the sum over trajectories similar to Eq. (3.132). On the other hand, as we saw,
the use of the unitarity conditions allows us to simplify calculations. Therefore,
it seems to be useful to formulate the unitarity conditions directly in terms of
the partial scattering amplitudes,S

(q)
αβ (t,E), corresponding to the propagation of

an electron along one of trajectories.
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3.5 Beyond the adiabatic approximation

To this end we substitute Eq. (3.132) into Eq. (3.28b) and make the inverse
Fourier transformation. Then we use an expansion given in Eq. (3.118) and get,

∞∑

q=0

Ŝ(q(t,E)Ŝ(q)†(t,E) +

+

∞∑

p=0

∞∑

s=1

e−2iskdŜ(p)(t,E)Ŝ(p+s)†(t + 2τs,E) (3.135)

+

∞∑

q=0

∞∑

s=1

e2iskdŜ(q+s)(t,E)Ŝ(q)†(t − 2sτ,E) = Î .

This identity should hold at any energyE.
Note within the approximation used the quantitiesŜ(q) should be kept as

energy independent on the scale over which the phasekd changes by 2π. In
such a case Eq. (3.135) can be considered as the Fourier expansion for the unit
matrix Î in the basis of plane waves,e2ilkd, l = 0,±1,±2, . . . Expanding the
right hand side of Eq. (3.135) into this basis and calculating the corresponding
Fourier coefficients we arrive at the following equations, [33]

∞∑

q=0

Ŝ(q,τ)(t,E)Ŝ(q,τ)†(t,E) = Î , (3.136a)

∞∑

p=0

Ŝ(p,τ)(t,E)Ŝ(p+s,τ)†(t + 2τs,E) = 0̂ , (3.136b)

∞∑

q=0

Ŝ(q+s,τ)(t,E)Ŝ(q,τ)†(t − 2τs,E) = 0̂ , (3.136c)

where0̂ is a zero matrix.
We stress, compared to Eq. (3.60a) the equations given above are less gen-

eral, since they rely essentially on the expansion (3.132), where the matrices
Ŝ(q) are energy independent over the scale of order~Ω0.
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3 Non-stationary scattering theory

3.5.5 Current and the sum over trajectories

Let us use Eq. (3.65) and calculate a current generated by the dynamic
double-barrier structure connected to the reservoirs having the same potentials,
µα = µ, and temperatures,Tα = T, hencefα(E) = f0(E), α = 1, 2.

We substitute Eq. (3.132) into Eq. (3.65) and simplify it. To this end we
assume that both the energy quantum~Ω0 and the temperature are small com-
pared to the Fermi energy,

~Ω0, kBT ≪ µ . (3.137)

Then to integrate over energy in Eq. (3.65) we use the following expansion,
kd ≈ kµd + (E − µ)/(~τ−1

µ ), where the lower indexµ indicates that the corre-
sponding quantity is evaluated at the Fermi energy. Within this accuracy we can
treat the matriceŝS(q) as energy independent over the relevant energy window
and evaluate them atE = µ. The latter simplification is correct since the ele-
ments of scattering matricesL̂ andR̂defining the elements of the matrixŜ(q) are
changed significantly only if the energyE ∼ µ changes by the quantity of order
µ. Therefore, they can be kept as constant while integrating over energy over
the window of the order of max(~Ω0, kBT) ≪ µ.

Using introduced above simplifications we can integrate over energy in
Eq. (3.65) and represent a time-dependent current,Iα(t), as the sum of diagonal,
I (d)
α (t), and non-diagonal,I (nd)

α (t), contributions, [42, 33]

Iα(t) = I (d)
α (t) + I (nd)

α (t) , (3.138a)

The diagonal part comprises contributions of different dynamical scattering
channels which can be labeled by the indexq dependent on the number of re-
flections, (equals to 2q− δαβ for q > 0) experienced by an electron propagating
through the system, [33]

I (d)
α (t) =

∞∑

q=0

J(q)
α (t) , (3.138b)
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3.5 Beyond the adiabatic approximation

where the contribution of theqth dynamical scattering channel is:

J(q)
α (t) = −i

e
2π

(
Ŝ(q)(t, µ)

∂Ŝ(q)†(t, µ)
∂t

)

αα

. (3.138c)

Notice the contributionI (d)
α (t) is independent of the temperature.

The non-diagonal contribution to a current is the sum of temperature-
dependent non-diagonal in dynamical scattering channels contributions, [33]

I (nd)
α (t) =

∞∑

p=0

∞∑

q=0
q,p

ei2(p−q)kµd η

(
[p− q]T

T∗

)
J(p,q)
α (t) , (3.138d)

with

J(p,q)
α (t) = −i

e
2π

(
Ŝ(p)(t, µ)

Ŝ(q)†(t, µ) − Ŝ(q)†(t − 2τµ[p− q], µ)
2τµ[p− q]

)

αα

.

(3.138e)

Hereη(x) = x/ sinh(x), wherex = |p− q|T/T∗, andkBT∗ = ~/(2πτµ).
The factorη (|p− q|T/T∗) describes the effect of averaging over ener-

gies of incident electrons within the temperature wideningof the edge of the
Fermi distribution function. The time of flight,τµ = d/vµ, (for an electron
with Fermi energy) between the barriers plays twofold role.On one hand, it
separates adiabatic,T ≫ τµ, and non-adiabatic,T ≤ τµ, regimes. On the
other hand, it defines the crossover temperature,T∗, separating low-temperature
and high-temperature regimes. At low temperatures,T ≪ T∗, the factor
η = 1. While at relatively high temperatures,T ≫ T∗, this factor is small,
η (|p− q|T/T∗) ≈ 2|p− q|(T/T∗) e−|p−q|T/T∗. Therefore, at high temperatures the
non-diagonal current,I (nd)

α (t), is exponentially suppressed. Note the tempera-
ture effect we are discussing here is due to averaging over energy of incident
electrons4 and has nothing to do with inelastic (or other) processes destroying
the phase coherence.

4The temperatureT∗ is known as the crossover temperature in the persistent current problem [18, 43], and it is
appeared in the problem of stationary transport in ballisticmesoscopic structures with interference [44, 45, 46].
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3 Non-stationary scattering theory

The unitarity conditions, Eq. (3.136), allows us to simplifyI (nd)
α (t) and to

show that both the diagonal contribution and the non-diagonal contribution are
real. So, taking a time derivative of Eq. (3.136a) we conclude that Eq. (3.138b)
is real. Note each termJ(q)

α (t) in Eq. (3.138b) in general is not real, only their
sum is necessarily real. Therefore, the interpretation of aquantity J(q)

α (t) as a
contribution of theqth dynamical scattering channel into the currentI (d)

α (t) is
correct only in the case ifJ(q)

α (t) is real.
To show that Eq. (3.138d) is real we first simplify it. From Eqs. (3.136b)

and (3.136c) it follows that the product of scattering matrix elements corre-
sponding to electrons leaving the scatterer at different times,t andt−2τµ[p−q],
drops out from Eq. (3.138d). Then the non-diagonal contribution is reduced to
the following,

I (nd)
α (t) =

e
2πτµ

ℑ
∞∑

s=1

ei2skµd
η
(

sT
T∗

)

s
C(s)
α (t, µ) ,

(3.139)

C(s)
α (t, µ) =

∞∑

q=0

(
Ŝ(q+s)(t, µ)Ŝ(q)†(t, µ)

)
αα
.

Here the quantityC(s)
α is the sum of interference contributions from all the

pairs of photon-assisted amplitudes corresponding to trajectories with the same
length difference 2sd. Note this length difference enters the phase factorei2skµd.
All these amplitudes correspond to electrons leaving the scatterer at the timet
when the currentI (nd)

α (t) is calculated.
The two parts,I (d)

α (t) and I (nd)
α (t), of the generated current result from dif-

ferent processes that lead to different temperature dependencies. The first part,
I (d)
α (t), is the sum of contribution,J(q)

αβ , arising from different electron’s paths

L
(q)
αβ inside the system. These paths differ by incoming (β) and outgoing (α)

leads, and by the indexq counting the number of reflections inside the system.
Therefore, one can consider the contributionJ(q)

αβ as due to photon-assisted inter-

ference processes taking place within the same spatial pathL
(q)
αβ. Each such path

can be characterized by a delay time 2qαβτ, i.e., the difference of times when
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3.5 Beyond the adiabatic approximation

an electron leaves and enters the system. If this time is not small compared
with the driving period,T, then the dynamical effects become important for an
electron scattering off the system. Therefore, one can consider the pathL

(q)
αβ as

an effectivedynamical scattering channel. Then we interpretJ(q)
α as arising due

to intra-channel photon-assisted interference processes. Since all the quantum-
mechanical amplitudes corresponding to such processes aremultiplied by the
same dynamical factore2iqαβkd, the corresponding probability is independent of
energy. Consequently the energy integration becomes trivial.

In contrast, the second part,I (nd)
α (t), due to interference between different

paths (i.e., due to inter-channel interference) is defined as the sum of terms
oscillating in energy. Consequently it vanishes at high temperatures.

From Eq. (3.138) it follows that with increasing temperature or driving
frequency the different dynamical scattering channels contribute independently
to the generated current,Iα(t) ≈ I (d)

α (t). With regard to the temperature such
conclusion is evident sinceI (d)

α (t) is temperature-independent whileI (nd)
α (t) is

exponentially suppressed atT > T∗. With regard to the frequency this follows
from the observation that the ratioI (d)

α (t)/I (nd)
α (t) behaves asΩτ0. Therefore, at

Ω→ ∞ the contributionI (d)
α (t) dominates.

We emphasize that the currentI (d)
α (t) can not be considered as a classical

part of a generated currentIα(t). This part is due to interference, therefore, it
is of the quantum-mechanical nature. However it is due to interference taking
pace within the same spatial trajectory, therefore this current is insensitive to
energy averaging and, correspondingly, is temperature-independent.
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Chapter 4

DC current generation

The current generated by the dynamical scatterer [31] has a dc component
under some conditions [47]. In other words, the periodic in time excitation
of a mesoscopic scatterer can result in an appearance of a dc current even in
the absence of a bias between the reservoirs the scatterer iscoupled to. This
effect is calledthe quantum pump effect, and the dynamical mesoscopic scatterer
generating a dc current is calleda quantum pump. [47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68]

4.1 Steady particle flow

The existence of a dc current in the system means that there isa steady
particle flow in the leads connecting a scatterer to the reservoirs. To charac-
terize the intensity of such a flow in some direction [from thescatterer to the
reservoir, the upper index (in), or back, the upper index (out)] it is conveniently
to usethe distribution function f(in/out)

α (E), which defines how many particles
with energy within the intervaldE nearE in unit time passes the cross-section
of a leadα. The distribution function integrated over energy defines the total
flow in some direction in the given lead. The dc current in the lead is defined as
the difference of particle flows directed from the scatterer to the reservoir and
back times an electron charge. The charge conservation requires the sum of dc
currents flowing in all the leads is equal to zero.

4.1.1 Distribution function

Since we assume that the reservoirs are in equilibrium, thenthe electrons
moving in leads from the reservoirs to the scatterer, the incident electrons, are
described by the Fermi distribution function,fα(E), whereα = 1, . . . ,Nr num-
bers the reservoirs. The distribution functionfα(E) depends on both the chemi-
cal potential,µα, and the temperature,Tα, of a corresponding reservoir. Below
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4.1 Steady particle flow

in this chapter we assume the chemical potentials and temperatures, hence the
distribution functions, to be the same at all the reservoirs,

µα = µ0 , Tα = T0 , α = 1 . . . ,Nr ,

(4.1)
fα(E) = f0(E) .

In contrast, the electrons scattered by the dynamical sample are non-
equilibrium. Therefore, they are characterized by the non-equilibrium distribu-
tion function. Let us show that the distribution function for scattered electrons
is different from the Fermi distribution function.

The single-particle distribution function,f (out)
α (E), for electrons scattered

into the leadα and moving out of the scatterer, is defined as follows, [64]

〈
b̂†α (E) b̂β

(
E′
)〉
= δαβδ

(
E − E′

)
f (out)
α (E) ,

(4.2)

f (out)
α (E) =

∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (E ,En)
∣∣2 fβ (En) .

Using this definition we rewrite Eq. (3.40) for the dc current,Iα,0, generated by
the dynamical scatterer:

Iα,0 =
e
h

∞�
0

dE
{

f (out)
α (E) − fα (E)

}
. (4.3)

From this equation it follows directly that the dc current exists in the case if
the distribution function for scattered electrons is different from the one for
incoming electrons.

In the case of a dynamical scatterer even if Eq. (4.1) is fulfilled the distri-
bution functionf (out)

α (E), Eq. (4.2), differs from the Fermi distribution function,
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4 DC current generation

f (out)
α

1

Eµ0

~Ω0

Figure 4.1: The non-equilibrium distribution function,f (out)
α (E), for

scattered electrons at zero temperature is shown schematically. The step
width is~Ω0. The zero-temperature Fermi function is shown by dashed
line.

f0 (E). Let us illustrate it in the case of zero temperatures, Fig.4.1. In this case
for each energyE the sum overn in Eq. (4.2) is restricted by thosen for which
En ≡ E + n~Ω0 ≤ µ0. Therefore, we can write:

f (out)
α (E) =

[
µ−E
~Ω0

]

∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (E ,En)
∣∣2 =

{
< 1 , E < µ0 ,
> 0 , E > µ0 ,

(4.4)

where [X] is an integer part ofX. Given equation reaches unity only if the
upper limit in the sum overn approaches infinity. This follows directly from the
unitarity of the Floquet scattering matrix, see, Eq. (3.28b)

Note the distribution functionf (out)
α (E) is different from the equilibrium

one only at energies near the Fermi level,E ≈ µ0. For energies far fromµ0 the
distribution function for scattered electrons is almost equilibrium:

f (out)
α (E) ≈

{
1 , E≪ µ0 ,
0 , E≫ µ0 .

(4.5)

Therefore, we conclude: The dynamical scatterer runs an electron system
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4.1 Steady particle flow

out of equilibrium. This is, perhaps, the most prominent difference of the dy-
namical scatterer from the stationary one.

4.1.2 Adiabatic regime: Linear in pumping frequency current

Let us analyze a dc current in the limit of a small pumping frequency, see,
Eq. (3.49). This is so calledthe adiabatic regimeof a current generation. In this
case it is convenient to use Eq. (3.42). With Eq. (4.1) we can write,

Iα,0 =
e
h

∞�
0

dE
∞∑

n=−∞

{
f0 (E) − f0 (En)

} Nr∑

β=1

∣∣SF,αβ (En ,E)
∣∣2. (4.6)

Expanding the difference of the Fermi functions up to linear in~Ω0 terms
and using the zero-order adiabatic approximation for the Floquet scattering ma-
trix, see, Eq. (3.46a), we calculate:

Iα,0 =
eΩ0

2π

∞�
0

dE

(
−∂ f0
∂E

) Nr∑

β=1

∞∑

n=1

n
{∣∣Sαβ,n (E)

∣∣2 −
∣∣Sαβ,−n (E)

∣∣2
}
,

(4.7)

where the lower indexn indicates the Fourier coefficient for the corresponding
frozen scattering matrix elementSαβ.

As it follows from equation above the currentIα,0 can be non-zero if the
Fourier coefficients corresponding to the positive,n > 0 (emission), and neg-
ative, n < 0 (absorption), harmonics are different. After the inverse Fourier
transformation the mentioned condition reads,

Ŝ (t,E) , Ŝ (−t,E) . (4.8)

Therefore,the broken time-reversal symmetry of the frozen scatteringma-
trix is a necessary condition for a dc current generation by the dynamical meso-
scopic scatterer in the adiabatic regime.
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4 DC current generation

In fact we are speaking about adynamicalbreak of the time-reversal sym-
metry by the parameters of a scatterer,pi(t), varying under the action of external
periodic in time perturbations. For instance, in the case oftwo parameters vary-
ing with the same frequency but shifted in phase,

p1 (t) = p1,0 + p1,1 cos(Ω0t) ,
(4.9)

p2 (t) = p2,0 + p2,1 cos(Ω0t + ϕ) .

the time-reversal symmetry is broken. To show it we note thatin this case the
time reversal,t → −t, is equivalent to a phase reversal,ϕ → −ϕ, which, at
ϕ , 0, 2π, changes a parameter set for the frozen scattering matrix. As a result
we arrive at Eq. (4.8).

Performing an inverse Fourier transformation in Eq. (4.7) we get a more
compact expression for the adiabatic dc current: [47, 55, 66]

Iα,0 = −i
e

2π

∞�
0

dE

(
−∂ f0 (E)

∂E

) T�
0

dt
T

(
Ŝ (E, t)

∂Ŝ† (E, t)
∂t

)

αα

. (4.10)

To show that given above equation is real we use unitarity of the scattering
matrix, ŜŜ† = Î . Where it follows from that the diagonal element

(
Ŝ dŜ†

)
αα
=

−
(
dŜŜ†

)
αα

is imaginary, hence Eq. (4.10) is real.
Let us show that Eq. (4.10) conserves a charge. In the case of dc currents

the charge conservation law (the continuity equation) reads as follows:

Nr∑

α=1

Iα,0 = 0 . (4.11)

Follow Ref. [66] we use the Birman-Krein formula (see, e.g., Ref. [36]),

d ln
(
detŜ

)
= −Tr

(
Ŝ dŜ†

)
. (4.12)
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4.1 Steady particle flow

Summing up overα in Eq. (4.10) and using the identity Eq. (4.12), we find,

Nr∑

α∼1

Iα,0 ∼
T�

0

dtTr

(
Ŝ
∂Ŝ†

∂t

)
= −

T�
0

dt
d
dt

ln
(
detŜ

)

= ln
(
detŜ (0)

)
− ln

(
detŜ (T)

)
= 0 ,

where in the last equality we have used the periodicity of thefrozen scattering
matrix.

In a particular case of a scatterer with two leads when the scattering matrix
is given in Eq. (1.63), with phasesγ, θ, φ and the reflection coefficient R all
being periodic in time functions, the dc current generated,Eq. (4.10), is (I0 ≡
I1,0 = −I2,0 ):

I0 =
e

4π

∞�
0

dE

(
−∂ f0 (E)

∂E

) T�
0

dt
T

{
R(t)

∂θ(t)
∂t
+ T(t)

∂φ(t)
∂t

}
. (4.13)

As one can see, the current generated depends essentially onthe phases of
the scattering matrix elements. This fact emphasizes once more a quantum-
mechanical nature of a current generated by the dynamical scatterer. Note that
without a magnetic field it isφ ≡ 0.

Notice the equation (4.10) defines a current at zero as well as at finite
temperatures. From the formal point of view the expansion inpowers ofΩ0

we used in Eq. (4.6) is valid only at~Ω0 ≪ kBT0. However one can show that
Eq. (4.10) is valid in the opposite case,~Ω0 & kBT0, also. To this end we note
that at zero temperature the integration over energy in eachterm in the sum
overn in Eq. (4.6) is restricted by the interval of order∼ |n|~Ω0 near the Fermi
energyµ0. At the same time the adiabatic approximation, Eq. (3.46a), is valid
at the condition given in Eq. (3.49). This condition allows us to keep the frozen
scattering matrix,̂S(t,E), as energy independent within the mentioned energy
interval and to calculate it atE = µ0. The remaining integral over energy in
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4 DC current generation

Eq. (4.6) becomes trivial. It givesn~Ω0. As a result the first order in pumping
frequency expression for a dc generated current reads(~Ω0 & kBT0):

Iα,0 = −i
e

2π

T�
0

dt
T

(
Ŝ (t, µ)

∂Ŝ† (t, µ)
∂t

)

αα

. (4.14)

The same equation can be obtained from Eq. (4.10) in the zero temperature limit
(formally atT0 = 0) when it is−∂ f0/∂E = δ(E − µ).

The equation (4.14) admits an elegant geometrical formulation of the nec-
essary condition for existence of a dc current generated in the adiabatic regime,
see Ref. [47]. Let us consider a space of the frozen scattering matrix param-
eterspi. Take a point, A(t), in this space with coordinatespi(t). During the
period, 0 < t < T, the point A(t) follows a closed trajectoryL. We de-
noteŜ ≡ Ŝ({pi(t)}, µ), where{pi(t)} is a set of all the parameters, and rewrite
Eq. (4.14) as follows: [55]

Iα,0 = −i
eΩ0

4π2

�
L

(
Ŝ dŜ†

)
αα
. (4.15)

where the linear dependence onΩ0 is explicit.
Further for the sake of simplicity we consider a case with only two param-

eters,p1(t) and p2(t), which vary with small amplitudes,pi,1 ≪ pi,0, i = 1, 2,
see, Eq. (4.9). Then we can write,

dŜ† =
∂Ŝ†

∂p1
dp1 +

∂Ŝ†

∂p2
dp2 .

Using the Green theorem in Eq. (4.15),�
F

{
∂

∂p1

(
Ŝ
∂Ŝ†

∂p2

)
− ∂

∂p2

(
Ŝ
∂Ŝ†

∂p1

)}

αα

dp1dp2 =

=

�
L

Ŝ
∂Ŝ†

∂p1
dp1 + Ŝ

∂Ŝ†

∂p2
dp2 ,
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4.1 Steady particle flow

p1

p1,0

p2p2,0

A

F L

Figure 4.2: During one period the pointA(t) with coordinates
(p1(t), p2(t)) follows a trajectoryL. F stands for a surface area. The
arrow indicates a movement direction forϕ > 0.

we finally arrive at the following [47]:

Iα,0 = F
eΩ0

2π2
Im

(
∂Ŝ
∂p1

∂Ŝ†

∂p2

∣∣∣∣
pi=pi,0

)

αα

, (4.16)

whereF = π p1,1p2,1 sin(ϕ) is an area of the surface (in the present case it is
an ellipse) enclosed by the curveL. The value ofF is positive if the pointA
moves counterclockwise as it is shown in Fig.4.2. In Eq. (4.16) we also took
into account the following. If the parameters vary with small amplitudes then to
the leading order we can keep the derivatives of the scattering matrix elements
constant in the surface integral and calculate them atpi = pi,0.

So, if the areaF encircled by the representing point A(t) in the parameter
space of the scattering matrix during a period is non-zero, then in general case1

the dc current generated in the adiabatic regime is non-zero.
In the small amplitude limit the current is proportional to the areaF, that

is the current is a quadratic form of the parameters amplitudes. Therefore,

1The current can be zero if the scattering matrix elements derivatives are zero. In addition in the large amplitude
regime when the integrand is not constant and changes a sign,in some particular cases the current is zero even if
the area is not zero. Then it is natural to speak about accidental current nullifying.
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4 DC current generation

the pump effect is an essentially non-linear effect. Notice, as it follows from
Eq. (4.16), the value and even the direction of a dc current can be changed sim-
ply by varying the phase differenceϕ between the parametersp1(t) andp2(t). It
was shown experimentally in Ref. [48].

The equation (4.16) illustrates also an already mentioned relation between
the existence of a dc current and the broken time-reversal symmetry. Such a
relation is clearly seen from the following. Under the time reversal the direction
of motion of a pointA changes by its opposite. Therefore, the oriented surface
F changes a sign.

In should be noted that there are frozen scattering matrix derivatives in
Eq. (4.16). They do not connect directly to the driving. However at some partic-
ular values of parameters,pi,0, these derivatives (or either of them) can vanish.
That results in vanishing of a dc current. Therefore, the pump effect depends
not only on parameters of a dynamical influence but also on thestationary char-
acteristics of a scatterer. More precisely, the dc current arises only in the case
of spatially asymmetric scatterer. To show it we use Eq. (3.43) which under
conditions of Eq. (4.1) reads:

Iα,0 =
e
h

∞�
0

dE f0 (E)
∞∑

n=−∞

Nr∑

β=1

{∣∣SF,αβ (En ,E)
∣∣2 −

∣∣SF,βα (En ,E)
∣∣2
}
. (4.17)

One can see, the dc current is non-zero if the photon-assisted probability for
scattering from the leadβ to the leadα is different from the probability for the
scattering in the reversed direction.
So, the necessary condition for the quantum pump effect is a spatial-inversion
asymmetry of the scatterer.

The use of Eq. (4.17) in the adiabatic regime,~Ω0 ≪ δE, allows us to
represent a generated current as the sum of contributions due to electrons with
different energies and to introduce a notion ofthe spectral density of generated
currents, dIα(t,E)/dE, which we will need to analyze the quantum pump under
external bias. While without a bias and at zero temperature,as it follows from
Eq. (4.14), the current can be expressed in terms of quantities characterizing
scattering of electrons with Fermi energy only.

Using Eq. (3.50) we find a square of the modulus of the Floquet scattering
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4.1 Steady particle flow

matrix element up to linear inΩ0 terms:

∣∣SF,αβ (En ,E)
∣∣2 ≈

∣∣Sαβ,n (E)
∣∣2 + n~Ω0

2

∂
∣∣Sαβ,n (E)

∣∣2

∂E
(4.18)

+2~Ω0Re
[
S∗αβ,n (E) Aαβ,n (E)

]
.

Also we use
∑

n

∑
β

∣∣SF,βα (En ,E)
∣∣2 = 1. Substituting these equations in

Eq. (4.17), taking into account that
∑

n

∑
β

∣∣Sαβ,n (E)
∣∣2 = 1, performing the

inverse Fourier transformation, and using the identity (3.56), we finally calcu-
late a dc current within the linear in pumping frequency,Ω0, approximation,
[66]

Iα,0 =

T�
0

dt
T

∞�
0

dE f0 (E)
dIα (t,E)

dE
, (4.19)

where the spectral density,dIα/dE, is related to the diagonal element of the
following matrix Poisson brackets,

dIα (t,E)
dE

=
e
h

P
{

Ŝ, Ŝ†
}
αα
≡ i

e
2π

(
∂Ŝ
∂t
∂Ŝ†

∂E
− ∂Ŝ
∂E

∂Ŝ†

∂t

)

αα

. (4.20)

This quantity is subject to the conservation law at each energy and at any time:

Nr∑

α=1

dIα
dE
=

e
h

Nr∑

α=1

P
{

Ŝ, Ŝ†
}
αα
= 0 . (4.21)

This equation is a direct consequence of the identity (3.55).
Stress both equations, (4.10) and (4.19), defines the same quantity,Iα,0.

The difference is a way of writing. Substituting Eq. (4.20) into Eq. (4.19) and
integrating the first term by parts over the timet and both terms by parts over
the energyE we arrive at Eq. (4.10).

Thus we see that the dynamical scatterer is in principle different from the
stationary one even in the case of slowly varying parameters. The difference is
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4 DC current generation

in existence of currents with spectral densitydIα(t,E)/dEgenerated in the leads
connecting a scatterer and the reservoirs.

4.1.3 Quadratic in pumping frequency current

If the phase differenceϕ of the pumping parameters, see, Eq. (4.9), is zero
then the linear in frequency current, Eq. (4.16), vanishes. In particular such a
current is absent if only one parameter of the scattering matrix varies in time.
However even in this case the dynamical scatterer can generate a quadratic in
pumping frequency dc current,Iα,0 ∼ Ω2

0. The dc current proportional toΩn
0 for

n > 1 is usually called asnon-adiabatic.
To calculate quadratic inΩ0 dc current we substitute Eq. (4.18) into

Eq. (4.6) and expand the difference of the Fermi functions up to terms pro-
portional toΩ2

0. After simple algebra we find a dc current,

Iα,0 =
e

2π

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

Im

{
Ŝ
∂Ŝ†

∂t
+ 2~Ω0Â

∂Ŝ†

∂t

}

αα

.

(4.22)

If the frozen scattering matrix is time-reversal invariant, Ŝ(t) = Ŝ(−t), then
the first, linear in pumping frequency, term in the curly brackets in Eq. (4.22)
does not contribute to current. In this case the quadratic inΩ0 contribution is
dominant,

I (2)
α,0 =

e~Ω0

π

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

Im

{
Â
∂Ŝ†

∂t

}

αα

.

(4.23)

Earlier we showed that the linear in pumping frequency current is subject
to the conservation law, Eq. (4.11). Since the current,I (2)

α,0 is also a dc current, it
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4.2 Quantum pump effect

should satisfy the same conservation law. Therefore, we have,

T�
0

dt
T

Im Tr

(
Â(t,E)

∂Ŝ†(t,E)
∂t

)
= 0 . (4.24)

This equation fulfilled at any energyE puts an additional constraint onto the
anomalous scattering matrix̂A.

4.2 Quantum pump effect

The dc current generation by the mesoscopic dynamical scatterer is due to
asymmetric redistribution of (equal) electron flows incident to the scatterer from
the reservoirs. It does not require any source (or drain) of acharge inside the
scattering region. Before we outline a physical mechanism responsible for such
an asymmetry, we give simple arguments to illustrate a possibility to generate a
dc current without a bias.

4.2.1 Quasi-particle picture for a dc current generation

The appearance of a dc current can be clarified if to go over from the
real particle picture to the quasi-particle picture. [64] The particle with energy
above the Fermi levelµ0 we will call a quasi-electron, while an empty state
with energy belowµ0 we will call a hole.

For the sake of simplicity we assume all the reservoirs beingat zero tem-
perature (and having the same chemical potentials). Then the quasi-particles are
absent in equilibrium. Therefore, there is a zero quasi-particle flow incident to
the scatterer. On the other hand the dynamical scatterer plays a role of a source
of quasi-electron-hole pairs moving from the scatterer to the reservoirs. The
quasi-electron-hole pair is created in the case when a (real) electron absorbs
one,n = 1, or several,n > 1, energy quanta~Ω0 interacting with a dynamical
scatterer. During this process an electron empties the state with energyE < µ0

(a hole is created) and it occupies the state with energyEn = E + n~Ω0 > µ0

(a quasi-electron is created). We emphasize the created pair is charge neutral2.
2The charge of a filled Fermi sea is treated as a reference point.
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V(t)

a

V(t)

b

Figure 4.3: Under the action of a periodic in time potential,V(t) = V(t + T) of the
nearby metallic gate, an electron can absorb one or several energy quanta~Ω0. As
a result it jumps from the occupied level onto the non-occupied level, that can be
viewed as a creation of a quasi-electron-hole pair. An electron (a dark circle) and
a hole (a light circle) can leave the scattering region through the same lead (a) or
through the different leads (b). In the latter case the current pulse is generated.

However if a quasi-electron and a hole leave the scattering region through the
different leads, see, Fig.4.3(b), then the current pulse is generated between the
corresponding reservoirs. The sum of currents in different leads is obviously
zero. On the other hand, if a quasi-electron and a hole both are scattered into
the same leads, then the current does not appear at all, see, Fig. 4.3(a).

From this picture becomes clear, that the appearance of a dc current is
a consequence of a broken symmetry between the quasi-electrons and holes.
Otherwise the number of quasi-electrons and holes scattered to the same lead
would be the same on average, hence the current averaged overa long time (a
dc current) would not arise.

4.2.2 Interference mechanism of a dc current generation

As we already mentioned, within the real particle picture the appearance
of a dc current is due to asymmetry in scattering of electronsfrom one lead to
another and back, see Eq. (4.17). The physical mechanism leading to such an
asymmetry is an interference of photon-assisted scattering amplitudes. [69]

To show it we consider a one-dimensional scatterer comprising two poten-
tials, V1(t) = 2V cos(Ω0t + ϕ1) andV2(t) = 2V cos(Ω0t + ϕ2), oscillating with
the same amplitude and located at a distanceL from each other, Fig.4.4. For
simplicity we assume both potentials oscillate with small amplitude. Let an
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= +

V1(t) V2(t) V1(t) V2(t)

LE E± ~Ω0 E E± ~Ω0 E E± ~Ω0

Figure 4.4: While propagating through the scatterer comprising two oscillating potentials
an electron can absorb (or emit) an energy quantum~Ω0 interacting either with a potential
V1(t) or with a potentialV2(t). Therefore, the photon-induced scattering amplitude is a
sum of two terms.

electron with energyE falls upon the scatterer. Since in the case of a small am-
plitude of oscillations only the single-photon processes are relevant [38, 39, 40],
there are three different outcomes:

(i) An electron does not interact with potentials, hence it does not change
its energy. In this case an electron leaves the scattering region with energyE(out)

equal to its initial one,E(out) = E.
(ii) An electron absorbs one energy quantum:E(out) = E + ~Ω0.
(iii) An electron emits one energy quantum:E(out) = E − ~Ω0.
Since all these possibilities correspond to different final states, which differ

in final energyE(out), the total transmission probabilityT is the sum of proba-
bilities for mentioned above three processes,

T = T(0) (E ,E) + T(+) (E + ~Ω0 ,E) + T(−) (E − ~Ω0 ,E) , (4.25)

where the first argument is a final energy while the second one is an initial en-
ergy. The probabilityT(0), like the probability for scattering by the stationary
scatterer, does not depend on the propagation direction. Incontrast both prob-
abilities T(+) andT(−) depend on it. Therefore, we concentrate on these last
probabilities.

First we calculateT(+). Note there are two possibilities to pass through the
scatterer and to absorb an energy quantum, see, Fig.4.4. The first possibility
is to absorb an energy quantum interacting with the potential V1(t). And the
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second possibility is to absorb an energy quantum interacting with V2(t). Since
in both these cases the final state is the same, the corresponding amplitudes
(not probabilities!) should be added up. Denoting corresponding amplitudes as
A( j,+), j = 1, 2, we calculate the probability,

T(+)
=
∣∣A(1,+) + A(2,+)

∣∣2 . (4.26)

Each of amplitudesA( j,+) can be represented as the product of two terms, the
amplitude,A( f ree)(E) = eikL, of a free propagation from one potential barrier to
another one and the photon-assisted amplitude,A

(+)
j , describing an absorption

of an energy quantum~Ω0 during an interaction with the potentialVj. The am-
plitudeA

(+)
j is proportional to the Fourier coefficient forVj(t): A

(+)
j = κVe−iϕ j ,

whereκ is a proportionality constant.
We consider separately two cases. First, when an electron isincident from

the side of the potentialV1 and, second, when an electron is incident form the
side of the potentialV2. The corresponding probabilities we will label with the
help of lower indices→ and← , respectively. Our aim is to show that

T(+)
→ , T(+)

← . (4.27)

CalculatingT(+)
→ we take into account that an electron first meets the po-

tential V1(t) and only then, after a distanceL, it can reach the potentialV2(t).
Therefore, if an electron absorbs energy nearV1 then it propagates between the
potential barriers with enhanced energy,E+ = E + ~Ω. The corresponding am-
plitude is: A

(1,+)
→ = A

(+)
1 A( f ree)(E+). In contrast, if an electron absorbs energy

near the potentialV2(t) then it propagates between the barriers with initial en-
ergyE. The corresponding amplitude is:A

(2,+)
→ = A( f ree)(E)A(+)

2 . If ~Ω0 ≪ E
we can expand the phase of an amplitudeA( f ree)(E+) up to linear nΩ0 terms:
k(E+)L ≈ kL + Ω0τ, wherek = k(E) and τ = Lm/(~k) is a time of a free
propagation between the barriersV1 andV2. After that we write,

A
(1,+)
→ = κVe−iϕ1ei(kL+Ω0τ) , A

(2,+)
→ = eikLκVe−iϕ2 . (4.28)

Substituting these amplitudes into Eq. (4.26) we calculate,
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T(+)
→ = 2κ2V2 {1 + cos(ϕ1 − ϕ2 − Ω0τ)} . (4.29)

Now we calculate the probabilityT(+)
← . Going from the right to the left an

electron first meetsV2 and only then it meetsV1. By analogy with calculations
presented above we find:

A(1,+)
← = eikLκVe−iϕ1 , A(2,+)

← = κVe−iϕ2ei(kL+Ω0τ), (4.30)

and correspondingly

T(+)
← = 2κ2V2 {1 + cos(ϕ1 − ϕ2 + Ω0τ)} . (4.31)

Comparing Eqs. (4.29) and (4.31) we see that indeed the probability depends
on the propagation direction, as it was announced in Eq. (4.27). The directional
asymmetry of scattering can be characterized via the difference,∆T(+) = T(+)

→ −
T(+)
← , which is equal to

∆T(+)
= 4κ2V2 sin(∆ϕ) sin(Ω0τ) , (4.32)

where∆ϕ = ϕ1 − ϕ2.
The probability of propagation with emission of the quantumenergy~Ω0

is characterized by the same asymmetry,∆T(−) = ∆T(+), for our simple model.
Therefore, if the equal electron flows with intensityI0 fall upon the scatterer
from the both sides, then the asymmetric redistribution of scattered electrons re-
sults in a dc current,Idc = I0

(
∆T(+) + ∆T(−)

)
= 2I0∆T(+). This current depends

on two phase factors. On one hand it depends on the difference of phase,∆ϕ, be-
tween the potentialsV1(t) andV2(t). On the other hand the current depends on an
additional contribution to the dynamical phase,Ω0τ = Ω0L/v (wherev = ~k/m
is an electron velocity), due to the energy change during scattering. The first
factor breaks the time-reversal invariance allowing existence of a dc current in
the system without a current in the stationary regime. Whilethe second fac-
tor characterizes the system as spatially asymmetric (comprising two different
potentials at a distanceL). Interesting to note that in the case under consider-
ation the spatial-inversion symmetry is broken only ifϕ1 , ϕ2, therefore, one
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can speak about thedynamicallybroken spatial symmetry. As it follows from
Eq. (4.32), violation of only one of two symmetries, either spatial-inversion or
time-reversal, is not enough for a dc current generation.

4.3 Single-parameter adiabatic current generation

Accordingly to Brouwer’s arguments [47] 3 to generate a dc current in the
adiabatic regime it is necessary to vary at least two parameters out of phase. The
variation of a single parameter can result in at least quadratic in frequency dc
current, see Sec.4.1.3. This conclusion is confirmed by both the experiment [70,
71] and the theory [28, 62, 72, 73, 74, 75, 76, 77, 78]. However in Refs. [79, 80]
it was shown theoretically, that at a slow rotation of a potential it is possible to
generate a linear in rotation frequency dc current.4 If the rotation angle is treated
as a parameter then this is clearly an example of a single-parameter adiabatic
dc current generation. It is natural to call this device asa quantum Archimedes
screw. Below we give simple arguments showing that in the structures with a
cyclic coordinate a single-parameter dc current generation is a rule rather than
an exception.

Let the scattering matrix depends only on a single dependenton time pa-
rameter,Ŝ(t) = Ŝ[p(t)]. In the case when the system returns periodically to its
initial state we have two possibilities: (i) The parameterp is a periodic function
of time, p(t) = p(t + T), or (ii) the parameterp is an angle, i.e., the scattering
matrix depends periodically onp, see, e.g., Ref. [55], S ∼ eip. In the latter case
the parameter space can be rolled up into a cylinder (with 0≤ p < 2π) and the
parameterp can be a growing function of a time, for example,p ∼ t.

If the parameterp is small, then the adiabatic time-dependent currentIα(t),
Eq. (5.13), can be linearized,

Iα(t) = e Cαα(0)
∂p
∂t
, (4.33)

3See Fig.4.2and related discussion in the text.
4Note also that a uniformly translating potential can generate a dc current [81, 82]. At a slow translation the

current is proportional to the speed. If to treat a spatial coordinate as a parameter then this is also an example of
a single-parameter adiabatic dc current generation. Here the current results from the classical drag effect, i.e., the
momentum transfer from the moving potential to the electronsystem is primary. In contrast in the quantum pump
effect the energy transfer is primary.
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where the constant

Cαα(p) = − i
2π

(
Ŝ
∂Ŝ†

∂p

)

αα

is calculated atp = 0. In the case (i) the current is periodic in time without a dc
component. While in the case (ii) the current can have a dc component ifp ∼ t
andCαα(0) , 0. Therefore, only a topologically non-trivial parameter space
allows a single-parameter adiabatic pumping.

This conclusion remains valid at largep also, whenC becomes function
of p. In the case (i) we can expandC(p) into the Tailor series in powers ofp.
Each term of this series results only in an ac current. In the case (ii) we expand
C(p) into the Fourier series. Again all the terms but the zero mode produce ac
currents. In contrast, the zero mode results in a dc current (if p ∼ t). Therefore,
if the diagonal elementα of a matrixĈ = Ŝ∂Ŝ†/∂p has a constant term (a zero
mode) in the Fourier expansion in a cyclic coordinatep, then varyingp with a
constant speed,p = Ω0t, one can generate a dc currentIα ∼ Ω0.
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Chapter 5

AC current generation

In contrast to the dc currents, which exist only under the special condi-
tions, the ac currents are generated as far as the propertiesof a scatterer changes
periodically in time. As we will see below, there are severalphysical processes
responsible for appearance of ac currents. First of all, it is a redistribution of
incident electrons among the out-going channels, that is attributed to an intrin-
sic property of the dynamical scatterer to generate a current. The ac currents
can arise also due to a possible periodical change of a chargelocalized onto the
scatterer. And finally the potential difference between the electronic reservoirs
can also lead to appearance of a current. Emphasize even the dc bias can result
in ac currents since the conductance of a dynamical scatterer is changed in time.

5.1 Adiabatic ac current

Let us calculate the time-dependent currentIα(t), Eq. (3.39), flowing
through the dynamical scatterer in the adiabatic regime,̟ = ~Ω0/δE → 0.
To this end we transform Eq. (3.37b) for the Fourier harmonics of a current as
follows. First, in the term having a factorfβ(En) we make the following replace-
ments:En → E andn → −n. Then use an expansion (3.50) and calculate the
product:

S∗F,αβ (En,E) SF,αβ (El+n,E) = S∗αβ,nSαβ,l+n + ~Ω0

{
n
2

∂S∗αβ,n
∂E

Sαβ,l+n

+
(n+ l)

2

∂Sαβ,n+l

∂E
S∗αβ,n +

(
S∗αβ,nAαβ,l+n + A∗αβ,nSαβ,n+l

)}
+ O

(
̟2
)
.

After that we sum up overn,
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∞∑

n=−∞
S∗F,αβ (En,E) SF,αβ (El+n,E) =

(∣∣Sαβ

∣∣2
)

l
+

i~
2

(
−
∂2S∗αβ
∂t∂E

Sαβ+
∂2Sαβ

∂t∂E
S∗αβ

)

l

+ ~Ω0

(
S∗αβAαβ + A∗αβSαβ

)
l
+ O

(
̟2
)
,

where on the right hand side (RHS) of the equation above the lower index l
denotes a Fourier harmonics for the corresponding quantity. Then we get the
following equation for the current in the linear in pumping frequencyΩ0 ap-
proximation as the sum of three terms,

Iα (t) = I (V)
α (t) + I (Q)

α (t) + I (gen)
α (t) . (5.1)

The first term,

I (V)
α (t) =

e
h

∞�
0

dE
Nr∑

β=1

∣∣Sαβ(t,E)
∣∣2{ fβ (E) − fα (E)

}
, (5.2)

is non-zero if the chemical potentials (and/or the temperatures) are different for
different reservoirs. From the unitarity condition, Eq. (3.47), it follows that the
quantityI (V)

α (t) is subject to the conservation law,

Nr∑

α= 1

I (V)
α (t) = 0 , (5.3)

the same as for a dc current, see, Eq. (1.48). This fact justify a separation of
I (V)
α (t) from the total current and allows us to relate this part to the potential

(and/or temperature) difference between the reservoirs
The second term in Eq. (5.1),

I (Q)
α (t) = − e

∂

∂t

∞�
0

dE
Nr∑

β=1

fβ (E)
dNαβ(t,E)

dE
, (5.4)
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5 AC current generation

is a part of a current due to the variation in time of a chargeQ(t) of a scatterer.
In this equation we have introduced the frozenpartial density of states(DOS),

dNαβ(t.E)
dE

=
i

4π

{
Sαβ(t,E)

∂S∗αβ(t,E)

∂E
− ∂Sαβ(t,E)

∂E
S∗αβ(t,E)

}
, (5.5)

which is expressed in terms of the elements of the frozen scattering matrix
Ŝ(t,E) in the same way as the partial DOS of a stationary scatterer is expressed
in terms of the stationary scattering matrix elements, see,Ref. [31].

Summing up currentsI (Q)
α in all the leads we arrive at the charge conserva-

tion law,

Nr∑

α=1

I (Q)
α (t) +

∂Q (t)
∂t

= 0 , (5.6)

where the charge localized on the scatterer is:

Q (t) = e

∞�
0

dE
Nr∑

α=1

Nr∑

β=1

fβ (E)
dNαβ (E, t)

dE
. (5.7)

Strictly speaking the total currentIα should enter Eq. (5.6). However, as it
follows from Eqs. (5.3) and (5.10) neitherI (V)

α (t) nor I (gen)
α (t) do contribute to

the equation under consideration. This allows us to interpret I (Q)
α (t) as a current

due to a variation of a scatterer charge.
We see asI (V)

α as I (Q)
α can be explained on the base of the characteristics

(conductance and DOS) which are inherent to the stationary scatterer. In con-
trast the third contribution, a current generated by the dynamical scatterer in the
leadα,

I (gen)
α (t) =

∞�
0

dE
Nr∑

β=1

fβ (E)
dIαβ (t,E)

dE
, (5.8)
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5.1 Adiabatic ac current

requires a quantity absent in the stationary case, [29]

dIαβ
dE
=

e
h

(
2~Ω0Re

[
S∗αβAαβ

]
+

1
2

P
{

Sαβ ,S
∗
αβ

})
. (5.9)

This isa partial spectral current densityhaving a meaning of a flow generated
by the dynamical scatterer from the reservoirβ into the reservoirα.

The generated current,I (gen)
α (t), is subject to the conservation law,

Nr∑

α=1

I (gen)
α (t) = 0 , (5.10)

which is directly follows from the property of the partial spectral current density,

Nr∑

α=1

dIαβ(t,E)
dE

= 0 . (5.11)

Above condition tells us that there is no any internal sourceof a charge (see,
Sec. 4.2) : The scatterer takes a currentdIαβ(E)/dE incoming from the leadβ
and pushes it into the leadα. The Fermi functionfβ(E) in Eq. (5.8) shows us
how much this stream is populated.

To prove the identity (5.11) we use the diagonal element of the matrix
expression (3.52),

4~Ω0

Nr∑

α=1

Re
{

S∗αβAαβ

}
= P

{
Ŝ†, Ŝ

}
ββ
, (5.12)

and find,

2h
e

Nr∑

α=1

dIαβ
dE

= 4~Ω0

Nr∑

α=1

Re
{

S∗αβAαβ

}
+

Nr∑

α=1

P
{

Sαβ ,S
∗
αβ

}

= P
{

Ŝ†, Ŝ
}
ββ
− P

{
Ŝ†, Ŝ

}
ββ
= 0 .
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5 AC current generation

If we sum up a quantitydIαβ/dE over all the incoming scattering channels
(the indexβ) then we get the spectral current density generated into theleadα,

dIα
dE

=

Nr∑

β=1

dIαβ
dE
=

e
2h



4~Ω0

Nr∑

β=1

Re
{

S∗αβAαβ

}
+

Nr∑

β=1

P
{

Sαβ ,S
∗
αβ

}




=
e
2h

(
P
{

Ŝ , Ŝ†
}
αα
+ P

{
Ŝ , Ŝ†

}
αα

)
=

e
h

P
{

Ŝ , Ŝ†
}
αα
,

that coincides with Eq. (4.20).
The generated currentI (gen)

α (t) is essentially related to the anomalous scat-
tering matrix, Â(t,E), violating the symmetry of scattering with respect to a
movement direction reversal, compare Eqs. (3.57) and (3.58). Note for the
point-like scatterer it iŝA = 0̂, see, Eq. (3.89), and also it isP

{
Sαβ,S∗αβ

}
= 0,

that is directly follows from Eq. (3.88), hence it isI (gen)
α = 0. Therefore, with

no external bias (when it isI (V)
α = 0) the current of a dynamical point-like

scatterer is only due to a variation of its charge,Iα(t) = I (Q)
α (t). For arbitrary dy-

namical scatterer having reservoirs with the same potentials and temperatures,
fα(E) = f0(E), ∀α, the currentIα(t) = I (Q)

α (t) + I (gen)
α (t) is

Iα(t) = −
ie
2π

∞�
0

dE

(
− ∂ f0(E)

∂E

)(
Ŝ(t,E)

∂Ŝ†(t,E)
∂t

)

αα

, (5.13)

which is nothing but a generalization of the Büttiker–Thomas–Pr̂etre formula
[31].

5.2 External ac bias

Now we calculate a current flowing through the dynamical mesoscopic
scatterer if the reservoirs are biased with periodic in timevoltageVαβ(t) =
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5.2 External ac bias

Vαβ(t + T) ≡ Vα(t) − Vβ(t). This case is especial since the ac currents due to
a bias,Vαβ(t), do interfere with currents,I (gen)

α (t), generated by the scatterer it-
self. As a result there arises an additional, so calledinterference, contribution
to the current.

So, let the potentials applied to the reservoirs are varied with the same
frequency as the parameters of a scatterer are,

Vα (t) = Vα cos(Ω0t + φα) , α = 1, . . . ,Nr . (5.14)

Due to the approach to phase-coherent transport phenomena of Refs. [83, 84]
the periodic in time potentialVα(t) of an electron reservoir is treated as spatially
uniform and it is accounted in the phase of a wave-function ofelectrons incident
from the reservoir to the scatterer. At the same time the chemical potentialµα
entering the Fermi distribution functionfα(E) is constant and independent of
Vα(t).

As we know, the Schrödinger equation with a spatially uniform potential
Vα(t),

i~
∂Ψα

∂t
= H0,αΨα + eVα (t)Ψα , (5.15)

can be integrated out in time. Then the electron wave function can be written as
follows, see Sec.3.1.3,

Ψα = Ψ0,α e
−i~−1

t�
−∞

dt′eVα(t′)
, (5.16)

whereΨ0,α is a solution to Eq. (5.15) with Vα(t) = 0. Such a solution corre-
sponding to energyE, is

Ψ0E,α = e−i E
~
t ψE,α

(
~r
)
. (5.17)

With potentialVα(t), Eq. (5.14), the wave function, Eq. (5.16), corresponding
to energyE, becomes (eVα > 0):

149



5 AC current generation

ΨE,α = e−i E
~
tψ̄E,α

(
~r
) ∞∑

n=−∞
e−inφαJn

(
eVα
~Ω0

)
e−inΩ0t , (5.18)

where we have used the following Fourier series,

e−iX sin(Ω0t+φα) =

∞∑

n=−∞
Jn (X) e−in(Ω0t+φα) , (5.19)

and have included the constantC = eieVα/(~Ω0) sin(Ω0t′+φα)|t′=−∞ from Eq. (5.16) into
the functionψ̄E,α

(
~r
)
= CψE,α

(
~r
)
.

The wave functionΨE,α is of the Floquet function type, see Eqs. (3.22)
and (3.27). Note the spatial part̄ψE,α depends on the Floquet energyE but does
not depend on the sub-band numbern. Therefore, the Floquet wave function is
normalized exactly as the stationary wave functionψE,α does:�

d3r
∣∣ΨE,α

∣∣2 =
�

d3r
∣∣ψE,α

∣∣2 . (5.20)

Indeed, using the following property of the Bessel functions,

∞∑

n=−∞
Jn(X) Jn+q(X) = δq0 , (5.21)

we find from Eq. (5.18),

∣∣ΨE,α

∣∣2 =
∣∣ψE,α

∣∣2
∞∑

n=−∞

∞∑

m=−∞
e−i(n−m)φα e−i(n−m)Ω0tJn (X) Jm (X)

=
∣∣ψE,α

∣∣2
∞∑

q=−∞
eiqφα eiqΩ0t

∞∑

n=−∞
Jn (X) Jn+q (X) =

∣∣ψE,α

∣∣2 .

Here we denotedX = eVα/(~Ω0), introducedq = m− n, and took into account
|C|2 = 1.
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5.2 External ac bias

The state with wave functionΨE,α can be occupied at most by one electron.
While the measurement of an electron energy in the stateΨE,α can results in
any of valuesEn = E+ n~Ω0 with probabilityJ2

n(eVα/~Ω0). However the mean
energy,E[ΨE,α], is equal to the energyE of the corresponding stationary state,
Ψ0E,α:

E
[
ΨE,α

]
=

∞∑

n=−∞
EnJ2

n = E
∞∑

n=−∞
J2

n + ~Ω0

∞∑

n=1

n
(
J2

n − J2
−n

)
= E .

Therefore, the distribution function reflecting the occupation of the statesΨE,α

is the Fermi distribution function dependent on the FloquetenergyE.

5.2.1 Second quantization operators for incident and scattered electrons

Let us introduce the creation and annihilation operators,â′
†
α (E) and

â′α (E), for electrons in the Floquet stateΨE,α. They are anti-commuting,
Eq. (1.30). The quantum-statistical average of the following product,

〈
â′
†
α (E) â′β

(
E′
)〉
= δαβ δ

(
E − E′

)
fα (E) . (5.22)

is expressed through the Fermi distribution functionfα(E) dependent on the
Floquet energyE.

Strictly speaking we should consider scattering of the whole Floquet state,
ΨE,α, incident to the mesoscopic sample. However with Eq. (3.29) and if the
amplitude of oscillating potential is small,

eVα ≪ E , (5.23)

the scattering of any sub-band of the Floquet state is independent of the scatter-
ing of other sub-bands. Therefore, following the approach of Ref. [84], we, as
before, consider scattering of electrons in the states withfixed energy.

We suppose that the potentialVα(t) is present in the reservoirα but it is
absent in the leadα connecting a reservoir and a scatterer. Then an electron in
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5 AC current generation

the lead is described by the wave function with fixed energy. For an incident
electron in the leadα this wave function is:Ψ(in)

α = e−iEt/~ ψ(in)
α , whereψ(in)

α

is given in Eq. (1.33). Notice there is a number of the Floquet statesΨE′,α,
Eq. (5.18), having a sub-band with energyE in the reservoirα. For such states
the Floquet energyE′ should be different fromE by the integer number of
energy quanta~Ω0. For instance, ifE′ = E + n~Ω0 then the sub-bandE′−n has
an energyE since it is

E′−n = E′ − n~Ω0 = E + n~Ω0 − n~Ω0 = E .

All such Floquet states do contribute to the wave function,Ψ(in)
α , of an electron

in a lead. Therefore, the operators ˆa†α (E)/âα (E) creating/annihilating an elec-
tron in the stateΨ(in)

α in the leadα can be expressed in terms of the operators
â†α (En)/âα (Em) creating/annihilating an electron in the reservoirα, as follows:

âα (E) =
∞∑

m=−∞
e−imφα Jm

(
eVα
~Ω0

)
â′α (E −m~Ω0) ,

(5.24)

â†α (E) =
∞∑

n=−∞
einφα Jn

(
eVα
~Ω0

)
â′
†
α (E − n~Ω0) .

The spatial parts of the corresponding wave functions, Eq. (5.18), are assumed
to be the same at the place where the reservoir is connected tothe lead (an adia-
batic connection condition). Therefore, they do not enter given above equations,

The operators ˆa′ are for electrons in a reservoir. They are anti-commuting
by definition, see, Eq. (1.30). Let us show that the operators ˆa, Eq. (5.24), for
electrons in the lead also are anti-commuting. Using Eq. (5.21) we calculate:

{
â†α (E) , âβ

(
E′
)}
=

∞∑

n=−∞

∞∑

m=−∞
eiφαn e−iφβmJn

(
eVα
~Ω0

)
Jm

(
eVβ
~Ω0

)

×
{

â′
†
α (E − n~Ω0) , â′β

(
E′ −m~Ω0

)}
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= δαβ

∞∑

l=−∞
eiφαlδ

(
E − E′ − l~Ω0

) ∞∑

n=−∞
Jn

(
eVα
~Ω0

)
Jn−l

(
eVα
~Ω0

)

= δαβ

∞∑

l=−∞
eiφαlδ

(
E − E′ − l~Ω0

)
δl0 = δαβδ

(
E − E′

)
,

where we introducedl = n−m.
Next we calculate the distribution function,f̃α (E) =

〈
â†α (E) âα (E)

〉
, for

electrons in the leadα:

f̃α (E) =
∞∑

n=−∞
J2

n

(
eVα
~Ω0

)
fα (E − n~Ω0) . (5.25)

This distribution function is non-equilibrium, that is duechanging of condi-
tions (the oscillating potential vanishes in the lead) withno relaxation processes
present. Despite of the non-equilibrium state, the electrons in the lead incident
to the scatterer carry a currentI (in)

α which is independent of the oscillating po-
tential Vα(t). This current is time-independent and coincides with a current of
equilibrium particles:

I (in)
α = −e

h

∞�
0

dE f̃α (E) = −e
h

∞�
0

dE
∞∑

n=−∞
J2

n

(
eVα
~Ω0

)
fα (E − n~Ω0)

(5.26)

= −e
h

∞�
0

dE fα (E)
∞∑

n=−∞
J2

n

(
eVα
~Ω0

)
= −e

h

∞�
0

dE fα (E) .

In the second line of this equation we made a shiftE → E + n~Ω0 under the
integral over energy. As always, we use a wide-band approximation, i.e., we
assume that only electrons with energyE ∼ µ are relevant for transport. There-
fore, we can relax what is happening atE ≈ 0, where, strictly speaking, the
decomposition given in Eq. (5.24) fails.
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5 AC current generation

As a next step we need to express the creation/annihilation operators,
b̂α/b̂†α, for electrons scattered into the leadα in terms of operators,̂a′β/â′

†
β, for

electrons in reservoirs. The relation between the operators b̂α for scattered elec-
trons and the operators ˆaβ for incident electrons is given in Eq. (3.32). Then
using Eq. (5.24) we finally get:

b̂α (E) =
Nr∑

δ=1

∞∑

n′=−∞

∞∑

p′=−∞
SF,αδ (E,En′) e−i(n′+p′)φδJn′+p′

(
eVδ
~Ω0

)
â′δ
(
E−p′

)
,

(5.27)

b̂†α (E) =
Nr∑

γ=1

∞∑

n=−∞

∞∑

p=−∞
S∗F,αγ (E,En) ei(n+p)φγJn+p

(
eVγ
~Ω0

)
â′
†
γ

(
E−p

)
.

These operators, as it should be for fermionic operators, are anti-commuting.
To show it we write:

{
b̂†α (E) , b̂β

(
E′
)}
=

Nr∑

γ=1

Nr∑

δ=1

∞∑

n=−∞

∞∑

p=−∞

∞∑

n′=−∞

∞∑

p′=−∞
ei(n+p)φγ e−i(n′+p′)φδ

×Jn+p

(
eVγ
~Ω0

)
Jn′+p′

(
eVδ
~Ω0

)
S∗F,αγ (E,En) SF,βδ

(
E′,E′n′

)

×
{

â′
†
γ (E − p~Ω0) , â′δ

(
E′ − p′~Ω0

)}
.

Then we take into account that,

{
â′
†
γ (E − p~Ω0) , â′

†
δ

(
E′ − p′~Ω0

)}
= δγδ δ

(
E − E′ +

(
p′ − p

)
~Ω0

)
,

and proceed as follows. With the help ofδγδ we sum up overδ. Because of
the Dirac delta function we writeE′ = E + (p′ − p) ~Ω0 ≡ Ep′−p instead ofE′.
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Then we introducem = p′ − p instead ofp′, k = n− n′ − m instead ofn′, and
q = n+ pinstead ofp. After that we calculate:

{
b̂†α (E) , b̂β

(
E′
)}
=

Nr∑

γ=1

∞∑

m=−∞
δ
(
E − E′ +m~Ω0

) ∞∑

n=−∞

∞∑

k=−∞
S∗F,αγ (E,En)

×eikφγ SF,βγ (Em,En−k)
∞∑

q=−∞
Jq

(
eVγ
~Ω0

)
Jq+k

(
eVγ
~Ω0

)
.

Using Eq. (5.21) for Bessel functions we simplify given above equation as fol-
lows:

{
b̂†α (E) , b̂β

(
E′
)}
=

Nr∑

γ=1

∞∑

m=−∞
δ
(
E − E′ +m~Ω0

)

×
∞∑

n=−∞
S∗F,αγ (E ,En) SF,βγ (Em ,En) .

Finally we take into account the unitarity of the Floquet scattering matrix,
Eq. (3.28b), and find a required anti-commutation relation for operators of scat-
tered electrons:

{
b̂†α (E) , b̂β

(
E′
)}
= δ
(
E − E′

)
δαβ . (5.28)

For the sake of completeness we give a distribution function, f (out)
α (E) =〈

b̂†α (E) b̂α (E)
〉
, for electrons scattered into the leadα: [29]

f (out)
α (E) =

Nr∑

γ=1

∞∑

n=−∞

∞∑

n′=−∞
S∗αγ (E,En) Sαγ (E,En′) ei(n−n′)φγ

(5.29)

×
∞∑

p=−∞
Jn+p

(
eVγ
~Ω0

)
Jn′+p

(
eVγ
~Ω0

)
fγ (E − p~Ω0).
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Note this equation is real. To show it one can calculate a complex conjugate
quantity. Then after an irrelevant replacement,n ↔ n′, we arrive at the initial
equation.

5.2.2 AC current

Substituting Eqs, (5.24) and (5.27) into Eq. (3.34) and taking into account
Eq. (3.33a) we arrive at the current operatorÎα(t). Further, with Eq. (5.22) we
average quantum-statistically over the equilibrium stateof reservoirs and find
the following equation for the time-dependent current,Iα(t) =

〈
Îα(t)

〉
:

Iα (t) =
∞∑

l=−∞
e−ilΩ0t Iα,l , (5.30a)

Iα,l =
e
h

∞�
0

dE






Nr∑

γ=1

∞∑

n=−∞

∞∑

n′=−∞
ei(n−n′−l)φγ S∗αγ (E,En) Sαγ (El,En′+l)

(5.30b)

×
∞∑

p=−∞
Jn+p

(
eVγ
~Ω0

)
Jn′+l+p

(
eVγ
~Ω0

)
fγ (E − p~Ω0) − δl0 fα (E)

}
.

Let us transform this equation to have a difference of the Fermi functions. To
this end we use Eqs. (3.28) and (5.21) and find the following expression for the
Fourier harmonics of a current:

Iα,l =
e
h

∞�
0

dE
Nr∑

γ=1

∞∑

p=−∞

{
fγ (E − p~Ω0) − fα (E)

} ∞∑

n=−∞

∞∑

n′=−∞
ei(n−n′−l)φγ

(5.31)

×S∗αγ (E,En) Sαγ (El ,En′+l) Jn+p

(
eVγ
~Ω0

)
Jn′+l+p

(
eVγ
~Ω0

)
.
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This equation is convenient to use in the adiabatic regime, when we can expand
the Fermi function difference in powers ofΩ0.

5.2.3 DC current

A more compact equation can be obtained for a time-independent part of
a current,l = 0. First of all we express the Floquet scattering matrix in terms of
the scattering matrix̂Sout(E, t), see, Eq. (3.59b):

Sαγ (E,En′) = Sout,αγ,−n′ (E) , S∗αγ (E,En) = S∗out,αγ,−n (E) .

Then using a series (5.19) we express the Bessel functions in terms of the
Fourier coefficients for some exponential function dependent on an oscillating
potential,Vγ(t):

Jn′+p

(
eVγ
~Ω0

)
= ei(n′+p)φγ

(
e
−i~−1

t�
−∞

dt′eVγ(t′)
)

n′+p

.

Note the lower limit in a time integral is irrelevant since itdoes not affect the
value of the Fourier coefficient. Using equation above in Eq. (5.31) and sum-
ming up overn andn′ with the help of the following property of the Fourier
coefficients,

∞∑

n′=−∞
A−n′Bp+n′ = (AB)p

∞∑

n=−∞
(A−n)

∗ (B∗)−p−n = (A∗B∗)−p , (5.32)

we finally calculate the dc current in the leadα: [33]
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5 AC current generation

Iα,0 =
e
h

∞�
0

dE
Nr∑

γ=1

∞∑

p=−∞

{
fβ (E − p~Ω0) − fα (E)

}

(5.33)

×

∣∣∣∣∣∣

(
e
−i~−1

t�
−∞

dt′eVγ(t′)
Sout,αγ (E, t)

)

p

∣∣∣∣∣∣

2

.

As we see, the reservoir oscillating potential can be taken into account as
an additional phase factor in corresponding scattering matrix elements. Since,
as it follows from Eq. (4.13), the phase of scattering matrix elements defines
a generated current, we can guess that the presence of oscillating potentials at
reservoirs modifies a generated current.

5.2.4 Adiabatic dc current

To clarify the effect of potentialsVβ(t) onto the dc currentIα,0 we con-
sider an adiabatic regime,̟ ≪ 1, and restrict ourselves by the terms linear in
oscillating potentials,

|eVβ| ≪ ~Ω0 ≪ δE , ∀β , (5.34)

whereδE is a characteristic energy introduced after Eq. (3.49). We assume also
no bias conditions, Eq. (4.1).

Let us expand the difference of the Fermi functions in Eq. (5.33) in powers
of pumping frequency:

f0 (E − p~Ω0) − f0 (E) ≈
(
−∂ f0
∂E

)
p~Ω0 +

p2 (~Ω0)
2

2
∂2 f0
∂E2

. (5.35)

Here we need to keep quadratic inΩ0 terms. They are necessary since the phase
factors dependent onVγ(t′) results in a factorΩ−1

0 .
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5.2 External ac bias

We substitute Eq. (5.35) into Eq. (5.33) and sum up overp. Then we take
into account the adiabatic expansion, Eq. (3.61b), for the scattering matrix̂Sout

and keep only terms linear in bothVγ(t) andΩ0. For short-notation we introduce

Υγ(t) = exp

{
− i
~

t�
−∞

dt′eVγ (t′)

}
. So, the linear inΩ0 term in Eq. (5.35) results

in the following:

~

∞∑

n=−∞
Ω0p

∣∣∣
(
Υγ Sout,αγ

)
p

∣∣∣
2
= −i~

T�
0

dt
T
Υγ Sout,αγ

∂

∂t

(
Υ∗γ S∗out,αγ

)

=

T�
0

dt
T

eVγ (t)

{∣∣Sαγ

∣∣2 − i~
2

(
∂2Sαγ

∂t∂E
S∗αγ − Sαγ

∂2S∗αγ
∂t∂E

)

+ 2~Ω0 Re
[
S∗αγAαγ

]}
− i~

T�
0

dt
T

Sαγ

∂S∗αγ
∂t
+ O

(
Ω2

0

)
.

While the quadratic in pumping frequency term in Eq. (5.35) is:

∞∑

n=−∞
Ω2

0p2
∣∣∣
(
Υγ Sout,αγ

)
p

∣∣∣
2
=

T�
0

dt
T

∂

∂t

(
Υγ Sout,αγ

) ∂
∂t

(
Υ∗γ S∗out,αγ

)
=

=
i
~

T�
0

dt
T

eVγ (t)

{
∂Sαγ

∂t
S∗αγ − Sαγ

∂S∗αγ
∂t

}
+ O

(
Ω2

0 , V2
γ

)
.

The last equation enters the current, Eq. (5.33), with factor∂2 f0/∂E2. We inte-
grate over energy by parts and calculate,

∞�
0

dE
∂2 f0 (E)
∂E2

{
∂Sαγ

∂t
S∗αγ − Sαγ

∂S∗αγ
∂t

}
=

∞�
0

dE

(
−∂ f0 (E)

∂E

)

×
{
∂2Sαγ

∂t∂E
S∗αγ − Sαγ

∂2S∗αγ
∂t∂E

+
∂Sαγ

∂t

∂S∗αγ
∂E

− ∂Sαγ

∂E

∂S∗αγ
∂t

}
,
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5 AC current generation

where we used:∂ f0/∂E|E=∞ = 0 and∂ f0/∂E|E=0 = 0. Note the latter is valid
atkBT ≪ µ.

With given above transformations we represent a dc current,Iα,0, as the
sum of three terms linear in bothΩ0 andVγ: [29]

Iα,0 = I (pump)
α,0 + I (rect)

α,0 + I (int)
α,0 . (5.36a)

Here the currentI (pump)
α,0 , generated by the dynamical scatterer in the absence of

an oscillating bias, is given in Eq. (4.10). The next terms,

I (rect)
α,0 =

e2

h

∞�
0

dE

(
−∂ f0 (E)

∂E

) T�
0

dt
T

Nr∑

γ=1

Vγ (t)
∣∣Sαγ (E, t)

∣∣2 (5.36b)

is a rectification current. It is due to rectifying of ac currents, produced by
the time-dependent potentialsVγ(t), onto the time-dependent conductance. The
coexistence of rectified and generated currents was investigated theoretically
[85, 58, 86, 87, 88] and experimentally [70, 71].

And, finally, the last term in Eq. (5.36a), an interference contribution,

I (int)
α,0 =

e2

h

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

Nr∑

γ=1

Vγ(t)

(5.36c)

×
(

2~Ω0Re
[
S∗αγAαγ

]
+

1
2

P
{

Sαγ S∗αγ
})

.

is due to a mutual influence (an interference) between the currents generated by
the scatterer and the currents due to an ac bias. This part of acurrent shares fea-
tures with both the generated current (it is proportional toΩ0) and the rectified
current (it is proportional toVγ).

Physically the splitting of Eq. (5.36a) into three parts are justified by the
fact that each part separately is subject to the conservation law, Eq. (4.11):
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5.2 External ac bias

Nr∑

α= 1

I (x)
α = 0 , x = pump, rect, int . (5.37)

Let us analyze the conditions necessary for existence of each of the men-
tioned contributions. As we already showed, see, Eq. (4.8), the currentI (pump)

α,0
is absent if the frozen scattering matrix is time-reversal invariant:

Ŝ(t,E) = Ŝ(−t,E) . (5.38)

The rectified current,I (rect)
α,0 , depends in fact on the potential difference,

∆Vγα (t) = Vγ (t) − Vα (t), and it vanishes if the potentials of all the reservoirs
are the same,

Vγ(t) = V(t) , ∀γ . (5.39)

To show it we use unitarity of the scattering matrix, see, Eq.(3.47), and
find,

∑Nr
γ=1

∣∣Sαγ (t,E)
∣∣2 = 1. Moreover, since the potentials are periodic we

have,
� T

0 dt Vα (t) = 0. Using these two conditions we calculate:

T�
0

dt
T

Nr∑

γ=1

Vα (t)
∣∣Sαγ (t,E)

∣∣2 = 0 .

And finally subtracting identity above from Eq. (5.36b), we find a required
equation,

I (rect)
α =

T�
0

dt
T

Nr∑

γ=1

Gαγ (t)
{

Vγ (t) − Vα (t)
}
, (5.40)

where the frozen conductance matrix elements,

Gαγ (t) = G0

∞�
0

dE

(
−∂ f0 (E)

∂E

) ∣∣Sαγ (t,E)
∣∣2. (5.41)
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5 AC current generation

are defined in the same way as in the stationary case, see, Eq. (1.54).
In contrast, the last contribution,I (int)

α,0 , is present even if both Eqs. (5.38)
and (5.39) are fulfilled, and neither pumped nor rectified currents do exist. To
show it we first use Eq. (5.39) and rewrite Eq. (5.36c) as follows:

I (int)
α,0 =

e2

h

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

V (t) P
{

Ŝ (t,E) , Ŝ† (t,E)
}
αα
. (5.42)

Here we have summed up overγ using the following identity,

4~Ω0

Nr∑

γ=1

Re
{

S∗αγAαγ

}
= P

{
Ŝ, Ŝ†

}
αα
. (5.43)

To prove this equation we multiply a matrix equation (3.52) from the left byŜ
and from the right bŷS† and take its diagonal element.

Under the conditions given in Eq. (5.38) the pumped current is zero,
while the interference contribution, Eq. (5.42), can survive. The currentI (int)

α,0 ,
Eq. (5.42) is not zero if the potentialV(t) is shifted in phase with respect to
varying in time parameterspi(t) of a scatterer. Therefore, to analyze the ability
of the entire system, i.e., the scatterer plus reservoirs, to generate a dc current,
Iα,0 , 0, it is necessary to take into account phases of all the time-dependent
quantities, as parameters of a scatterer as possibly present time-dependent po-
tentials at reservoirs.
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Chapter 6

Noise of a dynamical scatterer

The current correlation functionPαβ (t1, t2), is defined in Eqs. (2.30) and
(2.39) in time and in frequency domains, respectively. Such defined correlator
is calleda symmetrized correlator. It satisfies the following symmetries,

Pαβ (t1, t2) = Pβα (t2, t1) , (6.1a)

Pαβ (ω1, ω2) = Pβα (ω2, ω1) . (6.1b)

which are a direct consequence of the fact that the currents,measured in leads
α andβ, enter symmetrically the correlator.

6.1 Noise spectral power

If currents are generated by the periodic dynamical scatterer, then the cor-
relation function can be represented as follows (compare toEq. (2.33) valid in
the case of a stationary scatterer): [32]

Pαβ (ω1, ω2) =
∞∑

l=−∞
2πδ (ω1 + ω2 − lΩ0) Pαβ,l (ω1, ω2) , (6.2a)

where the spectral powerPαβ,l (ω1, ω2) is expressed in terms of the Floquet scat-
tering matrix elements as follows:

Pαβ,l (ω1, ω2) =
e2

h

∞�
0

dE

{
δαβ δl0 Fαα (E,E + ~ω1) (6.2b)

−
∞∑

n=−∞
Fαα (E,E + ~ω1) S∗F,βα (En + ~ω1 ,E + ~ω1) SF,βα (En+l ,E)−
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6 Noise of a dynamical scatterer

−
∞∑

n=−∞
Fββ (E,E + ~ω2) S∗F,αβ (En + ~ω2 ,E + ~ω2) SF,αβ (En+l ,E)

+

Nr∑

γ=1

Nr∑

δ=1

∞∑

n=−∞

∞∑

m=−∞

∞∑

p=−∞
Fγδ (El+n ,Em+ ~ω1) SF,βγ

(
El+p ,El+n

)

×S∗F,αγ (E,El+n) SF,αδ (E + ~ω1,Em+ ~ω1) S∗F,βδ
(
Ep + ~ω1,Em+ ~ω1

)}
.

The quantityFαβ being a combination of the Fermi functions is defined in
Eq. (2.46). To derive equation above we proceed in line with how we did in
Sec.2.2.2but instead of Eq. (1.39) now we use Eq. (3.32) to relate the operators
b̂α for scattered electrons to the operators ˆaβ for incident electrons.

First of all we representPαβ(ω1, ω2) as the sum of four quantities
P(i, j)
αβ (ω1, ω2), i, j = in, out accordingly to Eq. (2.43). For instance,

P(in,out)
αβ (ω1, ω2) is a correlation function for a current of incident electrons in

the leadα and a current of scattered electrons in the leadβ. So, the spectral
power reads:

Pαβ,l(ω1, ω2) =
∑

i, j=in,out

P
(i, j)
αβ,l(ω1, ω2) , (6.3)

Since incident electrons still did not interact with the scatterer then the
part of a correlator related to incident currents is the sameas in dynamical as in
stationary cases. Therefore, forP(in,in)

αβ we can use Eq. (2.45) and write,

P
(in,in)
αβ,l (ω1, ω2) = δαβ δl0

e2

h

∞�
0

dE Fαα(E,E + ~ω1) . (6.4)

Next we calculateP(in,out)
αβ :

P(in,out)
αβ (ω1, ω2) = e2

∞�
0

dE1

∞�
0

dE2

{
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6.1 Noise spectral power

〈
â†α (E1) âα (E1 + ~ω1)

〉 〈
b̂†β (E2) b̂β (E2 + ~ω2)

〉

(6.5)

− 1
2

〈
â†α (E1) âα (E1 + ~ω1) b̂†β (E2) b̂β (E2 + ~ω2)

〉

− 1
2

〈
b̂†β (E2) b̂β (E2 + ~ω2) â†α (E1) âα (E1 + ~ω1)

〉}
.

Accordingly to the Wick’s theorem (see, e.g. Ref. [19]) the mean of the product
of four operators is the sum of products of two pair means. Forinstance:

〈
â†α (E) âα (E1 + ~ω1) b̂†β (E2) b̂β (E2 + ~ω2)

〉
=

〈
â†α (E1) âα (E1 + ~ω1)

〉 〈
b̂†β (E2) b̂β (E2 + ~ω2)

〉

+
〈
â†α (E1) b̂β (E2 + ~ω2)

〉 〈
âα (E1 + ~ω1) b̂†β (E2)

〉
.

We can use the Wick’s theorem since the operators ˆaα correspond to particles
in macroscopic reservoirs and the operatorsb̂β are the linear combination of ˆaα.
The first term on the right hand side (RHS) of an equation abovedoes not con-
tribute to the correlator, since it is compensated exactly by the corresponding
product of currents [the first term on the RHS of Eq. (6.5)]. Therefore, only
those pair means are relevant which comprise particle operators from both cur-
rent operatorŝI (in)

α and Î (out)
β simultaneously. To calculate such pair means we

use Eq. (3.32). In particular we have:

〈
â†α (E1) b̂β (E2 + ~ω2)

〉
=

Nr∑

γ=1

∞∑

m=−∞
SF,βγ (E2 + ~ω2,E2 + ~ [ω2 +mΩ0])

×
〈
â†α (E1) âγ (E2 + ~ [ω2 +mΩ0])

〉
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6 Noise of a dynamical scatterer

=

Nr∑

γ=1

∞∑

m=−∞
SF,βγ (E2 + ~ω2,E2 + ~ [ω2 +mΩ0])

×δαγδ (E1 − E2 − ~ [ω2 +mΩ0]) fα (E1)

=

∞∑

m=−∞
SF,βα (E2 + ~ω2,E2 + ~ [ω2 +mΩ0])

×δ (E1 − E2 − ~ [ω2 +mΩ0]) fα (E1) .

By analogy we calculate all other pair means appeared in Eq. (6.5):

〈
âα (E1 + ~ω1) b̂†β (E2)

〉
=

∞∑

n=−∞
S∗F,βα (E2,E2 + n~Ω0)

×δ (E1 + ~ω1 − E2 − n~Ω0)
[
1− fα (E1 + ~ω1)

]
,

〈
b̂†β (E2) âα (E1 + ~ω1)

〉
=

∞∑

n=−∞
S∗F,βα (E2,E2 + n~Ω0)

×δ (E1 + ~ω1 − E2 − n~Ω0) fα (E1 + ~ω1) ,

〈
b̂β (E2 + ~ω2) â†α (E1)

〉
=

∞∑

m=−∞
SF,βα (E2 + ~ω2,E2 + ~ [ω2 +mΩ0])

×δ (E1 − E2 − ~ [ω2 +mΩ0])
[
1− fα (E1)

]
.

Substituting these pair means into Eq. (6.5) we arrive at the sum of two terms.
Then using the Dirac delta-function to integrate over energy, say overE2, we
get the following for each of these terms:
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6.1 Noise spectral power

∞�
0

dE2
1
2

SF,βα

(
E2 + ~ω2,E2,m+ ~ω2

)
δ
(
E1 − E2,m− ~ω2

)

× fα (E1) S∗F,βα
(
E2,E2,n

)
δ
(
E1 + ~ω1 − E2,n

) [
1− fα (E1 + ~ω1)

]

=
1
2~

δ (ω1 + ω2 + (m− n)Ω0) fα (E1)
[
1− fα (E1 + ~ω1)

]

×S∗F,βα
(
E1,−n + ~ω1 ,E1 + ~ω1

)
SF,βα

(
E1,−m,E1

)
,

∞�
0

dE2
1
2

S∗F,βα
(
E2,E2,n

)
δ
(
E1 + ~ω1 − E2,n

)
fα (E1 + ~ω1)

×SF,βα

(
E2 + ~ω2,E2,m+ ~ω2

)
δ
(
E1 − E2,m− ~ω2

) [
1− fα (E1)

]

=
1
2~

δ (ω1 + ω2 + (m− n)Ω0) fα (E1 + ~ω1)
[
1− fα (E1)

]

×S∗F,βα
(
E1,−n + ~ω1,E1 + ~ω1

)
SF,βα

(
E1,−m,E1

)
,

whereEi,k = Ei+k~Ω0, i = 1, 2. Using equations above in Eq. (6.5), introducing
l = n−m instead ofm, and replacen→ −n andE1→ E, we finally find:

P(in,out)
αβ (ω1, ω2) =

∞∑

l=−∞
2πδ (ω1 + ω2 − lΩ0) P

(in,out)
αβ,l (ω1, ω2) , (6.6a)

with

P
(in,out)
αβ (ω1, ω2) = −

e2

h

∞�
0

dE
∞∑

n=−∞
Fαα (E,E + ~ω1) (6.6b)

×S∗F,βα (En + ~ω1,E + ~ω1) SF,βα (En+l,E) .
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In the same way we find:

P(out,in)
αβ (ω1, ω2) = e2

∞�
0

dE1

∞�
0

dE2

{
(6.7)

〈
b̂†α (E1) b̂α (E1 + ~ω1)

〉 〈
â†β (E2) âβ (E2 + ~ω2)

〉

− 1
2

〈
b̂†α (E1) b̂α (E1 + ~ω1) â†β (E2) âβ (E2 + ~ω2)

〉

− 1
2

〈
â†β (E2) âβ (E2 + ~ω2) b̂†α (E1) b̂α (E1 + ~ω1)

〉}
.

Comparing it to Eq. (6.5) we see, thatP(out,in)
αβ (ω1, ω2) can be calculated from

Eq. (6.6) after the following replacements:α ↔ β, E1 ↔ E2 andω1 ↔ ω2. As
a result we get for the spectral power (replaceE2→ E):

P
(out,in)
αβ (ω1, ω2) = −

e2

h

∞�
0

dE
∞∑

n=−∞
Fββ (E,E + ~ω2)

(6.8)

×S∗F,αβ (En + ~ω2,E + ~ω2) SF,αβ (En+l,E) .

Then we calculate the last contribution:

P(out,out)
αβ (ω1, ω2) =

e2

2

∞�
0

dE1

∞�
0

dE2

{

〈
b̂†α (E1) b̂β (E2 + ~ω2)

〉 〈
b̂α (E1 + ~ω1) b̂†β (E2)

〉
(6.9)

+

〈
b̂†β (E2) b̂α (E1 + ~ω1)

〉 〈
b̂β (E2 + ~ω2) b̂†α (E1)

〉}
,
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6.1 Noise spectral power

where we already expressed the mean for four operators in terms of pair means.
The first of them is:

〈
b̂†α (E1) b̂β (E2 + ~ω2)

〉
=

Nr∑

γ=1

∞∑

r=−∞

Nr∑

δ=1

∞∑

s=−∞

〈
â†γ
(
E1,r

)
âδ
(
E2,s+ ~ω2

)〉

×S∗F,αγ
(
E1,E1,r

)
SF,βδ

(
E2 + ~ω2,E2,s+ ~ω2

)
=

Nr∑

γ=1

∞∑

r=−∞

∞∑

s=−∞
fγ
(
E1,r

)

×δ
(
E1,r − E2,s− ~ω2

)
S∗F,αγ

(
E1,E1,r

)
SF,βγ

(
E2 + ~ω2,E2,s+ ~ω2

)
,

and, correspondingly, the second one equals to the following,

〈
b̂α (E1 + ~ω1) b̂†β (E2)

〉
=

Nr∑

δ=1

∞∑

m=−∞

Nr∑

γ=1

∞∑

q=−∞

〈
âδ
(
E1,m+ ~ω1

)
â†γ
(
E2,q

)〉

×SF,αδ

(
E1 + ~ω1,E1,m+ ~ω1

)
S∗F,βγ

(
E2,E2,q

)

=

Nr∑

δ=1

∞∑

m=−∞

∞∑

q=−∞

[
1− fδ

(
E1,m+ ~ω1

)]
δ
(
E1,m+ ~ω1 − E2,q

)

×SF,αδ

(
E1 + ~ω1,E1,m+ ~ω1

)
S∗F,βδ

(
E2,E2,q

)
.

Integrating the product of these means overE2 we get:

∞�
0

dE2 δ
(
E1,r − E2,s− ~ω2

)
δ
(
E1,m+ ~ω1 − E2,q

)
fγ
(
E1,r

)

×
[
1− fδ

(
E1,m+ ~ω

)]
S∗F,αδ

(
E1,E1,r

)
SF,βγ

(
E2 + ~ω2,E2,s+ ~ω2

)

×SF,αδ

(
E1 + ~ω1,E1,m+ ~ω1

)
S∗F,βδ

(
E2,E2,q

)
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=
1
~
δ
(
ω1 + ω2 −

[
r + q− s−m

]
Ω0

)
fγ
(
E1,r

) [
1− fδ

(
E1,m+ ~ω1

)]

×S∗F,αγ
(
E1,E1,r

)
SF,βγ

(
E1,r−s,E1,r

)

×SF,αδ

(
E1 + ~ω1,E1,m+ ~ω1

)
S∗F,βδ

(
E1,m−q + ~ω1,E1,m+ ~ω1

)

=
1
~
δ (ω1 + ω2 − lΩ0) fγ

(
E1,l+n

) [
1− fδ

(
E1,m+ ~ω1

)]

×S∗F,αγ
(
E1,E1,l+n

)
SF,βγ

(
E1,l+p,E1,l+n

)

×SF,αδ

(
E1 + ~ω1,E1,m+ ~ω1

)
S∗F,βδ

(
E1,p + ~ω1,E1,m+ ~ω1

)
,

where at the end we introduced new indices:p = m− q (instead ofq), n =
s+m− q (instead ofs), andl = r − s+ q−m (instead ofr).

Comparing the first and the second terms on the RHS of Eq. (6.9) one
can see that the later one results in the same expression as given above but
with fγ (El+n)

[
1− fδ (Em+ ~ω)

]
being replaced byfδ (Em+ ~ω)

[
1− fγ (El+n)

]
.

Therefore, finally the equation (6.9) results in the following:

P(out,out)
αβ (ω1, ω2) =

∞∑

l=−∞
2πδ (ω1 + ω2 − lΩ0) P

(out,out)
αβ,l (ω1, ω2) , (6.10a)

where

P
(out,out)
αβ (ω1, ω2) =

e2

h

∞�
0

dE
Nr∑

γ=1

Nr∑

δ=1

∞∑

n=−∞

∞∑

m=−∞

∞∑

p=−∞

× Fγδ (El+n,Em+ ~ω1) S∗F,αγ (E,El+n) SF,βγ

(
El+p,El+n

)
(6.10b)

×SF,αδ (E + ~ω1,Em+ ~ω1) S∗F,βδ
(
Ep + ~ω1,Em+ ~ω1

)
.

Summing up Eqs. (6.4), (6.6b), (6.8), and (6.10b) we get announced result given
in Eq. (6.2b).
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6.2 Zero frequency noise spectral power

6.2 Zero frequency noise spectral power

The quantityPαβ(0) ≡ Pαβ,0(0, 0), referred to as the symmetrizednoise,
characterizes a mean square of current fluctuations (atα = β) or a symmetrized
current cross-correlator (atα , β), averaged over long time period. It can be
written as follows:

Pαβ(0) =
1
2

T�
0

dt
T

∞�
−∞

dτ
〈
∆Îα (t)∆Îβ (t + τ) + ∆Îβ (t + τ)∆Îα (t)

〉
.

(6.11)

The noise expression in terms of the Floquet scattering matrix elements is given
in Eq. (6.2b) at l = 0 andω1 = ω2 = 0.

From Eq. (6.1b) it follows that the noise value does not change under the
lead indices interchange,

Pαβ(0) = Pβα(0) . (6.12)

This is another reason why this quantity is called as a symmetrized noise.
Like its stationary counterpart the quantityPαβ(0) can be represented as

the sum of a thermal noise and a shot noise, see, Eq. (2.60). The thermal noise,
P

(th)
αβ , is due to fluctuations of quantum state occupations of electrons incident

from the reservoirs with non-zero temperature. While the shot noise,P(sh)
αβ , is

due to fluctuations of quantum state occupations of scattered electrons: If an
electrons is scattered, say into the leadα, then in this contact the instant current
is larger than the average current, while in other contacts,β , α, the instant
current is zero, i.e., it is smaller than the corresponding average current.

Let us calculate a noise when all the reservoirs have the samechemical
potentials and temperatures,

µα = µ , Tα = T . (6.13)

Hence the distribution functions for electrons in reservoirs are the same,

fα(E) = f0(E) . (6.14)
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6 Noise of a dynamical scatterer

Then from Eq. (6.2b) at l = 0, ω1 = ω2 = 0 it follows (see, also, Sec.2.2.4) :
Pαβ(0) = P

(th)
αβ + P

(sh)
αβ , [89] where

P
(th)
αβ =

e2

h

∞�
0

dE f0 (E)
[
1− f0 (E)

]{
δαβ

(
1+

∞∑

n=−∞

Nr∑

γ=1

∣∣SF,αγ (En,E)
∣∣2
)

(6.15)

−
∞∑

n=−∞

(∣∣SF,αβ (En,E)
∣∣2 +

∣∣SF,βα (En,E)
∣∣2
)}

,

P
(sh)
αβ =

e2

h

∞�
0

dE
Nr∑

γ=1

Nr∑

δ=1

∞∑

n=−∞

∞∑

m=−∞

∞∑

p=−∞

[
f0 (En) − f0 (Em)

]2

2

(6.16)
×S∗F,αγ (E,En) SF,αδ (E,Em) S∗F,βδ

(
Ep,Em

)
SF,βγ

(
Ep,En

)
.

Clear that the thermal noise vanishes at zero temperature, since in that case it
is f0 (E)

[
1− f0 (E)

]
= θ (µ − E) θ (E − µ) ≡ 0. In contrast, the shot noise does

exist at arbitrary temperature. However it vanishes in the equilibrium system,
i.e., if the scatterer is stationary. In that case it isŜF(Ep,E) = δp0 Ŝ(E), hence
there are only terms withn = 0, m= 0, andp = 0 in Eq. (6.16). For these terms
the difference of the Fermi functions is zero.

As we showed in Sec. (2.2.4.1) the unitarity of scattering results in conser-
vation laws, Eq. (2.63), for the stationary noise. The noise due to a dynamical
scatterer is also subject to the conservation laws. Moreover the thermal noise
and the shot noise satisfy them separately:

Nr∑

β=1

P
(th)
αβ = 0 ,

Nr∑

α=1

P
(th)
αβ = 0 , (6.17a)

Nr∑

β=1

P
(sh)
αβ = 0 ,

Nr∑

α=1

P
(sh)
αβ = 0 , (6.17b)
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6.2 Zero frequency noise spectral power

that follows directly from Eqs. (6.15) and (6.16) if one uses in addition the
unitarity condition, Eq. (3.28). Note to prove the second equality in Eq. (6.17b)
it is necessary to make the following replacement in Eq. (6.16): E→ E− p~Ω0,
n→ n− p, andm→ m− p.

Let us analyze the sign of a zero-frequency noise power. The cross-
correlatorPα,β is negative in stationary case, see, Eq. (2.64b). It is negative
in the dynamical case too:

P
(th)
α,β ≤ 0 , P

(sh)
α,β ≤ 0 . (6.18)

For the thermal noise it follows directly from Eq. (6.15):

P
(th)
α,β = −

e2

h

∞�
0

dE f0 (E)
[
1− f0 (E)

]

×
∞∑

n=−∞

(∣∣SF,αβ (En,E)
∣∣2 +

∣∣SF,βα (En,E)
∣∣2
)
≤ 0 .

To check this rule for the shot noise, let us rewrite Eq. (6.16) for α , β as
follows:

P
(sh)
α,β = −

e2

h

∞�
0

dE
∞∑

p=−∞
∣∣∣∣∣∣

∞∑

n=−∞

Nr∑

γ=1

f0 (En) S∗F,αγ (E ,En) SF,βγ

(
Ep ,En

)
∣∣∣∣∣∣

2

≤ 0 .

Here we took into account that the terms with squared Fermi functions vanish
for α , β in Eq. (6.16). For instance, in the terms withf 2

0 (En) we can sum up
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6 Noise of a dynamical scatterer

overm andδ. Then using Eq. (3.28b) we find (α , β):

∞∑

m=−∞

Nr∑

δ=1

SF,αγ(E,Em)S∗βδ(Ep,Em) = δαβ δp0 = 0 .

In the same way one can prove that the term withf 2
0 (Em) is also zero.

The auto-correlatorPαα is a mean square of current fluctuations in the lead
α, hence it is non-negative. From Eqs. (6.17) and (6.18) it follows,

P(th)
αα ≥ 0 , P(sh)

αα ≥ 0 . (6.19)

The fact, that the thermal noise and the shot noise separately satisfy the sum
rule, Eq. (6.17), and the sign rule, Eqs. (6.18) and (6.19), justifies splitting of a
noise into these two parts.

Besides, the thermal noise and the shot noise depend differently on both
the temperatureT and the driving frequencyΩ0. Let us show it in the regime
when the parameters of a scatterer vary slowly,Ω0→ 0.

6.3 Noise in the adiabatic regime

The Floquet scattering matrix elements up to the linear inΩ0 terms are
given in Eq. (3.50). Remind that the adiabatic expansion implies that the frozen
scattering matrix̂S changes only a little on the energy scale of order~Ω0, see,
Eq. (3.49).

6.3.1 Thermal noise

Substitute Eq. (3.50) into Eq. (6.15) and calculate the thermal noise up to
terms linear inΩ0: [89]

P
(th)
αβ = P

(th,0)
αβ + P

(th,Ω0)
αβ , (6.20a)
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6.3 Noise in the adiabatic regime

where

P
(th,0)
αβ = kBT

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

(6.20b)

×e2

h

(
2δαβ −

∣∣Sαβ (t,E)
∣∣2 −

∣∣Sβα (t,E)
∣∣2
)
,

P
(th,Ω0)
αβ = kBT

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

(6.20c)

×e

(
δαβ

dIα (t,E)
dE

− dIαβ (t,E)
dE

− dIβα (t,E)
dE

)
.

As expected, the thermal noise is proportional to the temperature. Let us intro-
duce an averaged over time frozen conductance matrix, see, (5.41),

ˆ̄G =

T�
0

dt
T

Ĝ(t) , (6.21)

Then the quantityP(th,0)
αβ depends on its elements

P
(th,0)
αβ = kBT

(
2δαβG0 − Ḡαβ − Ḡβα

)
, (6.22)

in the same way, as the equilibrium noise, the Nyquist-Johnson noise,
Eq. (2.61), depends on elements of the conductance matrix,Ĝ, Eq. (1.54),
in the stationary case. Therefore,P

(th,0)
αβ can be called asa quasi-equilibrium

noise. Comparing Eqs. (6.20b) and (2.61) it is necessary to use the identity
Eq. (2.66) and the fact that Eq. (6.20b) was derived under conditions given in
Eq. (6.14).
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6 Noise of a dynamical scatterer

The second part of the thermal noise, Eq. (6.20c), indicates that the system
is in fact non-equilibrium. The partP(th,Ω0)

αβ can be called asa non-equilibrium
thermal noise, since, on one hand, it is proportional to the temperature (hence
thermal), and, on the other hand, it depends on currents generated by the dy-
namical scatterer (hence non-equilibrium). Since the spectral current powers
dIαβ(t,E)/dE, Eq. (5.9), anddIα(t,E)/dE, Eq. (4.20), both are linear in pump-
ing frequencyΩ0, then it isP

(th,Ω0)
αβ ∼ Ω0.

6.3.2 Low-temperature shot noise

If the temperature is low enough,

kBT ≪ ~Ω0 , (6.23)

then the thermal noise can be ignored. In this regime the mainsource of a noise
is a dynamical scatterer generating a photon-assisted shotnoise. Other source
of the shot noise, the bias, is absent because of Eq. (6.13). The photon-assisted
shot noise is a non-equilibrium noise. That follows (in the same way as in the
stationary case with bias) from the fact that the noise is dueto those of scattered
electrons for which the distribution functionf (out)

α (E) is non-equilibrium, i.e.,
less than unity. As it follows from Eq. (4.4), see also, Eq. (4.5), the distribu-
tion function f (out)

α (E) is non-equilibrium for energies different from the Fermi
energy by the amount of order~Ω0.

Let us calculateP(sh)
αβ , Eq. (6.16), in the lowest order inΩ0. To this end it is

enough to use the Floquet scattering matrix elements in zeroth order inΩ0. For
instance, with required accuracy we find from Eq. (3.50):

ŜF

(
Em ,Ep

)
= Ŝm−p (E) + O (Ω0) . (6.24)

Remind in the lowest adiabatic approximation the frozen scattering matrixŜ
should be treated as energy-independent over the scale of order~Ω0. Therefore,
under conditions given in Eq. (6.23) we can integrate over energy in Eq. (6.16)
keeping the scattering matrix elements constant (for definiteness we will calcu-
late them atE = µ). Then the remaining integral over energy becomes trivial:
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6.3 Noise in the adiabatic regime

∞�
0

dE { f0 (En) − f0 (Em)}2 =
{
~Ω0 (m− n) , m> n ,
~Ω0 (n−m) , m< n .

(6.25)

Using Eqs. (6.24) and (6.25) in Eq. (6.16) we find,

P
(sh)
αβ =

e2Ω0

4π

Nr∑

γ,δ=1

∞∑

n,m,p=−∞
(6.26)

× |m− n|S∗αγ,−n(µ)Sαδ,−m(µ)S∗βδ,p−m(µ)Sβγ,p−n(µ) .

So the photon-induced shot noise is linear in pumping frequencyΩ0 (see, also
Ref. [66]). To simplify above equation we proceed as follows. For each fixed
n we consider the sum overm and split it onto two parts, the sum overm < n
and the sum overm > n. Then we introduce a new indexq = m− n instead of
m. After that we find for any quantityXn,m dependent on indicesn andm the
following:

∞∑

m=−∞
|m− n|Xm,n =

n−1∑

m=−∞
(n−m) Xm,n +

∞∑

m=n+1

(n−m) Xm,n

=

−1∑

q=−∞
(−q) Xq+n,n +

∞∑

q=1

qXq+n,n =

∞∑

q=1

q
(
X−q+n,n + Xq+n,n

)
.

The term withm = n is zero due to the factorm− n = n − n ≡ 0. Then the
equation (6.26) is transformed into the following form,

P
(sh)
αβ =

e2Ω0

4π

∞∑

q=1

Nr∑

γ=1

Nr∑

δ=1

q
[{

S∗αγ (µ) Sαδ (µ)
}
−q

{
Sβγ (µ) S∗βδ (µ)

}
q

(6.27)

+
{

S∗αγ (µ) Sαδ (µ)
}

q

{
Sβγ (µ) S∗βδ (µ)

}
−q

]
.

177



6 Noise of a dynamical scatterer

Going over from Eq. (6.26) to Eq. (6.27) we have summed up overn andp using
the following identity valid for the Fourier coefficients of any periodic functions
A(t) andB(t):

∞∑

n=−∞
An

(
Bn+q

)∗
= (AB∗)−q ,

∞∑

n=−∞
An+q (Bn)

∗ = (AB∗)q . (6.28)

Easy to check that Eq. (6.27) satisfies the symmetry given in Eq. (6.12), P
(sh)
αβ =

P
(sh)
βα . To show it we need to useγ↔ δ in an expression forP(sh)

βα .

6.3.3 High-temperature shot noise

At higher temperatures,

kBT ≫ ~Ω0 , (6.29)

the thermal noise dominates. In this regime the shot noise, Eq. (6.16), is only a
small fraction of the total noise. However the thermal noiseand the shot noise
depend differently on both the pumping frequencyΩ0 and the temperature, that
allows in principle to distinguish them.

With Eq. (6.29) we can expand the difference of Fermi functions in
Eq. (6.16) in powers ofΩ0. Up to the first non-vanishing term we get:

f0 (En) − f0 (Em) = ~Ω0
∂ f0 (E)
∂E

(n−m) .

Substituting this expansion and the adiabatic approximation for the Floquet
scattering matrix, Eq. (6.24), into Eq. (6.16) we find the high-temperature shot
noise (kBT ≫ ~Ω0) :
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6.3 Noise in the adiabatic regime

P
(sh)
αβ =

e2

4π
~Ω2

0

∞�
0

dE

(
∂ f0
∂E

)2 ∞∑

q=−∞
q2

(6.30)

×
Nr∑

γ=1

Nr∑

δ=1

{
S∗αγ (E) Sαδ (E)

}
q

{
Sβγ (E) S∗βδ (E)

}
−q
.

In this equation we keep the integration over energy since itis over the interval
of orderkBT ≫ ~Ω0 near the Fermi energyµ. While the use of an adiabatic
approximation, Eq. (6.24), does not put any restrictions onto the energy depen-
dence of the frozen scattering matrix,Ŝ, over such an energy interval. The
quadratic dependence of the high-temperature shot noise onthe pumping fre-
quencyΩ0 was shown in Ref. [90].

6.3.4 Shot noise within a wide temperature range

One can relax restrictions put by Eqs. (6.23) and (6.29) and calculate ana-
lytically a shot noise at arbitrary ratio of the temperatureand the energy quan-
tum ~Ω0 dictated by pumping. This is possible if the scattering matrix can be
treated as an energy independent over the relevant energy interval:

~Ω0, kBT ≪ δE . (6.31)

RemindδE is an energy interval over which the scattering matrix changes sig-
nificantly.

So, with Eq. (6.31) while calculating the shot noise, Eq. (6.16), in the adi-
abatic regime [when we use Eq. (6.24)] we can calculate the scattering matrix
elements atE = µ only. Then the corresponding integral over energy is calcu-
lated analytically,

∞�
0

dE { f0 (En) − f0 (Em)}2 = (m− n) ~Ω0 coth

(
(m− n) ~Ω0

2kBT

)
− 2kBT ,
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6 Noise of a dynamical scatterer

and finally we arrive at the following,

P
(sh)
αβ =

e2

h

∞∑

q=−∞
F (q~Ω0 , kBT) (6.32a)

×
Nr∑

γ=1

Nr∑

δ=1

{
S∗αγ (µ) Sαδ (µ)

}
q

{
Sβγ (µ) S∗βδ (µ)

}
−q
,

where

F (q~Ω0 , kBT) =
q~Ω0

2
coth

(
q~Ω0

2kBT

)
− kBT =






|q|~Ω0

2 , kBT ≪ ~Ω0 ,

(q~Ω0)2

12kBT kBT ≫ ~Ω0 .

(6.32b)

The obtained equation (6.32) reproduces both the equation (6.27) for the low-
temperature shot noise, which is linear inΩ0 and temperature-independent, and
the equation (6.30) for the high-temperature shot noise, which is quadratic in
pumping frequency and, under conditions of Eq. (6.31), inversally proportional
to the temperature.

6.3.5 Noise as a function of a pumping frequencyΩ0

At zero temperature the dynamical scatterer generates onlya shot noise,
which is linear inΩ0. With increasing temperature the thermal noise arises. It
also depends onΩ0. Therefore, the partδP(Ω0)

αβ of the total high-temperature
noise dependent onΩ0 can be written as the sum of two contributions,

δP
(Ω0)
αβ = P

(sh)
αβ + P

(th,Ω0)
αβ . (6.33)

Let us compare these two terms. A non-equilibrium thermal noise, Eq. (6.20c),
generated by the dynamical scatterer in the adiabatic regime (~Ω0 ≪ δE), is of
the order
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6.3 Noise in the adiabatic regime

P
(th,Ω0)
αβ ∼ kBT

~Ω0

δE
.

While a high-temperature shot noise, Eq. (6.32), can be estimated as follows:

P
(sh)
αβ ∼

(~Ω0)
2

kBT
.

Their ratio is equal to
P

(sh)
αβ

P
(th,Ω0)
αβ

∼ ~Ω0δE

(kBT)2 .

From this it is seen that atkBT ≪
√
~Ω0δE the shot noise dominates. How-

ever at higher temperature namely a non-equilibrium thermal noise determines
a dependence of the total noise on the pumping frequencyΩ0. Therefore, with
increasing temperature one can expect the following: [89]

δP
(Ω0)
αβ ∼ e2

2h






~Ω0 , kBT ≪ ~Ω0 ,

(~Ω0)
2

6kBT
, ~Ω0≪ kBT ≪

√
~Ω0δE ,

~Ω0
kBT
δE

,
√
~Ω0δE≪ kBT .

(6.34)

Stress the linear dependence onΩ0 at low and high temperatures is due to dif-
ferent physical reasons. While at low temperatures it is dueto the shot noise, at
high temperatures it is due to the thermal noise.

Here we have presented the Floquet scattering theory for noise of quantum
pumps. The same problem was also investigated within different approaches,
the random matrix theory [91, 92, 93], the full counting statistics [94, 95, 96,
97, 98], and the Green function formalism [99, 100, 101, 102, 103]. Note also a
prediction [94, 90, 95, 89, 102] that in the quantized emission regime1 the noise
vanishes. It seems that the experiment confirms it. [104]

1This is a regime when the integer numbern of electrons is pumped during each period.
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Chapter 7

Energetics of a dynamical scatterer

7.1 DC heat current

By analogy with a dc charge current, Eq. (4.3), we define a dc energy
currentI E

α in the leadα as a difference between the energy flowI E(out)
α carried by

non-equilibrium electrons from the scatterer to the reservoir and an equilibrium
energy flowI E(in)

α from the reservoir to the scatterer:

I E
α = I E(out)

α − I E(in)
α . (7.1)

Here the corresponding energy currents are defined as follows, [64]

I E(in/out)
α =

1
h

∞�
0

dE E f(in/out)
α (E) , (7.2)

wheref (out)
α (E) is a distribution function for scattered electrons;f (in)

α (E) ≡ fα(E)
is an equilibrium distribution function for incident electrons. We are interested
in a dc heat currentI Q

α which is the total energy currentI E
α reduced by the con-

vective energy flow of electrons carrying a dc charge currentIα :

I Q
α = I E

α − µα
Iα
e
. (7.3)

The division ofI E
α into heatI Q

α and convectiveµα Iα/e flows can be explained
on the base of particle and energy balance for the reservoirα with fixed both the
chemical potentialµα and the temperatureTα (for macroscopic samples, see,
e.g., [105]). If dc chargeIα and energyI E

α currents enter the reservoirα, then
its charge (the particle number) and its energy should change. At the same time
the chemical potential and the temperature of a reservoir should be changed
also. Let us analyze what should be done to maintainµα and Tα fixed. To
keepµα fixed one needs to remove exceeding number of electrons with the rate
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7.1 DC heat current

Iα/e they enter the reservoir. To this end the metallic contact, playing a role of
reservoir for a mesoscopic sample, is connected to another much bigger conduc-
tor. This connection is located far away from the place wherethe mesoscopic
sample is connected, so that all the injected non-equilibrium electrons become
equilibrium. Therefore, all electrons which are removed (to keepµα fixed) are
equilibrium and hence have an energyµα, see, e.g., [11]. It is clear that remov-
ing of electrons is accompanied by removing of energy with rate µα Iα/e. Note
this convective energy flow,µα Iα/e, is removed at equilibrium, hence it can be
reversibly given back to the reservoir.

Now analyze what to do to maintain the reservoir’s temperature fixed. In
general a taken away convective energy flow is not equal to thetotal energy
flow I E

α incoming to the reservoirα. To prevent heating of a reservoir it is
necessary to remove additionally energy with rateI Q

α , Eq. (7.3). Since, as a
rule, the reservoir can not produce a work then only the way totake out of it
energy,I Q

α , (keeping the number of particles fixed) is to bring it into contact with
some bath. Energy exchange between the reservoir and the bath is essentially
irreversible. This is a reason to name asa heatthe part of an energy flow denoted
asI Q

α . Emphasize, this part of an energy flow becomes a proper heat (i.e., it can
change a temperature) only deep inside the reservoir, afterthermalizing of non-
equilibrium electrons. In the absence of a bath the reservoir’s temperature will
be changed under the action of a heat currentI Q

α , which, as we show, can be
directed as to the reservoir as out of it: The dynamical scatterer can either heat
some reservoirα or cool it, even when the temperatures of all the reservoirs
were originally the same.

Expressing the distribution functionf (out)
α (E) for scattered electrons in

terms of the Floquet scattering matrix elements and distribution functionsfβ(E)
for incident electrons, Eq. (4.2), and using Eq. (3.40) for a dc charge current,
Iα,0, we finally get the following expression for a dc heat currentI Q

α , Eq. (7.3):
[28]

I Q
α =

1
h

∞�
0

dE (E − µα)
∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (E,En)
∣∣2{ fβ (En) − fα (E)

}
.

(7.4)

183



7 Energetics of a dynamical scatterer

Here as a factor atfα(E) we used the following identity,

∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (E ,En)
∣∣2 = 1 , (7.5)

which is a consequence of the unitarity of the Floquet scattering matrix follow-
ing from Eq. (3.28b) atm= 0 andγ = α.

In addition we give also the following two equations for the dc heat current.
The first one,

I Q
α =

1
h

∞�
0

dE (En − µα)
∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (En,E)
∣∣2{ fβ (E) − fα (En)

}
,

(7.6)

follows from Eq. (7.4) via the substitutionE→ En andn→ −n, And the second
one,

I Q
α =

1
h

∞�
0

dE

{ ∞∑

n=−∞

Nr∑

β=1

(En − µα)
∣∣SF,αβ (En,E)

∣∣2 fβ (E)

− (E − µα) fα (E)

}
. (7.7)

is obtained via the same substitution but made only in the term with fβ, while in
the term withfα we used the identity (7.5).

Now we use the last equation to show the existence of two quitegeneral
effects due to the dynamical scatterer. For better clarity we assume that all the
reservoirs have the same chemical potentials and the same temperatures:

µα = µ0 , Tα = T0 , fα(E) = f0(E) , α = 1 . . . ,Nr . (7.8)

Therefore, all the possible energy/heat flows in the system are generated by the
dynamical scatterer only. Presenting this problem we follow Ref. [106].
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7.1 DC heat current

α = 1
µ0, T0

α = 2
µ0, T0

I Q(gen)
1 I Q(gen)

2

I Q(pump) I Q(pump)

Figure 7.1: The heat flows caused by the dynamical scatterer with two contacts.
I Q(gen)
α is a generated heat flowing into the reservoirα; I Q(pump) is a pumped heat.

The heat production rate isI Q
tot = I Q(gen)

1 + I Q(gen)
2 .

7.1.1 Heat generation by the dynamical scatterer

The first of mentioned effects consists in the following:
The periodic in time variation of parameters of a mesoscopicscatterer is ac-
companied by pumping of an energy into an electron system. That after all
leads to heating of electrons reservoirs. [90, 28, 107, 66]

In other words, functioning of the quantum pump is accompanied by a
heat production as expected. To calculate the total heat production rateI Q

tot we
sum up the heat currentsI Q

α flowing into all leads. Using Eq. (7.7) under the
conditions given in Eq. (7.8) we find

I Q
tot ≡

Nr∑

α=1

I Q
α =

Ω0

2π

∞�
0

dE f0(E)
∞∑

n=−∞
n

Nr∑

α=1

Nr∑

β=1

∣∣SF,αβ(En,E)
∣∣2 . (7.9)

Since the sum of dc heat currents is not zero, in contrast to the sum of dc change
currents, see Eq. (4.11), we conclude that indeed the dynamical scatterer is a
source of heat, Fig.7.1. Taking into account a physical meaning of quantities
entering Eq. (7.9) we can say that the quantityI Q

tot is due to the energy absorbed
by electrons scattered by the dynamical sample. The origin of this additional
energy is driving external forces/fields causing a change of parameters of a scat-
terer.
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7 Energetics of a dynamical scatterer

7.1.2 Heat transfer between the reservoirs

The second effect is the following:
The dynamical scatterer plays a role of a heat pump producinga heat transfer
between the electron reservoirs. [108, 109, 110, 111]

This effect is quite analogous to the considered earlier effect of a dc charge
current generation. The dynamical scatterer can cause an appearance of heat
flows, I Q(pump)

α , which are directed from the scatterer in some leads and to the
scatterer in other leads, Fig.7.1. At the same time the sum of these flows in all
the leads is zero,

Nr∑

α=1

I Q(pump)
α = 0 , (7.10)

as in the case with a dc charge current, Eq. (4.11).
Above equation (7.10) means that the heat currentsI Q(pump)

α flow through
the scatterer neither being accumulated nor disappearing,i.e., the dynamical
scatterer is not a source (or a sink) for this part of heat flows. Its role consists
only in providing conditions under which the heat currents flowing out of the
reservoirs can be redistributed in such a way that the heat can be taken out of
some reservoirs,I Q(pump)

α1
< 0, and be pushed into other reservoirs,I Q(pump)

α2
> 0.

Note if some reservoirα0 is at the zero temperature then in the lead connecting
the scatterer to this reservoir the heat current is not negative, I Q(pump)

α0
≥ 0, since

it is impossible to take heat out of such a reservoir.
To show the existence of a quantum heat pump effect we proceed as fol-

lows. Let us formally split the total heat production rateI Q
tot into the parts,I Q(gen)

α ,
such that

I Q
tot =

Nr∑

α=1

I Q(gen)
α . (7.11)

Comparing this equation with Eq. (7.9) we can write,

I Q(gen)
α =

Ω0

2π

∞�
0

dE f0(E)
∞∑

n=−∞
n

Nr∑

β=1

∣∣SF,αβ(En,E)
∣∣2 . (7.12)

186



7.1 DC heat current

One can interpret the quantityI Q(gen)
α as a generated heat flowing into the reser-

voir α. Then comparing Eqs. (7.12) and Eq. (7.7) (at fα = f0 ,∀α) we can see
that I Q(gen)

α is different from the heat currentI Q
α flowing into the leadα. The

difference,

I Q(pump)
α = I Q

α − I Q(gen)
α , (7.13)

is just a part of a heat current which is transferred between the reservoirs. This
part is not related to the heat generated by the dynamical scatterer. Using
Eqs. (4.7) and (4.10) into Eq. (4.11) we find,

I Q(pump)
α =

1
h

∞�
0

dE(E − µ0) f0(E)






∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ(En,E)
∣∣2 − 1




 .

(7.14)

With the unitarity condition (3.28a) one can easily check that Eq. (7.14) satisfies
the conservation law, Eq. (7.10).

Accordingly to Eq. (7.13) the heat flowI Q
α in the leadα consists of two

parts, Fig.7.1. The first one,I Q(gen)
α , is a positive heat flow generated by the

dynamical scatterer. The second one,I Q(pump)
α , is a transferred heat flow which

can be either positive (the heat flow is directed to the reservoir α) or negative
(the heat flow is directed from the reservoirα). Note if I Q(pump)

α < 0 and the
transferred heat flow is larger than the generated heat flow inthe same lead,∣∣I Q(pump)
α

∣∣ > I Q(gen)
α , then the reservoirα is cooled, sinceI Q

α = I Q(pump)
α + I Q(gen)

α <
0.

We have splitted a heat flowI Q
α into the partsI Q(gen)

α and I Q(pump)
α to show

thatI Q
α can be negative. Therefore, the electron reservoirs can notonly be heated

(that is intuitively expected since functioning of a device, in our case a quantum
pump, is accompanied by the energy dissipation), but also can be cooled (that
is a non-trivial effect). Strictly speaking we can rigorously calculate only a heat
flow I Q

α , Eq. (7.7), and the total generated heat rateI Q
tot, Eq. (7.9). While the
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7 Energetics of a dynamical scatterer

splitting presented in Eqs. (7.12) and (7.14) is not unique, since the equation
(7.11) is not enough for unambiguous definition of the quantitiesI Q(gen)

α . In
the next section we consider an adiabatic regime and give additional physical
arguments supporting the splitting of the total heat flowI Q

α into the sum of
generated and transferred heat flows.

7.2 Heat flows in the adiabatic regime

At ̟ ≪ 1, Eq. (3.49), up to the terms linear in frequency,Ω0, of an exter-
nal drive the Floquet scattering matrix elements are following [see Eqs. (3.44),
(3.46a) and (3.48a)]:

∣∣SF,αβ (En,E)
∣∣2 =

∣∣Sαβ,n (E)
∣∣2 + n~Ω0

2

∂
∣∣Sαβ,n (E)

∣∣2

∂E
(7.15)

+ 2~Ω0Re
[
S∗αβ,n (E) Aαβ,n (E)

]
+ O

(
Ω2

0

)
.

Substituting this expression into Eq. (7.6) we calculate a heat flowI Q
α under the

conditions given in Eq. (7.8) up to terms of orderΩ2
0. We consider separately

finite temperature and zero temperature cases.

7.2.1 High temperatures

If it is,

kBT0≫ ~Ω0 (7.16)

then we can expand the difference of Fermi functions in Eq. (7.6) in powers of
Ω0:

f0 (E) − f0 (En) =

(
−∂ f0
∂E

)
n~Ω0 −

(n~Ω0)
2

2
∂2 f0
∂E2

+ O
(
Ω3

0

)
.

(7.17)
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7.2 Heat flows in the adiabatic regime

Substituting above expansion into Eq. (7.6) and summing up overn, using the
properties of the Fourier coefficients, we calculate (kBT0 ≫ ~Ω0):

I Q
α = I Q(gen)

α + I Q(pump)
α + O

(
Ω3

0

)
, (7.18a)

where

I Q(gen)
α =

~

4π

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

(
∂Ŝ
∂t

∂Ŝ†

∂t

)

αα

, (7.18b)

and

I Q(pump)
α =

1
2π

∞�
0

dE (E − µ0)

(
−∂ f0
∂E

) T�
0

dt
T

Im

{(
Ŝ + 2~Ω0Â

) ∂Ŝ†

∂t

}

αα

.

(7.18c)

The quantityI Q(pump)
α satisfies the conservation law, Eq. (7.10). This follows

from Eq. (4.11) with a dc charge current given in Eq. (4.22). Then at zero
temperature we have an identity,

T�
0

dt
T

Im Tr

{(
Ŝ(t, µ0) + 2~Ω0Â(t, µ0)

) ∂Ŝ†(t, µ0)
∂t

}
= 0 . (7.19)

which should hold for anyµ0.
The separation of contributions given in Eq. (7.18a) can be justified by the

following arguments.
1. The generated heat flowI Q(gen)

α is definitely positive in all the leads,
α = 1 . . .Nr . This is exactly what is expected if the heat is generated by the
dynamical scatterer and is dissipated into the reservoirs.To show its positive-
ness we rewrite Eq. (7.18b) in terms of the Fourier coefficients for the frozen
scattering matrix elements:
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7 Energetics of a dynamical scatterer

I Q(gen)
α =

~Ω2
0

4π

∞�
0

dE

(
−∂ f0
∂E

) ∞∑

n=−∞
n2

Nr∑

β=1

∣∣Sαβ,n (E)
∣∣2. (7.20)

It is obvious thatI Q(gen)
α > 0. From above equation it follows that in the adia-

batic regime the heat generated by the quantum pump is quadratic in pumping
frequencyΩ0. [90]

2. The transferred heat flowI Q(pump)
α vanishes at zero temperature, since

it is impossible to take heat out of a reservoir with zero temperature in order
to push it into other reservoir. This property follows from Eq. (7.18c) where at
zero temperature it is (E − µ0)∂ f0/∂E = 0. From Eq. (7.18c) it follows that the
transferred heat is linear in pumping frequency,I Q(pump)

α ∼ kBT0Ω0.
Note under the conditions given in Eq. (7.16) it is possible to realize a

regime when the energy (∼ kBT0Ω0) taken out of some reservoir is larger then
its heating (∼ Ω2

0). Then such a reservoir will be cooled. To characterize a
cooling efficiency let us introduce the coefficient Kα equal to a ratio of the dc
heat current in the leadα and the total work produced by driving forces. Since
the volume of the system remains constant, the mentioned work is equal to the
total heat generated by the scatterer. Therefore, the coefficientKα is,

Kα = (−1)
I Q
α

I Q
tot

, (7.21)

where

I Q
tot =

~

4π

∞�
0

dE

(
−∂ f0
∂E

) T�
0

dt
T

Tr

(
∂Ŝ
∂t

∂Ŝ†

∂t

)
. (7.22)

The positive/negative sign corresponds to cooling/heating of the reservoirα.

7.2.2 Low temperatures

In the case of ultra-low temperatures,
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7.2 Heat flows in the adiabatic regime

kBT0≪ ~Ω0 , (7.23)

while integrating over energy in Eq. (7.6) we can relax an energy dependence
of the Floquet scattering matrix elements and calculate them atE = µ0. Such a
simplification is possible because of the following. The integration over energy
in Eq. (7.6) is over the window of orderkBT0 near the Fermi energy. The scatter-
ing matrix changes significantly if the energy changes by thevalue of orderδE.
Taking into account Eq. (7.23) we find that in the adiabatic regime, Eq. (3.49),
it is kBT0 ≪ δE. The last justifies the simplification used.

So, now the equation (7.6) reads:

I Q
α =

1
h

∞∑

n=−∞

Nr∑

β=1

∣∣SF,αβ (µ0 + n~Ω0, µ0)
∣∣2

µ0�
µ0−n~Ω0

dE(E − µ0 + n~Ω0)

=
~Ω2

0

4π

∞∑

n=−∞
n2

Nr∑

β=1

∣∣SF,αβ (µ0 + n~Ω0, µ0)
∣∣2.

Using Eq. (7.15) and making the inverse Fourier transformation we finally cal-
culate (kBT0≪ ~Ω0):

I Q
α =

~

4π

T�
0

dt
T

(
∂Ŝ (t, µ0)

∂t
∂Ŝ† (t, µ0)

∂t

)

αα

+ O
(
Ω3

0

)
. (7.24)

Comparing equation above with Eq. (7.18b) we conclude that at low tempera-
tures, Eq. (7.23), the dynamical scatterer only heats the reservoirs. Whilethe
heat pump effect is absent, that is consistent with the conclusion made onthe
base of Eq. (7.18c) calculated at zero temperature.
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Appendix A

Dynamical mesoscopic capacitor

The capacitor does not support a dc current. To model it one can con-
sider a mesoscopic sample attached to only a single reservoir. We will call it a
mesoscopic capacitor[112], since its capacitance depends not only on the ge-
ometry (as for a macroscopic capacitor) but also on the density of states (DOS)
of electrons. Changing periodically the potential of a sample via a near gate
or changing periodically the potential of a reservoir (or changing both potential
simultaneously) one can generate an ac current flowing between the sample and
the reservoir. Due to the gauge invariance the current depends on the potential
difference rather than on each potential separately. Therefore, in what follows
we consider the periodic potential applied to the sample andstationary reser-
voir. The reservoir is in equilibrium with the Fermi distribution function f0(E)
with chemical potentialµ0 and temperaturekBT0.

A.1 General theory for a single-channel scatterer

For the sake of simplicity we consider a lead connecting the sample to
the reservoir to be one-dimensional. We ignore spin-flip processes, therefore,
electrons can be teated as spinless. Then the sample can be viewed as a single-
channel scatterer which has only one incoming and one outgoing orbital chan-
nels. In the stationary case the capacitor is characterizedby the single scattering
amplitude. If such a sample is driven by the periodic perturbation then the men-
tioned above scattering amplitude becomes a matrix in the energy space with
elementsSF(En,E), whereEn = E + n~Ω0 with n integer. We call this matrix
asthe Floquet scattering matrix.

A.1.1 Scattering amplitudes

The scattering amplitudesSin(t,E) and Sout(E, t) define elements of the
Floquet scattering matrix as follows,
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A.1 General theory for a single-channel scatterer

SF(E + n~Ω0, E) = Sin,n(E) ≡
T�

0

dt
T

einΩ0tSin(t,E) , (A.1)

SF(E, E − n~Ω0) = Sout,n(E) ≡
T�

0

dt
T

einΩ0tSout(E, t) , (A.2)

whereT = 2π/Ω0 is a period of a drive.
From the definition we get the following relation between in-and out-

scattering amplitudes,

Sin, n(E) = Sout, n(En) . (A.3)

In a time representation one can get,

Sin(t,E) =
∞∑

n=−∞

T�
0

dt′

T
einΩ0(t′−t) Sout(En, t

′) ,

(A.4)

Sout(E, t) =
∞∑

n=−∞

T�
0

dt′

T
einΩ0(t′−t) Sin(t′,E−n) .

A.1.2 Unitarity conditions

The unitarity conditions read,

∞∑

n=−∞
S∗F(En,Em) SF(En,E) =

∞∑

n=−∞
SF(Em,En)S

∗
F(E,En) = δm,0 . (A.5)

Using Eqs. (A.1) and (A.2) we obtain from Eq. (A.5) the following relations
between the amplitudesSin andSout [see Eq. (3.60)],
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A Dynamical mesoscopic capacitor

T�
0

dt
T

eimΩ0t S∗in(t,Em) Sin(t,E) =

T�
0

dt
T

eimΩ0t Sout(Em, t)S
∗
out(E, t)

= δm,0 . (A.6)

Using the second equations in Eqs. (A.5) and (A.6) one can find,

∞∑

m=−∞
e−imΩ0t

∞∑

n=−∞
SF(Em,En) S∗F(E,En) =

(A.7)

=

∞∑

m=−∞
e−imΩ0t

(
Sout(Em, t) S∗out(E, t)

)

m
=

∞∑

m=−∞
e−imΩ0t δm,0 = 1 .

In fact we have proven the following useful identity being a direct consequence
of the unitarity of scattering,

∞∑

n=−∞

T�
0

dt′

T
e−inΩ0(t−t′) Sin(t,En) S∗in(t′,En) = 1 , (A.8)

or equivalently,

∞∑

n=−∞
e−inΩ0t Sin(t,En) S∗out,−n(E) = 1 , (A.9a)

∞∑

m=−∞

∞∑

n=−∞
e−imΩ0t Sout, n+m(Em) S∗out, n(E) = 1 , (A.9b)

∞∑

m=−∞

∞∑

n=−∞
e−imΩ0t Sin, n+m(E−n) S∗in, n(E−n) = 1 . (A.9c)
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A.1 General theory for a single-channel scatterer

A.1.3 Time-dependent current

The general expression for a time-dependent current [32] in the case of a
periodically driven capacitor reads as follows:

I (t) =
e
h

�
dE

∞∑

n=−∞

{
f0(E) − f0(En)

} ∞∑

l=−∞
e−ilΩ0t S∗F(En,E) SF(En+l,E),

(A.10)

To simplify expression above we shiftE→ En in the part dependent onf0(En).
Then from Eq. (A.7) we conclude that this part is reduced tof0(E). Using
Eq. (A.1) in the remaining part of Eq. (A.10) we arrive at the following, [113]

I (t) =
e
h

�
dE f0(E)

{∣∣Sin(t,E)
∣∣2 − 1

}
. (A.11)

Let us show that in the adiabatic regime this equation can be easily transformed
into the following form,

I (t) = − ie
2π

�
dE

(
− ∂ f0
∂E

)
S(t,E)

∂S∗(t,E)
∂t

. (A.12)

in accordance with a general theory developed in Ref. [31] (see, e.g., Ref. [69]).
To this end in the adiabatic regime we use,

Sin(t,E) = S(t,E) +
i~
2
∂2S(t,E)
∂t∂E

, (A.13)

in the first order inΩ0 approximation withS being the frozen scattering
amplitude.1 To calculate|Sin(t,E)|2 we use|S|2 = 1 and, correspondingly,
∂2|S|2/(∂t∂E) = 0. Also we use,

1See the first two terms on the RHS of Eq. (A.62) for a single-cavity capacitor but also Eq. (B.38) for a double-
cavity capacitor. The appearance of an anomalous scattering amplitudeA in the latter case does not affect
Eq. (A.12).
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∂S∗

∂t
∂S
∂E
=
∂S∗

∂t
S S∗

∂S
∂E
= S∗

∂S
∂t

∂S∗

∂E
S =

∂S
∂t

∂S∗

∂E
,

and find (up to∼ Ω0 terms):

|Sin(t,E)|2 ≈ 1− i~
∂

∂E

(
S
∂S∗

∂t

)
.

Substituting this equation into Eq. (A.11) and integrating over energyE by parts
we arrive at Eq. (A.12).

A.1.4 The dissipation

The (dc) heat flowing out of the driven capacitor is,

IE =
1
h

∞�
0

dE
∞∑

n=−∞
(En − µ0) [ f0(E) − f0(En)] |SF(En,E)|2 . (A.14)

Using the unitarity of the Floquet scattering matrix, Eq. (A.5) with m = 0, and
shifting the energy,En→ E, in the part withf0(En), we simplify,

IE =
Ω0

2π

∞�
0

dE f0(E)
∞∑

n=−∞
n |SF(En,E)|2

+
1
h

∞�
0

dE (E − µ0) f0(E)
∞∑

n=−∞
|SF(En,E)|2

−1
h

∞�
0

dE(E − µ0) f0(E)
∞∑

n=−∞
|SF(E,E−n)|2

=
Ω0

2π

∞�
0

dE f0(E)
∞∑

n=−∞
n |SF(En,E)|2 .
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A.1 General theory for a single-channel scatterer

Then we introduce the scattering amplitudeSin,n(E) = SF(En,E), use the prop-
erty of the Fourier coefficientsΩ0nS∗in,n(E) = −i

{
∂S∗in(t,E)/∂t

}
−n

, and finally
obtain: [113]

IE = −
i

2π

∞�
0

dE f0(E)

T�
0

dt
T

Sin(t,E)
∂S∗in(t,E)

∂t
. (A.15)

Note Eqs. (A.11) and (A.15) are valid at arbitrary frequency and amplitude of
the drive. The disadvantage only is that they involve an integration over all
energies.

A.1.5 The dissipation versus squared current

Interesting to note that in the adiabatic regime (Ω0 → 0) at zero tempera-
ture the heat productionIE for the capacitor can be related to the average square
current〈I2〉. From Eq. (A.12) we find for zero temperature,

I (t) = − ie
2π

S(t, µ0)
∂S∗(t, µ0)

∂t
. (A.16)

Using S dS∗ = −dS S∗ following from the unitarity of the frozen scattering
amplitude,|S(t,E)|2 = 1 , we represent the square current as follows,

I2(t) = − e2

4π2
S
∂S∗

∂t
S
∂S∗

∂t
=

e2

4π2
S S∗

∂S
∂t

∂S∗

∂t
=

e2

4π2

∣∣∣∣
∂S
∂t

∣∣∣∣
2

,

and find for its average:

〈I2〉 =
T�

0

dt
T

I2(t) =
e2Ω2

0

4π2

∞∑

n=1

n2
{
|Sn|2 + |S−n|2

}
. (A.17)
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A Dynamical mesoscopic capacitor

To calculate a heat currentIE in the adiabatic regime we use Eq. (A.14)
with f0(En) ≈ f0(E) + n~Ω0 ∂ f0(E)/∂E + (n2

~
2Ω2

0/2)∂2 f0(E)/∂E2. For
SF(En,E) = Sin,n(E) we use Eq. (A.13) and find with accuracy up toΩ2

0,

IE =
Ω0

2π

∞�
0

dE (E − µ0)

(
− ∂ f0(E)

∂E

) ∞∑

n=−∞
n |Sn(E)|2

+
~Ω2

0

4π

∞�
0

dE

(
− ∂ f0(E)

∂E

) ∞∑

n=−∞
n2 |Sn(E)|2 .

The first term is identically zero for the capacitor. To show it we take into
account that for a single channel capacitor the frozen scattering amplitude is of
the following form,

S(t,E) = eiφ(t,E) . (A.18)

Then we find,

∞∑

n=−∞
inΩ0 |Sn(E)|2 =

T�
0

dt
T

S(t,E)
∂S∗(t,E)

∂t
= −i

T�
0

dt
T

∂φ(t,E)
∂t

= 0 .

Therefore, the heat flow generated by the dynamical capacitor is:

IE =
~Ω2

0

4π

∞�
0

dE

(
− ∂ f0(E)

∂E

) ∞∑

n=1

n2
{
|Sn(E)|2 + |S−n(E)|2

}
. (A.19)

Comparing Eqs. (A.17) and (A.19) we find the following at zero temperature:
[113]
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IE = Rq 〈I2〉 , (A.20)

whereRq = h/(2e2) is the relaxation resistance for a single-channel scatterer
and spinless electrons [112].

A.2 The chiral single-channel capacitor

Experiments demonstrate [114, 115] that a quantum capacitor in a 2D elec-
tron gas in the integer quantum Hall effect regime is a promising device to real-
ize a sub-nanosecond, single- and few-electron, coherent quantum electronics.
The quantum capacitor can be used as a single-particle emitter [115]. With such
an emitter as an elementary block, several effects were predicted including shot-
noise plateaus [116], two-particle emission and particle reabsorption [41], and
a tunable two-particle Aharonov-Bohm effect [117].

A.2.1 Model and scattering amplitude

We consider a model [118, 114, 115, 119] consisting of a single circular
edge state of circumferenceL (a cavity) coupled via a quantum point contact
(QPC) to a linear edge state which in turn flows out of a reservoir of electrons
with temperatureT0 and the Fermi energyµ0, see Fig.A.1. A periodic in time
potentialU(t) = U(t + T) induced nearby gate is applied uniformly over the
cavity.

Using the method presented in Sec.3.5.3one can calculate the elements of
the Floquet scattering matrix as follows:

SF(En,E) =

T�
0

dt
T

einΩ0t Sin(t,E) , (A.21a)
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U(t)

Figure A.1: The model of a single-cavity chiral quantum capacitor
driven by the uniform potentialU(t) induced nearby metallic gate. The
dotted line denotes the QPC. Arrows indicate the direction of movement
of electrons.

Sin(t,E) =
∞∑

q=0

eiqkLS(q)(t) , (A.21b)

S(0) = r , S(q>0)(t) = t̄2 rq−1 e−iΦq(t) , Φq(t) =
e
~

t�
t−qτ

dt′U(t′) .

Herer(E)/t̄(E) is a reflection/transmission amplitude of a QPC connecting cav-
ity to the linear edge state,τ = meL/(~k) is a time necessary for electron with
energyE to make one turn around a cavity of lengthL. The indexq counts
number of turns which electron makes in the cavity until escaping it. In above
equation it is assumed that~Ω0 ≪ E and the reflection/transmission amplitude
of a QPC changes in energy over the scaleδE ∼ E which is much larger than
~Ω0. Correspondingly we neglected the terms of order~Ω0/δE and smaller.

To calculate given above Floquet scattering matrix elements, SF(En,E),
we consider scattering of a plane wave,e−iEt/~+ikx, with unit amplitude and with
energyE onto an oscillating scatterer. We direct the axisx along the linear edge
state and the axisy along the circular edge state of a cavity. We assume that the
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A.2 The chiral single-channel capacitor

QPC connects pointsx = 0 andy = 0. Then the wave function reads as follows:

Ψ(t, x) =






e−iEt/~+ikx , x < 0 ,

e−iEt/~
∞∑

n=−∞

√
k
kn

SF(En,E) e−inΩ0t+iknx , x > 0 ,
(A.22a)

Ψ(t, y) = e−iEt/~
∞∑

n=−∞
e−inΩ0t

∞∑

l=−∞
alΥn−le

ikly , 0 < y < L , (A.22b)

whereΥp is a Fourier coefficient forΥ(t) dependent on a uniform periodic po-
tentialU(t) of a cavity:

Υ(t) = exp



− ie
~

t�
−∞

dt′U(t′)



 . (A.23)

In what follows we suppose,

ǫ =
~Ω0

E
≪ 1 . (A.24)

Then up to zeroth order inǫ we have [for spatial coordinatesx, y≪ L/(ǫΩ0τ)]:

kn

k
≈ 1, eiknx ≈ eikxeinΩ0x/v , (A.25)

wherev = ~k/me is an electron velocity.
We introduce the following periodic in time functions:

Sin(t,E) =
∞∑

n=−∞
e−inΩ0tSF(En,E) , a(t) =

∞∑

l=−∞
e−ilΩ0t al . (A.26)

With these functions one can perform inverse Fourier transformation in
Eq. (A.22) and get,
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Ψ(t, x) =






e−iEt/~+ikx , x < 0 ,

Sin

(
t − x

v
,E
)

e−iEt/~+ikx , x > 0 ,
(A.27a)

Ψ(t, y) = a
(

t − y
v

)
Υ(t) e−iEt/~+iky , 0 < y < L . (A.27b)

The amplitudes of a wave function atx = 0 andy = 0 are related to each
other through the scattering matrix of a QPC. If its elementsr and t̄ can be
kept as energy independent over the scale of order~Ω0 then different terms in
Eq. (A.22) have the same boundary conditions atx = 0 andy = 0. Therefore,
one can use a wave function directly in the form of Eq. (A.27):

(
Sin(t,E)
a(t)Υ(t)

)
=

(
r(E) t̄(E)
t̄(E) r(E)

)(
1

a(t − τ)Υ(t) eikL

)
. (A.28)

The time of a single turn,τ = L/v, was introduced after Eq. (A.21).
We solve the system of equations (A.28) by recursion. The equation for

a(t),

a(t)Υ(t) = t̄ + r a(t − τ)Υ(t) eikL ,

has the following solution:

a(t) = t̄Υ∗(t) + t̄
∞∑

q=1

rq eiqkLΥ∗(t − qτ) . (A.29)

Substituting Eq. (A.29) into Eq. (A.28) we find:

Sin(t,E) = r + t̄2Υ(t)
∞∑

q=1

rq−1eiqkLΥ∗(t − qτ) . (A.30)

Then using Eq. (A.23) we arrive at Eq. (A.21b).
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A.2 The chiral single-channel capacitor

A.2.2 Unitarity

The Floquet scattering matrix is unitary. This puts the following constraint
onto the scattering amplitudeSin: [30]

T�
0

dt
T
|Sin(t,E)|2 = 1 . (A.31)

Let us show that Eq. (A.21b) satisfies this condition:

T�
0

dt
T
|Sin(t,E)|2 = A+ B ,

A = R+
T2

R

∞∑

q=1

Rq = R+ T = 1 ,

B =

T�
0

dt
T

2ℜ
{
− T

∞∑

q=1

rq ei{qkL−Φq(t)}

+
T2

R

∞∑

m=1

Rm
∞∑

q=1

rq eiqkL ei{Φm(t)−Φm+q(t)}
}

= 2Tℜ
∞∑

q=1

rq eiqkL

T�
0

dt
T

{
T
R

∞∑

m=1

Rm e−iΦq(t−mτ) − e−iΦq(t)

}
= 0 .

Here T = |t̄|2 and R = |r |2 are transmission and reflection probabilities, re-
spectively. In the last line of equation above we use, first,Φm+q(t) − Φm(t) =
Φq(t−mτ). Then using a periodicity ofΦq(t) in time we make a shiftt−mτ→ t
in this term under the integration for a time periodT. After that one can sum up
overmand get zero.
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A Dynamical mesoscopic capacitor

Note in the stationary case,Υ(t) = 1, the elements of the Floquet scattering
matrix becomeSF(En,E) = δn,0 S(E), where the stationary scattering amplitude
is:

S(E) = r +
t̄2 eikL

1− r eikL
. (A.33a)

This quantity can be presented in the following form:

S(E) = − eikL r − R e−ikL

(r − R e−ikL)∗
, (A.33b)

which is manifestly unitary.

A.2.3 Gauge invariance

Now we show that the model we use is gage-invariant, i.e., we get the same
current either applying a periodic potentialU(t) at the reservoir or applying a
potential−U(t) at the cavity.

We consider the stationary cavity but suppose that the periodic potential
U(t) = U(t + 2π/Ω0) is applied at the reservoir. In this case the state of an
electron in the reservoir is the Floquet state, see Eqs. (3.27) and (5.18). Let the
operator ˆa′†(E) creates an electron in the reservoir in the Floquet state,

ΨE(t,~r) = ei~k~r e−i E
~
t
∞∑

n=−∞
Υn e−inΩt , (A.34)

whereΥn is the Fourier coefficient forΥ(t) defined in Eq. (A.23). If U(t) =
U cos(Ωt) thenΥn = Jn (eU/~Ω), whereJn is the Bessel function of the first
kind of the nth order. The operators ˆa′†(E) and â′(E) describe equilibrium
fermions,

〈â′†(E), â′(E′)〉 = δ(E − E′) f0(E) . (A.35)

We assume also that there is no potential within the lead connecting the
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A.2 The chiral single-channel capacitor

cavity and the reservoir. Therefore, the wave function for electrons in the lead
is a plane wave,ψE(t, x) = eikx−i E

~
t. Note that the wave numberk for ψE(t, x)

and the wave vector~k forΨE(t,~r) in the reservoir depends on energy differently.
While in the leadk =

√
2meE/~2 depends on a total energyE of an electron,

in the reservoirk depends on the Floquet energy,E, and it is independent of an
additional side-band energyEn − E = n~Ω.

Let the operator ˆa†(E) creates an electron within the lead. Then matching
the wave functions with the same total energy, see Eq. (5.24), one can write,

â(E) =
∞∑

n=−∞
Υn â′(E−n) . (A.36)

Note that we ignore the reflection due to the wave number changing. The corre-
sponding reflection coefficient is as small as (~Ω/µ0)2 ≪ 1. We usually ignore
such small quantities.

After scattering by the stationary cavity an electron acquires the scattering
amplitudeS(E). Therefore, the operatorb̂(E) annihilating the scattered electron
with energyE is:

b̂(E) = S(E)â(E) =
∞∑

n=−∞
S(E)Υnâ

′(E−n) . (A.37)

Now we calculate the currentI (t), flowing in the lead,

I (t) =
e
h

∞�
0

dEdE′ ei E−E′
~

t
{
〈b̂†(E)b̂(E′)〉 − 〈â†(E)â(E′)〉

}
. (A.38)

The lth harmonic of this current reads,

I l =
e
h

T�
0

dt
T

eilΩ0t

∞�
0

dEdE′ ei E−E′
~

t
{
〈b̂†(E)b̂(E′)〉 − 〈â†(E)â(E′)〉

}
. (A.39)
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Using Eqs.(A.35) - (A.37) and making the shiftE→ E+ n~Ω we finally calcu-
late,

I l =
e
h

∞�
0

dE f0(E)
∞∑

n=−∞
Υ⋆n Υn+l

{
S⋆(En) S(En+l) − 1

}
. (A.40)

To simplify above equation we introduce a time-dependent function,

S(t,E) =
∞∑

n=−∞
S(En)Υn e−inΩt , (A.41)

and take into account that
∑∞

n=−∞Υ
⋆
nΥn+l = δl,0. Then after the inverse Fourier

transformation we get from Eq.(A.40):

I (t) =
e
h

�
dE f0(E)

{∣∣S(t,E)
∣∣2 − 1

}
. (A.42)

This equation defines the same current as Eq. (A.11) in the case when the poten-
tial −U(t) is applied to the cavity. To check it we need to show that the function
S(t,E) differs from the functionSin(t,E), Eq.(A.21b), first, by the phase factor
(in fact by the factorΥ(t)) which is irrelevant for the current, and, second, by
the replacementU → −U. To this end we substitute

S(E) =
∞∑

q=0

eiqkLS(q) , S(0) = r , S(q>0)(t) = t̄2 rq−1 ,

into Eq.(A.41) and calculate,

S(t,E) =
∞∑

q=0

eiqkLS′(q)(t) , (A.43)

S′(0)(t) = Υ(t) r ,
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S′(q>0)(t) = t2 rq−1
∑

n

eiqnΩτΥn e−inΩt

= t̄2 rq−1Υ(t − qτ) = Υ(t) t̄2 rq−1 e−iΦ̃q(t) ,

Φ̃q(t) =
e
~

t�
t−qτ

dt′
(
− U(t′)

)
,

Here we used,k(En) ≈ k(E) + nΩ/v, and L/v = τ ≡ h/∆. Comparing
Eqs.(A.21b) and (A.43) we see that,

S
(
U(t),E

)
= Υ(t) Sin

(
− U(t),E

)
. (A.44)

One can understand above equation as follows. The particle leaving a reservoir
at time t has a phaseΥ(t) induced by the oscillating potential. However to
calculate a current we need to count particles leaving the cavity at the timet. If
the particle leaving the cavity at timet spent in cavityq turns then it leaved the
reservoir at timet−qτ. Such a particle has a time-dependent phaseΥ(t−qτ). The
common for all the amplitudes phase is irrelevant for the measurable quantities.
Therefore, one can take out the largest time-dependent phaseΥ(t). After such
an artificial transformation the time-dependent phases becomeΥ⋆(t)Υ(t − qτ).
This is exactly the phase which the particle spendingq turns in the cavity would
feel if the potential−U(t) would be applied at the cavity instead to be applied
at the reservoir.

A.2.4 Time-dependent current

Replacing in Eq. (A.10) the Floquet scattering matrix elements by the ele-
ments ofSin(t,E) we obtain [compare to Eq. (3.65)]:

I (t) =
e
h

∞�
0

dE
∞∑

n=−∞
{ f0(E) − f0(En)}

T�
0

dt′

T
einΩ0(t−t′)S∗in(t′,E) Sin(t,E) . (A.45)
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Then substituting Eqs. (A.21b) into Eq. (A.45) and integrating over energyE
we find the current as a sum of two termsI (d) andI (nd): [119]

I (t) = I (d)(t) + I (nd)(t) , (A.46a)

I (d)(t) =
e2

h
T2

∞∑

q=1

Rq−1 {U(t) − U(t − qτ)} , (A.46b)

I (nd) =
eT2

πτ
ℑ






∞∑

s=1

η
(
sT0

T∗

) {
r eikFL

}s

s

∞∑

q=1

Rq−1
(
e−iΦs(t−qτ) − e−iΦs(t)

)



 .

(A.46c)

HereR = 1− T is a reflection probability of a QPC,kF =
√

2meµ0/~, kBT∗ =
~/(πτ) = ∆/(2π2). In Eq. (A.46) the timeτ is calculated for electrons with Fermi
energy,E = µ0. Such an approximation is valid in zeroth order inkBT0/µ0→ 0.
The functionη(x) = x/ sinh(x) has appeared after an integration over energy:

η

(
2π2s

kBT0

∆

)
= i

2πs
∆

∞�
0

dE f0(E) ei2π E−µ0
∆

s. (A.47)

Note that when we integrated over energy a term withf0(En) in Eq. (A.45) we
made a shiftEn → E and expanded exponential factors in accordance with
Eq. (A.25):

eiqknL ≈ eiqkL einΩ0τ ,

wherekn = k (En). The double sum appeared after substituting Eq. (A.21) into
Eq. (A.45) we presented as follows:

∞∑

q=1

∞∑

p=1

AqBp =

∞∑

q=1

AqBq +

∞∑

q=1

∞∑

s=1

AqBq+s+

∞∑

p=1

∞∑

s=1

Ap+sBp .
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In Eq. (A.46) we assume that the energy scaleδE over which the reflec-
tion/transmission amplitude of a QPC changes significantly is much larger than
the temperature,δE ≫ kBT0, and taker and t̄ at E = µ0. This is correct if
kBT0 ≪ µ0 since for a QPCδE ∼ E and only electrons with energiesE ∼ µ0 are
relevant for transport.

The contributionI (d), which we will name as diagonal, arises due to inter-
ference of photon-assisted amplitudes corresponding to the spatial paths with
the same length [the same indexq in Eq. (A.21b)] which electron follows to
propagating through the system. This contribution is temperature independent.
Since we neglect inelastic processes the temperature can not be too high. The
non-diagonal part,I (nd), is due to interference of photon-assisted amplitudes
corresponding to different number of turns,q1 , q2. This part is suppressed by
the temperature (atT0 & T∗) since it is a sum of contributions which oscillates
strongly with an electron energy. Therefore, at high temperatures,T0 ≫ T∗, the
only linear in cavity’s potential part is present,I (t) ≈ I (d)(t). While atT0 ≪ T∗

both parts,I (d)(t) andI (nd)(t), do contribute and the current is a non-linear func-
tion of U(t).

The currentI (t) depends on a driving frequencyΩ0 periodically with pe-
riod δΩ0 = 2π/τ. The corresponding periodicity is governed by the timeτ of a
single turn around the cavity. Ifτ = nT, henceΩ0 = nδΩ0, then the oscillating
potentialU(t) = U(t + T) does not change the phase of electrons contributing
to the current. Such electrons enter the cavity, make several q turns, and escape
the cavity. Therefore, they visit a cavity for a finite time period δt = qτ = qnT.
These electrons see an effectively stationary cavity since the time-dependent
phase is zero,Φq(t) = 0. In such a case the current does not arise,I (t) = 0. At
frequencies different from these particular values the phase accumulated byan
electron within a cavity becomes dependent on time. Consequently, in accor-
dance with the Friedel sum rule [12], the charge accumulated within a cavity
becomes dependent on time that, in turn, causes an appearance of a time depen-
dent current,I (t) , 0.

A.2.5 High-temperature current

Since atT0 ≫ T∗ the current,I (t) ≈ I (d)(t), is linear in potential, we can
introduce a frequency dependent response function (conductance),
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G(d)
l =

I (d)
l

Ul
, (A.48)

whereUl andI l are Fourier coefficients for potential and current respectively:

U(t) =
∞∑

l=−∞
Ul e−ilΩ0t , I (d)(t) =

∞∑

l=−∞
I (d)
l e−ilΩ0t , (A.49)

Taking into account that

U(t − qτ) =
∞∑

l=−∞
Ul eilΩ0qτ e−ilΩ0t ,

we calculate from Eq. (A.46b):

G(d)
l =

e2

h
T

1− eilΩ0τ

1− R eilΩ0τ
. (A.50)

The ac conductanceG(d)
l shows a strong non-linear dependence on the frequency

Ω0 of a drive. The frequency affects both the magnitude and the phase of a
response function. In particular, at 0< lΩ0τ mod 2π < π the response is
capacitive-like. While atπ < lΩ0τ mod 2π < 2π it is inductive-like. It is
interesting that atlΩ0τ mod 2π = π the response is purely ohmic,G(d)

l = 1/Rq

(for Rq see below).
In general to model a mesoscopic system under considerationvia an equiv-

alent electric circuit one needs to use some frequency-dependent element. How-
ever at small frequencies,Ω0τ ≪ 1, one can model it as a capacitanceC(d)

q , a
resistanceR(d)

q , and an inductanceL(d)
q connected in series, Fig.A.2. The con-

ductance of such a circuit equals to

1
G(ω)

= Rq + i

{
1

ωCq
− ωLq

}
. (A.51)

Comparing it to Eq. (A.50) at
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R LC q qq

Figure A.2: An equivalent electrical circuit to model a low-
frequency response of a quantum capacitor.

ω = lΩ0≪
T
τ
, (A.52)

we find:

C(d)
q =

e2

∆
, R(d)

q =
h
e2

(
1
T
− 1

2

)
, L(d)

q =
h2

12e2∆
, (A.53)

where∆ = h/τ ≪ µ0 is a level spacing in the isolated cavity. The upper index
(d) indicates a high-temperature regime.

At lower temperatures,T0 . T∗, both parts,I (d) and I (nd), contribute to
a current. The currentI (nd), Eq. (A.46c), is a non-linear function of both the
magnitude and the frequency of a driving potentialU(t).

A.2.6 Linear response regime

At small amplitude of an oscillating potential,

eUl ≪ l~Ω0 , (A.54)

one can simplify the expression forI (nd). At zero temperature we use
Eq. (A.46c) and find a compact expression valid at arbitrary frequency.On
the other hand, at small driving frequencies,Ω0τ ≪ 1, it is more convenient to
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expand directly in the expression for the scattering matrix, Eqs. (A.21), and then
to calculate the currentI (t), Eq. (A.45). In such a way one can obtain a simple
expression allowing us to analyze a temperature dependenceof a current.

A.2.6.1 Zero-temperature linear response current

We expand exponents depending onΦs in Eq. (A.46c) up to linear inUl

terms. Then, taking into account that at zero temperatureη(0) = 1, one can sum
up oversandq. After that we can calculateG(nd)

l = I (nd)
l /Ul.

We use the following transformation taking into account that Ul = U∗−l,
sinceU(t) is real:

I (t) = ℑ
∞∑

l=−∞
Ul G

′
l e−ilΩ0t

=

∞∑

l=−∞

Ul G′l e−ilΩ0t − U∗l G′∗l eilΩ0t

2i
=

∞∑

l=−∞
I l e
−ilΩ0t ,

I l = Ul Gl , Gl =
G′l −G′∗−l

2i
.

Then the total zero-temperature ac conductanceGl = G(d)
l +G(nd)

l is found to be,

Gl = G(d)
l

{
1+

i
lΩ0τ

ln

(
1+ R e2ilΩ0τ − 2

√
R eilΩ0τ cos(χF)

1+ R− 2
√

R cos(χF)

)}
. (A.55)

Here we use the following notation:r =
√

R eiχr , χF = kFL + χr − 2πeU0/∆,
where|eU0| ≪ µ0 is an average value of an oscillating potential. We stress that
Eq. (A.55) is valid for small amplitude but arbitrary frequency of an oscillating
potential.

To get the parameters of a low-frequency equivalent circuit(at low temper-
atures we denote them asCq, Rq, andLq) we evaluate Eq. (A.55) in the limit of
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lΩ0τ→ 0 and obtain after the comparison with Eq. (A.51):

Cq =
e2

∆

T

1+ R− 2
√

R cos(χF)
≡ e2ν(µ0) , Rq =

h
2e2

,

(A.56)

Lq =
h2ν(µ0)
12e2

{
1+

8R− 2(1+ R)
√

R cos(χF) − 4R cos2(χF)
T2

}
.

Hereν(E) = i/(2π)S(E)∂S∗/∂E is the DOS of a stationary cavity coupled to a
linear edge state [forS(E) see Eq. (A.33) ].

A.2.6.2 Low-frequency linear response current

At small frequency,

Ω0τ ≪ 1 , (A.57)

the Floquet scattering matrix, Eq. (A.21), can be expressed in terms of a sta-
tionary scattering matrixS(E), Eq. (A.33), calculated atk(U0) =

√
2meE/~ −

2πeU0/(L∆). To this end we expandU′(t′) = U(t′) − U0, entering equation for
Φq(t) in Eq. (A.21b), in powers oft′ − t,

U′(t′) ≈ U′(t) +
(
t′ − t

) dU′(t)
dt
+

(t′ − t)2

2
d2U′(t)

dt2
, (A.58)

and integrate overt′. Then expanding corresponding exponents we calculate up
to linear inU′(t) and quadratic inΩ0 terms:

Sin(t,E) ≈ S(U0,E) − eU′(t)
∂S(U0,E)

∂E
− i~

2
edU′(t)

dt
∂2S(U0,E)

∂E2

(A.59)

+
~

2

6
ed2U′(t)

dt2
∂3S(U0,E)

∂E3
.
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Note that first three terms in the right-hand side of equationabove can be found
from adiabatic expansion Eq. (A.13) if one expands the frozen scattering matrix
up to linear inU′(t) terms,

S(t,E) ≡ S (U(t),E) ≈ S (U0,E) + U′(t)
∂S(U0,E)
∂U0

,

discard∼ Ω2
0 terms, and take into account that in our model∂S/∂U0 =

−e∂S/∂E.
Substituting Eq. (A.59) into Eq. (A.45), where in addition we expand,

f0(E) − f0(En) ≈ −
∂ f0
∂E

n~Ω0 −
∂2 f0
∂E2

(n~Ω0)
2

2
, (A.60)

we find a low-frequency conductance:

Gl =

∞�
0

dE

(
−∂ f0(E)

∂E

)
Gl(E) ,

(A.61)

Gl(E) = −ie2lΩ0 ν(E) + e2h
(lΩ0)2

2
ν2(E)

−ie2h2 (lΩ0)3

6

{
1

8π2

∂2ν(E)
∂E2

− ν3(E)

}
.

At zero temperature Eq. (A.61) leads to parameters of an equivalent electric cir-
cuit given in Eq. (A.56). It is less evident but still true that at high temperatures
(T0≫ T∗) from Eq. (A.61) one can find parameters given in Eq. (A.53).

A.2.7 Non-linear low-frequency regime

In the limit of low frequencies, Eq. (A.57), one can go beyond the lin-
ear response regime, Eq. (A.54). Substituting Eq. (A.58) into Eq. (A.21b) and
expanding up to terms of orderΩ2

0 we calculate the scattering matrix as follows:
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A.2 The chiral single-channel capacitor

Sin(t,E) = S(t,E) +
i~
2
∂2S(t,E)
∂t∂E

+
~

2

6
ed2U(t)

dt2
∂3S(t,E)
∂E3

(A.62)

−~
2

8

(
edU(t)

dt

)2
∂4S(t,E)
∂E4

+ O
{

(Ω0τ)
3
}
.

Remind that the frozen scattering matrix is:S(t,E) = S (U(t),E). To calculate
it one can use Eq. (A.33) and replacekL→ kL − 2πeU(t)/∆. Note Eq. (A.59)
is nonlinear inU0 but linear inU′(t) = U(t) − U0. In contrast Eq. (A.62) is
nonlinear in a full time-dependent potentialU(t).

Substituting Eqs. (A.62) and (A.60) into Eq. (A.45) we calculate a low-
frequency current as follows: [119]

I (t) =

∞�
0

dE

(
−∂ f0(E)

∂E

){
J(1)(t,E) + J(2)(t,E) + J(3)(t,E)

}
, (A.63a)

J(1)(t,E) = e2 ν(t,E)
dU(t)

dt
, (A.63b)

J(2)(t,E) = −e2h
2

∂

∂t

{
ν2(t,E)

dU(t)
dt

}
, (A.63c)

J(3)(t,E) = −e2h2

6
∂2

∂t2

{(
1

8π2

∂2ν(t,E)
∂E2

− ν3(t,E)

)
dU(t)

dt

}

(A.63d)

− e3h2

96π2

∂

∂t

{
∂3ν(t,E)
∂E3

(
dU(t)

dt

)2
}
,

where the frozen DOS is:
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A Dynamical mesoscopic capacitor

ν(t,E) =
i

2π
S(t,E)

∂S∗(t,E)
∂E

=
1
∆




1+ 2ℜ
∞∑

q=1

rq eiq[kL−2πeU(t)/∆]




 . (A.64)

Note in Eq. (A.63) we used∂ν/∂t = −e(dU/dt) (∂ν/∂E), since the DOS depends
on time via an oscillating uniform potential only.

To illustrate the physical meaning of Eq. (A.63) it is instructive to rewrite
this equation. Integrating over energy by parts one can represent it in the form
of the continuity equation for a charge current,

I (t) +
∂Q(t)
∂t
= 0 , (A.65a)

Q(t) = e

∞�
0

dE f0(E) νdyn(t,E) , (A.65b)

νdyn(t,E) = ν(t,E) − h
2
∂ν2(t,E)

∂t
+

h2

6
∂2ν3(t,E)

∂t2
(A.65c)

− h2

96π2

∂2

∂E2

{
2
∂2ν(t,E)
∂t2

− ∂2ν(t,E)
∂E2

(
dU
dt

)2
}
.

HereQ(t) is a charge accumulated on a mesoscopic capacitor,νdyn(t,E) can be
called asa dynamical density of states.

The dynamical DOS takes into account a retardation effect, i.e., a finite-
ness of a time spend by an electron inside a capacitor. As a result the charge
Q(t) accumulated on a capacitor depends on the frequency of a drive. At small
driving frequencies,Ω0 → 0, such a dependence (up to terms of orderΩ2

0) can
be accounted by introducing an effective resistanceRq connected in series with
a capacitanceCq. In the linear response regime these quantities are constant pa-
rameters, see Eq.(A.56) for low- and Eq. (A.53) for high-temperature regimes.
In the non-linear regime these parameters become dependenton a driving poten-
tial, i.e., the capacitor is characterized by a non-linear dependence of a charge
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A.2 The chiral single-channel capacitor

Q on the potential dropUC and the resistor has a non-linear current-voltage
(I-V) characteristic. In such a case it is more convenient tointroduce the dif-
ferential parameters, the differential capacitance,C∂(UC) = ∂Q(UC)/∂UC, and
the differential resistance,R∂(V) = ∂V/∂I (V). In terms of these quantities the
currentI (t) flowing into an equivalent electrical circuit subject to the potential
U(t) = UC + V reads as follows (atΩ0→ 0): [119]

I (t) = C∂

dU
dt
− R∂C∂

∂

∂t

(
C∂

dU
dt

)
. (A.66)

Comparing Eqs. (A.63) and (A.66) we find:

C∂(t) = e2

∞�
0

dE

(
−∂ f0(E)

∂E

)
ν(t,E) , (A.67a)

R∂(t) =
h

2e2

∞�
0

dE

(
−∂ f0
∂E

)
∂

∂t

(
ν2(t,E)

dU
dt

)

∞�
0

dE

(
−∂ f0
∂E

)
ν(t,E)

∞�
0

dE

(
−∂ f0
∂E

)
∂

∂t

(
ν(t,E)

dU
dt

) . (A.67b)

We conclude, in the non-linear low-frequency regime the DOSdefines an in-
trinsic capacitance of a mesoscopic sample (which is coupled in series with a
geometrical one if any). That is in accordance with Ref. [112] where the linear
response regime was considered. The difference consists in the following: In
the non-linear regime the DOS is related to the differential capacitance while in
the linear response regime the DOS is related to an ordinary capacitance. An-
other difference we found concerns the effective resistance. In the linear regime
for our system it has a universal value at zero temperature,Rq = h/(2e2), see,
Ref. [112] and Eq. (A.56). While in the non-linear regimeR∂ becomes depen-
dent on the sample’s properties (on the DOS) and the potential U(t).

Note the third contribution in Eq. (A.63), J(3), defines a differential induc-
tanceL∂(t) = ∂Φ/∂I (whereΦ is a magnetic flux). The corresponding equation
can be calculated straightforwardly. We do not show it because it is lengthy.
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A Dynamical mesoscopic capacitor

A.2.8 Transient current caused by a step potential

Let the potential changes abruptly at some time momentt0:

U(t) =






0 , t < t0 ,

U0 , t > t0 .
(A.68)

Strictly speaking we suppose that the potentialU jumps from zero toU0 for
some time intervalδt ≫ ~µ−1

0 . The last inequality allows us to use the scattering
matrix, Eq. (A.21), valid if all the relevant energy scales much smaller than the
Fermi energyµ0. On the other handδt should be small enough compared with
intrinsic time scales (τ, RC-time, etc) to speak about abrupt change.

Using Eq. (A.21) in Eq. (A.45) we represent a current as a sum of two
contributions [see Eq. (3.138)]:

I (t) = I (d)(t) + I (nd)(t) , (A.69a)

I (d)(t) = − i
e

2π

∞∑

q=0

S(q)(t)
∂S(q)∗(t)

∂t
, (A.69b)

I (nd)(t) =
e
πτ
ℑ
∞∑

s=1

η
(
s T

T∗

)
eiskF L

s
Cs(t) , Cs(t) =

∞∑

q=0

S(q+s)(t)S(q)∗(t) .

(A.69c)

These equations are equivalent to equations (A.46).
Note originally Eq. (A.45) for a time-dependent current was derived within

the Floquet scattering theory. However it can be cast into the form which
does not appeal to periodicity of a drive, see general Eq. (3.67) and particular
Eqs. (A.46) and (A.69) as examples. Then one can use this equation to calcu-
late aperiodic current also. Therefore, we use Eq. (A.69) to analyze a transient
current caused by the potential Eq. (A.68).
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A.2 The chiral single-channel capacitor

A.2.8.1 High-temperature current

At high temperatures,T0 ≫ T∗, only the diagonal currentI (d)(t) survives.
For the potentialU(t), Eq. (A.69), this current is (fort ≥ t0): [119]

I (d)(t) =
e2U0

∆

T
τ

RN(t) , (A.70)

whereN(t) = [t/τ] is an integer part of the ratiot/τ.
As we see at high temperatures the current,I (t) = I (d)(t), decays in time in

a step-like manner: It is constant over the time intervalτ and it exponentially
decreases with increase time. Over the time scale larger than τ one can write
I (t) ∼ I0e−(t−t0)/τD, whereI0 = e2U0T/h and

τD =
τ

ln
(

1
R

) , (A.71)

is a decay time. At small transparency of a QPC,T → 0, the decay time is
τD ≈ τ/T.

A.2.8.2 Low-temperature current

At lower temperatures,T0 . T∗, the currentI (t) = I (d)(t) + I (nd)(t) still
decays in time but in addition it shows fast oscillations with a periodh/(eU0).
To calculateI (nd)(t) we need to knowCs(t), Eq. (A.69). We substitute Eq. (A.68)
into Eq. (A.21b) and find,

S(q) =






r , q = 0 ,

t2rq−1 ×






e−i eU0
~
τq , 1 ≤ q ≤ N ,

e−i eU0
~

t , N + 1 ≤ q .

(A.72)

Then we calculate,
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A Dynamical mesoscopic capacitor

S(s)S(0)∗ = −Trs×






e−i eU0
~
τs , 1 ≤ s≤ N , 1 ≤ N ,

e−i
eU0
~

t , N + 1 ≤ s, ∀N ,

(A.73)

and

S(q+s)S(q)∗ = T2Rq−1r s

×






e−i eU0
~
τ s , 1 ≤ q ≤ N − s, 1 ≤ s≤ N − 1 , 2 ≤ N ,

ei
eU0
~

(τq−t) ,






N − s+ 1 ≤ q ≤ N , s≤ N , 1 ≤ N ,

1 ≤ q ≤ N , N + 1 ≤ s, 1 ≤ N ,

1 , N + 1 ≤ q , ∀s, ∀N .

(A.74)

Finally we find,

Cs = γN(t) T rs RN





1− θ(N − s)(

R ei
eU0
~
τ
)s





− χ(t)θ(s− N − 1) ,

(A.75)

γN(t) = 1− T e−i eU0
~

t ei eU0
~
τ(N+1)

1− R ei eU0
~
τ
, χ(t) = e−i eU0

~
t 1− ei eU0

~
τ

1− R ei eU0
~
τ
.

Then we calculate from Eq. (A.69c):

I (nd)(t) =
eT
πτ

∞�
0

dE

(
−∂ f0
∂E

)
ℑ
{

J(1)(t,E) + J(2)(t,E) + J(3)(t,E)
}
, (A.76a)
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A.2 The chiral single-channel capacitor

J(1)(t,E) = −RN ln
(
1− reikL

)
{

1− Te−i2π eU0
∆

t
τ

ei2π eU0
∆

(N+1)

1− Rei2π eU0
∆

}
, (A.76b)

J(2)(t,E) = −RN
N≥1∑

s=1

e
is
(

kL−2π eU0
∆

)

s
r s

Rs

{
1− Te−i2π eU0

∆

t
τ

ei2π eU0
∆

(N+1)

1− Rei2π eU0
∆

}
, (A.76c)

J(3)(t,E) = (−1)
∞∑

s=N+1

eiskL r s

s
e−i2π eU0

∆
t
τ

1− ei2π eU0
∆

1− Re−i2π eU0
∆

. (A.76d)

Note, the equations above differ from Eq. (A.69c) in the following. Using
Eq. (A.47) we reintroduced an integration over energyE and then used the
following identity:

∞�
0

dE f0(E) e
i2πs
∆

(E−µ0) =
∆

i2πs

∞�
0

dE

(
−∂ f0
∂E

)
e

i2πs
∆

(E−µ0) . (A.77)

The currentI (nd)(t), Eq. (A.76), can be greatly simplified ifeU0 = n∆:

J(1)(t,E) = −RN ln
(
1− reikL

) {
1− e−i2π eU0

∆

t
τ

}
, (A.78a)

J(2)(t,E) = (−1)RN
N≥1∑

s=1

eiskL

s
r s

Rs

{
1− e−i2π eU0

∆

t
τ

}
, (A.78b)

J(3)(t,E) = 0 . (A.78c)

If in addition the temperature is low [such that onlyE = µ0 is relevant in
Eq. (A.76a)] and the Fermi level lies exactly in the middle between the cav-
ity’s levels, r seiskF L = (−1)sRs/2, then the total current,I (t) = I (d)(t) + I (nd)(t),
reads as follows,
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I (t) =
Q
τ

T RN(t)

{
1+

sin
(
2πn t

τ

)

πn
ζ(t)

}
,

(A.79a)

ζ(t) = − ln
(

1+
√

R
)
− T0 (N − 1)

N∑

s=1

(−1)s

sR
s
2
,

t < τ : (A.79b)

I (t) =
Q
τ

T

{
1−

sin
(
2πn t

τ

)

πn
ln
(

1+
√

R
)}

,

t ≫ τ : (A.79c)

I (t) ≈ Q
τ

T RN

{
1−

sin
(
2πn t

τ

)

πn
ln
√

R

}
.

A.2.8.3 Emitted charge

Let us calculate a charge,

Q =

∞�
0

dt
{

Id(t) + I (nd)(t)
}
, (A.80)

emitted from the cavity under the action of the potentialU(t), Eq. (A.68). To
this end we integrate a currentI (t) over a time interval of durationτ (over which
N is constant) and then sum overN from zero to infinity,

Q =
∞∑

N=0

(N+1)τ�
Nτ

dt
{

I (d)(t) + I (nd)(t)
}
. (A.81)

After the simple algebra we calculate,
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0 ∆eU  /2.5 3.5

Q / e
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Figure A.3: The dependence of an emitted chargeQ on the potential
step heightU0 at zero temperature. The Fermi level is centered in the
middle of cavity’s levels.

Q =
e2U0

∆
+

e
π

∞�
0

dE

(
−∂ f0
∂E

)
ℑ ln



1− re
i
(

kL−2π eU0
∆

)

1− reikL



 . (A.82)

At T0≫ T∗ above equation gives:Q = e2U0/∆.
At lower temperatures we consider the limitT → 0 when the density of

states can be approximated as a sum of delta-function peaks centered at eigenen-
ergiesEn of an isolated cavity. Atµ0 ≫ ∆ the spectrum near the Fermi energy
is equidistant,En = E0 + n∆. Then we use in Eq. (A.82),

1
π
ℑ ln

(
1− ei 2πE−E0

∆

)
= − 1

2
+

{{
E − E0

∆

}}
,

where{{X}} is a fractional part ofX, and find:

Q =
e2U0

∆
+ e

∞�
0

dE

(
−∂ f0
∂E

)({{
E − E0 − eU0

∆

}}
−
{{

E − E0

∆

}})
.

(A.83)
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From this equation it follows that at zero temperature the emitted (absorbed)
charge is quantized, Fig.A.3. For instance, ifµ0 is centered exactly in the
middle of two cavity’s levels, then we get:

Q = e

[[
1
2
+

eU0

∆

]]
, kBT0 = 0 , T → 0 , (A.84)

where [[X]] is an integer part ofX.
At finite but small temperatures,kBT0 ≪ ∆, the deviationδQ from this

quantized value is:

δQ = sgn(1− 2v0)
1 − e(|1−2v0|−1) ∆

kBT0

e|1−2v0| ∆
2kBT0 + 1

, (A.85)

where v0 = {{eU0/∆}} lies within the following interval: 0 ≤ v0 < 1,
sgn(X) = +1 for X > 0 and−1 for X < 0. The functionδQ(v0) has the fol-
lowing asymptotics:

δQ(v0) =






v0
2∆

kBT0
e−

∆

2kBT0 , v0→ 0 ,

± 1
2
, v0 =

1
2 ∓ 0,

− (1− v0) 2∆
kBT0

e−
∆

2kBT0 , v0→ 1 .

(A.86)

The violation of a charge quantization is exponentially small at low tempera-
tures unless we are at the transition point from one plateau to another.

Next we consider how the quantization of an emitted charge isaffected by
the finiteness of QPC’s transmission coefficient. For the scattering amplitude
S(E), Eq. (A.33), at T ≪ 1 the density of states can be approximated by the
sum of Breit-Wigner resonances [120] with width Γ = T∆/(4π)≪ ∆,

ν(E) =
1
π

∑

n

Γ

(E − En)
2 + Γ2

. (A.87)
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Then at zero temperature,kBT0 = 0, the deviationδQ from Eq. (A.84) reads:

δQ = − θ(2v0 − 1) +
1
2

{
1 −

arctan(1−2v0) 2π
T

arctan2π
T

}
, (A.88)

whereθ(X) is the Heaviside theta-function equal to zero forX < 0 and unity for
X > 0. The asymptotics forδQ(v0) are following:

δQ(v0) =






v0
T
π2 , v0→ 0 ,

±1
2 , v0 =

1
2 ∓ 0 ,

− (1− v0) T
π2 , v0→ 1 .

(A.89)

In contrast to the temperature, the effect of a finite QPC transmission is more
crucial, sinceδQ is linear in transmissionT.
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Appendix B

Mesoscopic capacitor as a particle emitter

In the below we consider the model introduces in Sec.A.2.1 in the large
amplitude (∼ ∆) adiabatic regime at low temperatures. We are particularlyin-
terested in the case of a cavity with small transparency,T → 0. In this case
electrons and holes emitted by the cavity are well separatedin time and we can
treat them as separate particles in quite intuitive manner.On the other hand,
as we show, they are subject to the Pauli exclusion principleand are able to
interfere. Therefore, they are quantum particles.

B.1 Quantized emission regime

First we show that at zero temperature the current generatedby the capac-
itor slowly driven by the large-amplitude periodic potential, U(t) = U(t + T),
consists of a series of positive and negative pulses corresponding to the emis-
sion of electrons and holes. When we speak about an electron emitted by the
cavity we mean the following. With increasing the potentialenergyeU(t) the
position of quantum levels in the cavity changes. One of the occupied levels
can rises above the Fermi level and an electron occupying this level leaves the
cavity. Therefore, the stream of electrons in the linear edge state (which the
capacitor is connected to) is increased by one: The electronis emitted. In con-
trast, wheneU(t) decreases, some empty level can sink below the Fermi level.
Then one electron enters the cavity leaving a hole in the stream of electrons in
the linear edge state: The hole is emitted. Therefore, the quantum capacitor can
serve as a single particle source (SPS). Since after the period T the charge on
the capacitor returns to its initial value, such an SPS emitsthe same number
electrons and holes, i.e., it is a source of quantized ac currents. [115].

Let the capacitor, see Fig.A.1, is driven by the potential

U(t) = U0 + U1 cos(Ω0t + ϕ) . (B.1)
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B.1 Quantized emission regime

In the adiabatic regime to describe a capacitor it is enough to know its frozen
scattering amplitude. In our modelS(t,E) is given in Eq. (A.33b) where we
need to replacekL→ kL− 2πeU(t)/∆. If in addition the temperature is zero,

kBT0 = 0 , (B.2)

then we need the scattering amplitude atE = µ0 only. We rewriteS(t) = S(t, µ0)
as follows,

S(t) = eiθr

√
1− T − eiφ(t)

1−
√

1− Teiφ(t)
, (B.3)

whereθr is a phase of the reflection amplitude of a QPC connecting the SPS
to the linear edge state,r =

√
R eiθr , φ(t) = φ(µ0) − 2πeU(t)/∆ is a phase ac-

cumulated by an electron with energyE = µ0 during one trip along the cavity,
φ(µ0) = θr + kFL.

To proceed analytically we assume that the amplitudeU1 of an oscillating
potential is chosen in such a way that during a period only onelevel of the SPS
crosses the Fermi level. The time of crossingt0 is defined by the condition
φ(t0) = 0 mod 2π. Introducing the deviation of a phase from its resonance
value,δφ(t) = φ(t) − φ(t0), we obtain the scattering amplitude in the limit

T → 0 , (B.4)

as follows:

S(t) = −eiθr
T + 2iδφ(t)
T − 2iδφ(t)

+ O(T2) . (B.5)

We keep only terms in the leading order inT.
There are two time moments when resonance conditions occur (two times

of crossing). First time is when the level rises above the Fermi level and the
second one is when the level sinks below the Fermi level. We denote these
times ast(−)

0 andt(+)
0 , respectively. At a timet(−)

0 one electron is emitted by the
cavity, while at a timet(+)

0 one electron enters the cavity, a hole is emitted.
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B Mesoscopic capacitor as a particle emitter

We suppose that the constant part of the potentialU0 accounts for a detun-
ing of the nearest electron levelEn in the SPS from the Fermi level. Then the
resonance times can be found from the following equation:

En + eU
(

t(∓)
0

)
= µ0 ⇒ U0 + U1 cos

(
Ω0t

(∓)
0 + ϕ

)
= 0 . (B.6)

For |eU0| < ∆/2 and|eU0| < |eU1| < ∆ − |eU0| we find the resonance times,

t(∓)
0 = ∓t(0)

0 − ϕ

Ω0
, t(0)

0 =
1
Ω0

arccos

(
−U0

U1

)
. (B.7)

The deviation from the resonance time,δt(∓) = t − t(∓)
0 , can be related

to a deviation from the resonance phase,δφ(∓) = ∓MΩ0δt(∓), where∓M =

dφ/dt|t=t(∓)
0
/Ω0 = ∓2π|e|∆−1

√
U2

1 − U2
0. With these definitions we can rewrite

Eq. (B.5) as follows:

S(t) = eiθr






t − t(+)
0 − iΓτ

t − t(+)
0 + iΓτ

,
∣∣∣t − t(+)

0

∣∣∣ . Γτ ,

t − t(−)
0 + iΓτ

t − t(−)
0 − iΓτ

,
∣∣∣t − t(−)

0

∣∣∣ . Γτ ,

1 ,
∣∣∣t − t(∓)

0

∣∣∣ ≫ Γτ .

(B.8)

HereΓτ is (a half of) a time during which the level rises above or sinkbelow the
Fermi level:

Ω0Γτ =
T∆

4π
∣∣∣eU1 sin

(
Ω0t

(0)
0 + ϕ

)∣∣∣
=

T∆

4π|e|
√

U2
1 − U2

0

. (B.9)

The equation (B.8) assumes that the overlap between the resonances is small,
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B.1 Quantized emission regime

∣∣∣t(+)
0 − t(−)

0

∣∣∣ ≫ Γτ . (B.10)

Substituting Eq. (B.8) into Eq. (A.12) we find an adiabatic current at zero
temperature (for 0< t < T):

I (t) =
e
π





Γτ(

t − t(−)
0

)2
+ Γ2

τ

− Γτ(
t − t(+)

0

)2
+ Γ2

τ





. (B.11)

This current consists of two pulses of the Lorentzian shape with half-width Γτ
corresponding to an emission of an electron and a hole. Integrating over time
easy to check that the first pulse carries a chargeewhile the second pulse carries
a charge−e.

In this regime the frozen density of states, Eq. (A.64) reads:

ν(t, µ0) =
4
∆T





Γ2
τ(

t − t(−)
0

)2
+ Γ2

τ

+
Γ2
τ(

t − t(+)
0

)2
+ Γ2

τ





, (B.12)

With this equation one can estimate the adiabaticity condition, i.e., the condition
under which the currentI (2) ∼ Ω2

0 is small compared to a linear inΩ0 current
I (1), see Eq. (A.63). We useν ∼ 1/(T∆). In the linear response regime we have,
I2 ∼ e2hν2 d2U/dt2, and correspondingly find:

̟lin ∼
I (2)

I (1)
∼ hνΩ0 ∼

τΩ0

T
≪ 1 . (B.13a)

While in the non-linear regime to leading order inΩ0Γτ we can write: I (2) ∼
e2hν (∂ν/∂t) (dU/dt). Then using∂ν/∂t ∼ 1/(ΓτT∆) we calculate:

̟n/lin ∼
I (2)

I (1)
∼ h
ΓτT∆

∼ τΩ0

T2
≪ 1 . (B.13b)

Comparing Eqs. (B.13a) and (B.13b) we conclude that in the quantized emis-
sion regime the adiabaticity condition is more restrictivecompared to the linear
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B Mesoscopic capacitor as a particle emitter

response regime. For instance, if Eq. (B.13a) can be rewrittent asτD ≪ T, then
Eq. (B.13b) can be rewritten asτD ≪ Γτ.

We calculate also the heat production rateIE in the quantized emission
regime. For the currentI (t), Eq. (B.11), we find to leading order inΩ0Γτ ≪ 1,

T
〈
I2
〉
=

e2

π

1
Γτ
, (B.14)

and substituting it into Eq. (A.20) we finally find, [113]

IE =
~

Γτ

1
T
. (B.15)

This heat flow is due to additional (over theµ0) energy~/(2Γτ) carried by each
particle (electron or hole) emitted during the periodT.

B.2 Shot noise quantization

Let us show that the quantized ac current generated by the SPSresults in a
quantized shot noise [121, 116, 122] in a geometry of Fig.B.1.

We calculate the zero-frequency symmetrized correlation function power
P12 for currentsI1(t) and I2(t) flowing into the contacts 1 and 2. At zero tem-
perature it reads [see Eq. (6.27)],

P12 =
e2Ω

4π

∞∑

q=−∞
|q|

2∑

γ,δ=1

{
S̃0,1γ S̃∗0,1δ

}∗
q

{
S̃0,2γ S̃∗0,2δ

}
q . (B.16)

The frozen scattering matrix̃̂S0(t) for the entire system is:

ˆ̃S0(t) =




eikFL11S(t)rC eikFL12tC

eikF L21S(t)tC eikF L22rC



 , (B.17)

whereLγδ is a length of a path along the linear edge states from the contactδ to
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B.2 Shot noise quantization

U(t)

TC

I1(t) I2(t)

Figure B.1: The quantum capacitor is connected to the linearedge state which in
turn is connected via the central QPC with transmissionTC to another linear edge
state. The arrows indicate the direction of motion. The potential U(t) induced by
the back-gate acting onto the capacitor generates an ac current I (t) which is splitted
at the central QPC into the currentsI1(t) andI2(t) flowing into the leads.

the contactγ, rC/tC is a reflection/transmission amplitude of the central QPC,
S(t) is a scattering amplitude of the capacitor. Remind that at zero temperature
we need all quantities only atE = µ0. After the simple algebra we find,

P12 = −P0

∞∑

q=1

q
{∣∣Sq

∣∣2 +
∣∣S−q

∣∣2
}
, (B.18)

where

P0 = e2RCTC
Ω0

2π
. (B.19)

To calculate the shot noise we need the Fourier coefficients,

Sq =

T�
0

dt
T

eiqΩ0t S(t) , (B.20)
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B Mesoscopic capacitor as a particle emitter

which in the limit
Γτ ≪ T , (B.21)

can be calculated as follows. The functionS(t), Eq. (B.8), is almost constant
and changes only in a tiny (∼ Γτ) vicinity of times t(∓)

0 . Since only integrating
over those small intervals plays a role in Eq. (B.20), we can formally extend
integral,

� T

0 →
� ∞
−∞, and evaluate it closing the contour in the complext-plane,� ∞

−∞ →
�

, in the upper, Imt > 0, for q > 0 or in the lower, Imt < 0, for q < 0
semi-plane. The corresponding contour integral is evaluated using the Cauchy
integral,

1
2πi

�
dt

Np∑

j=1

f j(t)
(t − tp j)n j+1 =

Np∑

j=1

1
nj!

dn j f j

dtn j

∣∣∣
t=tp j

, (B.22)

wheretp j is a pole of thenjth order,Np is a number of poles which lie inside
the integration contour.

The functionS(t), Eq. (B.8), has polest(−)
p = t(−)

0 + iΓτ andt(+)
p = t(+)

0 − iΓτ in
the upper and lower semi-planes of the complex variablet, respectively. Simple
evaluation gives:

Sq = − 2Ω0Γτ e−|q|Ω0Γτ eiθr






eiqΩ0t
(−)
0 , q > 0 ,

eiqΩ0t
(+)
0 , q < 0 .

(B.23)

Substituting above equation into Eq. (B.18) and evaluating the following sum
to leading order in the small parameterǫ = Ω0Γτ,

∞∑

q=1

q
∣∣Sq

∣∣2 = 1+ O
(
ǫ2
)
, (B.24)

we finally find the noise,
P12 = −2P0 , (B.25)
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B.2 Shot noise quantization

which is independent of both the parameters of the SPS and theparameters of a
driving potential.

If the amplitudeU1 of an oscillating potentialU(t), Eq. (B.1) is larger, for
instance ifn electrons andn holes are emitted during a period, then the noise
is n times larger1, P12 = −2nP0, see the upper solid (black) line in Fig.B.5 in
Sec.B.4.

Remarkably the noise produced by the SPS is quantized. The increment
P0, Eq. (B.25), depends on the frequencyΩ0 of the oscillating voltage and on the
transparencyTC of the central QPC. Therefore the quantization is not universal.

B.2.1 Probability interpretation for the shot noise

The noiseP12, Eq. (B.25), can be understood as the shot noise due to one
electron and one hole emitted by the source during the periodT = 2π/Ω0. The
shot noise originates from the fact that in each particular event the indivisible
particle has either to be reflected from or transmitted through the central QPC
[20]. Since an electron and a hole are emitted at different times they are un-
correlated and contribute to the noise independently. Since the electron-hole
symmetry is not violated in our system they contribute to noise equally, lead-
ing to a factor 2 in Eq. (B.25). Further for definiteness we consider an electron
contribution,

P
(e)
12 = −P0 = − e2RCTC

Ω0

2π
. (B.26)

The hole contribution can be considered similarly.
To interpretP(e)

12 we introduce the following probabilities which are eval-
uated by averaging over many periods. First, we introduce a single-particle
probability Nα having a meaning of a probability to detect an electron at the
reservoirα = 1, 2 during a period. Taking into account that the SPS emits only
one electron during a period, we calculate for the circuit under consideration,

1The authors of the Ref. [121] considered the Lorentzian current pulses generated by carefully shaped external
voltage pulses across two-terminal conductors and showed the the shot noise is proportional to the number of
excitations. The operator algebra describing these excitations is also derived.

233



B Mesoscopic capacitor as a particle emitter

Fig. B.1:
N1 = RC , N2 = TC . (B.27)

Second, we introduce a two-particle probabilityNαβ which means a probability
to detect two particles at different contacts during a period. Since in our case
there is only one electron emitted during a period, we have,

N12 = 0 . (B.28)

And, finally, we introduce the particle-particle correlation function,

δN12 = N12 − N1N2 . (B.29)

From Eqs.(B.27) - (B.29) we find:

δN12 = −RCTC . (B.30)

Comparing above equation and Eq. (B.26) we find the following relation be-
tween the noise power and the particle correlator:

P12 =
e2Ω0

2π
δN12 . (B.31)

The equations (B.29) and (B.31) show how the current cross-correlatorP12 re-
lates to the two-particle detection probabilityN12. We will show that this rela-
tion holds also for circuits with several SPSs whenN12 , 0.

B.3 Two-particle source

Two cavities placed in series, Fig.B.2, and driven by the potentialsUL(t)
andUR(t) with the same periodT can serve as a two-particle source. Depending
on the phase difference between the potentialsUL(t) andUR(t) such a double-
cavity capacitor can emit electron and hole pairs, or electron-hole pairs, or emit
single particles, electrons and holes. [41]
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B.3 Two-particle source

B.3.1 Scattering amplitude

If the cavities placed at a small distance,LLR ≈ 0, of each other, then the
Floquet scattering amplitude of a capacitor reads,

S(2)
F (En,E) =

∞∑

m=−∞
SR,F(En,Em)SL,F(Em,E) . (B.32)

HereS j,F(En,E) is the Floquet scattering amplitude for a single cavity,j = L, R.
Then introducing the amplitudeS(2)

in (t,E) whose Fourier coefficients define the
elements of the Floquet scattering matrix of a double-cavity capacitor,

S(2)
F (En,E) =

T�
0

dt
T

einΩ0tS(2)
in (t,E) , (B.33)

and using Eq. (A.21) for a single-cavity scattering amplitude, we find:

S(2)
in (t,E) =

∞∑

p=0

eipkLRS(p)
R (t)

∞∑

r=0

eirkLLS(r)
L (t − pτ) , (B.34)

whereL j is a length of the cavityj = L, R.

B.3.2 Adiabatic approximation

In the limit of a slow excitation,Ω0 → 0, we can approximate the single-
cavity Floquet scattering matrix as follows:

S j,F(En,E) = S j,n(E) +
~Ω0n

2
∂S j,n(E)
∂E

+ O
(
Ω2

0

)
, (B.35)

whereS j,n(E) is the nth Fourier coefficient for the frozen scattering matrix,
S j(t,E), of a single cavity. For the double-cavity capacitor we have to write:

S(2)
F (En,E) = S(2)

n (E) +
~Ω0n

2
∂S(2)

n (E)
∂E

+ ~Ω0An(E) + O
(
Ω2

0

)
, (B.36)
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B Mesoscopic capacitor as a particle emitter

UL(t) UR(t)

TL TR

Figure B.2: The model of a double-cavity chiral quantum capacitor. The periodic
potentialsUL(t) = UL(t + T) andUR(t) = UR(t + T) act uniformly onto the corre-
sponding single cavities connected via the QPSs with transmissionTL andTR to the
same linear edge state. Arrows indicate the direction of movement of electrons.

whereS(2)
n is a Fourier coefficient for the frozen scattering matrix of a double-

cavity system,

S(2)(t,E) = SR(t,E)SL(t,E) . (B.37)

Correspondingly, the inverse Fourier transform gives:

S(2)
in (t,E) = S(2)(t,E) +

i~
2
∂2S(2)(t,E)
∂t∂E

+ ~Ω0 A(t,E) . (B.38)

To find the anomalous scattering amplitudeA(t,E) for a double-cavity system,
we substitute Eq. (B.35) into Eq. (B.32). Then after the inverse Fourier trans-
formation we find:

S(2)
in (t,E) = SR(t,E) SL(t,E) + i~

∂SL

∂t
∂SR

∂E
(B.39)

+
i~
2

{
SL

∂2SR

∂t∂E
+ SR

∂2SL

∂t∂E

}
.

Comparing Eqs. (B.38) and (B.39) we finally get:
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B.3 Two-particle source

~Ω0 A(t,E) =
i~
2

{
∂SL

∂t
∂SR

∂E
− ∂SL

∂E
∂SR

∂t

}
. (B.40)

B.3.2.1 Time-dependent current

In lines with calculations presented in Sec.4.1.3we calculate the time-
dependent current generated by the double-cavity capacitor up toΩ2

0 terms:

I (2)(t) =
e

2π

∞�
0

dE

(
−∂ f0
∂E

){
ℑ
(

S(2) ∂S(2)∗

∂t

)
+ 2~Ω0ℑ

(
A
∂S(2)∗

∂t

)

+
∂

∂t

(
~

2
∂S(2)

∂E
∂S(2)∗

∂t
− i~Ω0 S(2)A∗

)}
. (B.41)

Using Eqs. (B.37) and (B.40) we find:

I (2)(t) = e2

∞�
0

dE

(
−∂ f0
∂E

){
J(2,1)(t,E) + J(2,2)(t,E)

}
. (B.42a)

J(2,1)(t,E) = νL(t,E)
dUL(t)

dt
+ νR(t,E)

dUR(t)
dt

, (B.42b)

J(2,2)(t,E) = − h
2
∂

∂t

{
ν2

L
dUL

dt
+ ν2

R
dUR

dt
+ 2νL νR

dUL

dt

}
. (B.42c)

Hereν j(t,E) is the frozen DOS of the cavityj = L, R.

B.3.3 Mean square current

To recognize a regime when both cavities emit particles simultaneously we
calculate the mean square current: [41]

237



B Mesoscopic capacitor as a particle emitter

〈I2〉 =
T�

0

dt
T

(
I (2)(t)

)2
. (B.43)

To leading order inΩ0 we should keep onlyJ(2,1) in Eq. (B.42). Alternatively
one can express an adiabatic current directly in terms of theFourier coefficients
S(2)

0,q for the double-cavity frozen scattering amplitude, Eq. (B.37). Then, by
analogy with Eq. (A.17), we get at zero temperature:

〈I2〉 = e2Ω2
0

4π2

∞∑

q=1

q2

{∣∣∣S(2)
0,q

∣∣∣
2
+

∣∣∣S(2)
0,−q

∣∣∣
2
}
. (B.44)

To calculate the Fourier coefficients,

S(2)
q =

T�
0

dt
T

eiqΩ0tSL(t) SR(t) , (B.45)

we proceed similarly to how we calculated Eq. (B.23). For amplitudesS j(t) we
use Eq. (B.8) with lower indecesL and R indicating cavity-specific quantities
θr j , Γτ j andt(∓)

0 j , j = L, R. We assume that each cavity emits only one electron
and one hole during a period. Then the functionsS j(t) for 0 < t < T have one
pole,t(−)

p j = t(−)
0 j + iΓτ j , in the upper and one pole,t(+)

p j = t(+)
0 j − iΓτ j , in the lower

semi-plane of a complex variablet. Therefore, we calculate:

S(2)
q =






SR

(
t(−)
pL

)
SL,q + SL

(
t(−)
pR

)
SR,q , q > 0 ,

SR

(
t(+)
pL

)
SL,q + SL

(
t(+)
pR

)
SR,q , q < 0 ,

(B.46)

where,S j,q are given in Eq. (B.23) with θr , Γτ andt(∓)
0 being replaced byθr j , Γτ j

andt(∓)
0 j , respectively. The squared Fourier coefficient reads:
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B.3 Two-particle source

∣∣S(2)
q

∣∣2 =
∣∣∣SR

(
t(χ)
pL

)∣∣∣
2 ∣∣SL,q

∣∣2 +
∣∣∣SL

(
t(χ)
pR

)∣∣∣
2 ∣∣SR,q

∣∣2 + ξ(χ)
q ,

(B.47)

ξ(χ)
q = 2ℜ

{
SR

(
t(χ)
pL

)
SL,q S∗L

(
t(χ)
pR

)
S∗R,q

}
,

whereχ = − for q > 0 andχ = + for q < 0.
To proceed further we need to define more precisely whether two cavi-

ties emit particles at close or at different times. To this end we introduce the
difference of times,

∆t(χ,χ
′)

L,R = t(χ)
0L − t(χ

′)
0R , (B.48)

whereχ = ∓ andχ′ = ∓ depending on particles (an electron or a hole) of
interest, and compare∆t(χ,χ

′)
L,R to the duration of current pulsesΓτL, ΓτR.

B.3.3.1 Emission of separate particles

First, we assume that all the particles are emitted at different times,
∣∣∣∆t(χ,χ

′)
L,R

∣∣∣ ≫ ΓτL, ΓτR . (B.49)

In this case,
S j

(
t(χ)
0 j̄

)
= eiθr j , (B.50)

where j , j̄, and from Eq. (B.47) we find:

∣∣∣S(2)
0,q

∣∣∣
2
= 4Ω2

0

{
Γ2
τL e−2|q|Ω0ΓτL + Γ2

τR e−2|q|Ω0ΓτR
}
+ ξ(χ)

q ,

(B.51)

ξ(χ)
q = 8Ω2

0ΓτLΓτR e−|q|Ω0(ΓτL+ΓτR) cos
(

qΩ0∆t(χ,χ)
L,R

)
.

Next we need to sum up overq in Eq. (B.44).
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It is convenient to introduce the following quantities:

A1, j =

∞∑

q=1

e−2qΩ0Γτ j =
e−2Ω0Γτ j

1− e−2Ω0Γτ j
=

1
2Ω0Γτ j

+ O(1) , (B.52)

A2 =

∞∑

q=1

e−qΩ0ΓτΣ cos(qΩ0∆t) =
(−1)

2
cos(Ω0∆t) − e−Ω0ΓτΣ

cos(Ω0∆t) − cosh(Ω0ΓτΣ)

∆t≫Γτ
= −1

2
+ O(Ω0ΓτΣ) , (B.53)

A3 =

∞∑

q=1

e−qΩ0ΓτΣ sin(qΩ0∆t) =
(−1)

2
sin(Ω0∆t)

cos(Ω0∆t) − cosh(Ω0ΓτΣ)

∆t≫Γτ
=

1
2

ctg

(
Ω0∆t

2

)
+ O(Ω0ΓτΣ) . (B.54)

whereΓτΣ = ΓτL + ΓτR and∆t = ∆t(χ,χ)
L,R . Then we see, to leading order in

Ω0Γτ j ≪ 1 the term withξ(χ)
q does not contribute to the sum overq unless

∆t(χ,χ)
L,R . Γτ j.

Substituting Eq. (B.51) into Eq, (B.44) and using the following sum,

∞∑

q=1

q2e−2qΩ0Γτ j =
1

4Ω2
0

∂2A1, j

∂Γ2
τ j

≈ 1
4Ω3

0Γ
3
τ j

,

we find,

T 〈I2〉 = e2

π

(
1
ΓτL
+

1
ΓτR

)
. (B.55)

Comparing above equation with a single-cavity result, Eq. (B.14), we conclude:
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B.3 Two-particle source

If all particles are emitted at different times then both cavities contribute addi-
tively to 〈I2〉. Note, because of Eq. (A.20) the same is correct with respect to a
generated heat flow.

B.3.3.2 Particle reabsorption regime

Let one cavity of the capacitor emits an electron (a hole) at the time when
another cavity emits a hole (an electron). We expect that thesource comprising
both cavities does not generate a current, since the particle emitted by the first
cavity is absorbed by the second cavity. The subsequent calculations of both the
quantity

〈
I2
〉

and the shot noise (in Sec.B.3.4.2) support such an expectation.
So, we suppose that,

∣∣∣∆t(+,−)
L,R

∣∣∣ ,
∣∣∣∆t(−,+)

L,R

∣∣∣ . ΓτL, ΓτR ,
(B.56)∣∣∣∆t(−,−)

L,R

∣∣∣ ,
∣∣∣∆t(+,+)

L,R

∣∣∣ ≫ ΓτL, ΓτR .

In this caseξ(χ)
q in Eq. (B.47) still does not contribute, since it depends on∆t(χ,χ)

1,2
which is large. Other quantities, we need to calculate Eq. (B.47), are the fol-
lowing:

SL

(
t(−)
pR

)
= eiθrL

∆t(+,−)
L,R +i(ΓτL−ΓτR)

∆t(+,−)
L,R −i(ΓτL+ΓτR)

, SL

(
t(+)
pR

)
= eiθrL

∆t(−,+)
L,R −i(ΓτL−ΓτR)

∆t(−,+)
L,R +i(ΓτL+ΓτR)

,

SR

(
t(−)
pL

)
= eiθrR

∆t(−,+)
L,R +i(ΓτL−ΓτR)

∆t(−,+)
L,R +i(ΓτL+ΓτR)

, SR

(
t(+)
pL

)
= eiθrR

∆t(+,−)
L,R −i(ΓτL−ΓτR)

∆t(+,−)
L,R −i(ΓτL+ΓτR)

.

After squaring we find,
∣∣∣SL

(
t(−)
pR

)∣∣∣
2
=

∣∣∣SR

(
t(+)
pL

)∣∣∣
2
= γ

(
∆t(+,−)

L,R

)
,

∣∣∣SL

(
t(+)
pR

)∣∣∣
2
=

∣∣∣SR

(
t(−)
pL

)∣∣∣
2
= γ

(
∆t(−,+)

L,R

)
,
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B Mesoscopic capacitor as a particle emitter

where

γ(∆t) =
(∆t)2 + (ΓτL − ΓτR)2

(∆t)2 + (ΓτL + ΓτR)2
. (B.57)

Remarkablyγ(∆t) is independent ofq, i.e., when an electron and a hole are
emitted at close times then all the photon-assisted probabilities are reduced by
the same factor. Therefore, we can immediately write instead of Eq. (B.55) the
following equation,

T〈I2〉 = e2

2π

(
1
ΓτL
+

1
ΓτR

){
γ
(
∆t(−,+)

L,R

)
+ γ
(
∆t(+,−)

L,R

)}
. (B.58)

For the identical cavities,ΓτL = ΓτR, emitting in synchronism,∆t(−,+)
L,R = ∆t(+,−)

L,R =

0, the mean square current vanishes. Therefore, one can say that in this case the
second (R) cavity re-absorbs all the particles emitted by the first (L) cavity.

B.3.3.3 Two-particle emission regime

Next we consider the cases when the two particles of the same kind are
emitted near simultaneously. Due to the Pauli exclusion principle it is impossi-
ble to have two (spinless) electrons (or two holes) in the same state. Therefore,
the second emitted particle should have energy larger than the first one. To be
more precise, the electron pair (or the hole pair) has energylarger then the sum
of energies of two separately emitted electrons (holes). Therefore, the heat flow
IE should be enhanced and, because of Eq. (A.20), the mean square current also
should be enhanced [compared to Eq. (B.55)].

We assume:
∣∣∣∆t(−,−)

L,R

∣∣∣ ,
∣∣∣∆t(+,+)

L,R

∣∣∣ . ΓτL, ΓτR ,
(B.59)∣∣∣∆t(−,+)

L,R

∣∣∣ ,
∣∣∣∆t(+,−)

L,R

∣∣∣ ≫ ΓτL, ΓτR .

In this case the two poles ofS(2)(t) = SL(t)SR(t) as a function of a complex time
t in the upper (and/or in the lower) semi-plane become close to each other, that
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B.3 Two-particle source

affects calculations significantly. Now the quantitiesA2, Eq. (B.53), andA3,
Eq. (B.54), become of orderA1, j, Eq. (B.52). Therefore, we should keepξ(χ)

q in

Eq. (B.47). From Eq. (B.59) it follows thatΩ0∆t(χ,χ)
L,R ≪ 1 and we find:

A2 =
Ω0(ΓτL + ΓτR)

(
Ω0∆t(χ,χ)

L,R

)2
+ Ω2

0(ΓτL + ΓτR)2
+ O(1) , (B.60a)

A3 =
Ω0∆t(α,α)

L,R(
Ω0∆t(χ,χ)

L,R

)2
+ Ω2

0 (ΓτL + ΓτR)2
+ O(1) . (B.60b)

Also we will use the following quantities,

SL

(
t(−)
pR

)
= eiθrL

∆t(−,−)
L,R −i(ΓτL+ΓτR)

∆t(−,−)
L,R +i(ΓτL−ΓτR)

, SL

(
t(+)
pR

)
= eiθrL

∆t(+,+)
L,R +i(ΓτL+ΓτR)

∆t(+,+)
L,R −i(ΓτL−ΓτR)

,

SR

(
t(−)
pL

)
= eiθrR

∆t(−,−)
L,R +i(ΓτL+ΓτR)

∆t(−,−)
L,R +i(ΓτL−ΓτR)

, SR

(
t(+)
pL

)
= eiθrR

∆t(+,+)
L,R −i(ΓτL+ΓτR)

∆t(+,+)
L,R −i(ΓτL−ΓτR)

,

SR

(
t(−)
pL

)
S∗L
(

t(−)
pR

)
= ei(θrR−θrL )

(
∆t(−,−)

L,R

)2
−(ΓτL+ΓτR)2+2i∆t(−,−)

L,R (ΓτL+ΓτR)
(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

,

SR

(
t(+)
pL

)
S∗L
(

t(+)
pR

)
= ei(θrR−θrL )

(
∆t(+,+)

L,R

)2
−(ΓτL+ΓτR)2−2i∆t(+,+)

L,R (ΓτL+ΓτR)
(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

,

and some squares,

∣∣∣SL

(
t(−)
pR

)∣∣∣
2
=

∣∣∣SR

(
t(−)
pL

)∣∣∣
2
=

(
∆t(−,−)

L,R

)2
+ (ΓτL + ΓτR)2

(
∆t(−,−)

L,R

)2
+ (ΓτL − ΓτR)2

, (B.61)

∣∣∣SL

(
t(+)
pR

)∣∣∣
2
=

∣∣∣SR

(
t(+)
pL

)∣∣∣
2
=

(
∆t(+,+)

L,R

)2
+ (ΓτL + ΓτR)2

(
∆t(+,+)

L,R

)2
+ (ΓτL − ΓτR)2

. (B.62)
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B Mesoscopic capacitor as a particle emitter

In Eq. (B.44) we need to calculate the following sum,

∞∑

q=1

q2
∣∣S(2)

q

∣∣2 = Φ1 + Φ2 , (B.63a)

where

Φ1 =

∣∣∣SL

(
t(−)
pR

)∣∣∣
2 ∞∑

q=1

q2
{∣∣SL,q

∣∣2 +
∣∣SR,q

∣∣2
}
=

∣∣∣SL

(
t(−)
pR

)∣∣∣
2

(B.63b)

×
∑

j=L,R

Γ2
τ j
∂2A1, j

∂Γ2
τ j

=

(
∆t(−,−)

L,R

)2
+ (ΓτL + ΓτR)2

(
∆t(−,−)

L,R

)2
+ (ΓτL − ΓτR)2

1
Ω0

{
1
ΓτL
+

1
ΓτR

}
,

and

Φ2 =
∞∑

q=1
q2ξ(−)

q = 2
∞∑

q=1
q2ℜ

{
SR

(
t(−)
pL

)
SL,q S∗L

(
t(−)
pR

)
S∗R,q

}

=
8Ω2

0ΓτLΓτR(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

{(
∆t(−,−)

L,R

)2
−(ΓτL+ΓτR)2

Ω2
0

∂2A2

∂Γ2
τL
− 2∆t(−,−)

L,R (ΓτL+ΓτR)
Ω2

0

∂2A3

∂Γ2
τL

}
,

(B.63c)

From Eqs. (B.60) we calculate,

∂A2
∂ΓτL
=

(
∆t(χ,χ)

L,R

)2
−(ΓτL+ΓτR)2

Ω0

((
∆t(χ,χ)

L,R

)2
+(ΓτL+ΓτR)2

)2 ,
∂A3
∂ΓτL
=

−2∆t(χ,χ)
L,R (ΓτL+ΓτR)

Ω0

((
∆t(χ,χ)

L,R

)2
+(ΓτL+ΓτR)2

)2 ,

and

∂2A2

∂Γ2
τL
=
−2(ΓτL+ΓτR)

(
3
(
∆t(χ,χ)

L,R

)2
−Γ2

τΣ

)

Ω0

((
∆t(χ,χ)

L,R

)2
+Γ2

τΣ

)3 , ∂2A3

∂Γ2
τL
=
−2∆t(χ,χ)

L,R

((
∆t(χ,χ)

L,R

)2
−3Γ2

τΣ

)

Ω0

((
∆t(χ,χ)

L,R

)2
+Γ2

τΣ

)3 ,
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B.3 Two-particle source

Using above equations in Eq. (B.63c), we find,

Φ2 =
8ΓτLΓτRΠ

Ω0

((
∆t(−,−)

L,R

)2
+ (ΓτL − ΓτR)2

)((
∆t(−,−)

L,R

)2
+ (ΓτL + ΓτR)2

)3 ,

with

Π = −2ΓτΣ

{((
∆t(−,−)

L,R

)2
− Γ2

τΣ

)(
3
(
∆t(−,−)

L,R

)2
− Γ2

τΣ

)

−2
(
∆t(−,−)

L,R

)2
((
∆t(−,−)

L,R

)2
− 3Γ2

τΣ

)}
= −2ΓτΣ

((
∆t(−,−)

L,R

)2
+ Γ2

τΣ

)2

.

After the simplification it becomes:

Φ2 =
−16ΓτLΓτR(ΓτL + ΓτR)

Ω0

((
∆t(−,−)

L,R

)2
+ (ΓτL − ΓτR)2

)((
∆t(−,−)

L,R

)2
+ (ΓτL + ΓτR)2

) . (B.64)

Next, substituting Eqs. (B.63b) and (B.64) into Eq. (B.63a) we get:

∞∑
q=1

q2
∣∣S(2)

,q

∣∣2 =
(ΓτL+ΓτR)

{((
∆t(−,−)

L,R

)2
+(ΓτL+ΓτR)2

)2

−16Γ2
τLΓ

2
τR

}

Ω0ΓτLΓτR

((
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

)((
∆t(−,−)

L,R

)2
+(ΓτL+ΓτR)2

)

=
ΓτΣ

((
∆t(−,−)

L,R

)2
+Γ2

τΣ+4ΓτLΓτR

)

Ω0ΓτLΓτR

((
∆t(−,−)

L,R

)2
+Γ2

τΣ

) = 1
Ω0

(
1
ΓτL
+ 1
ΓτR

){
2− γ

(
∆t(−,−)

L,R

)}
,

whereγ(∆t) is defined in Eq. (B.57). The sum
∑∞

q=1 q2
∣∣∣S(2)
−q

∣∣∣
2

gives the same

result but with∆t(−,−)
1,2 being replaced by∆t(+,+)

1,2 . Finally, from Eq. (B.44) we
have the mean square current,
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B Mesoscopic capacitor as a particle emitter

T〈I2〉 = e2

2π

(
1
ΓτL
+

1
ΓτR

){
4− γ

(
∆t(−,−)

L,R

)
− γ
(
∆t(+,+)

L,R

)}
. (B.65)

For the identical cavities,ΓτL = ΓτR, emitting electrons and holes in synchro-
nism,∆t(−,−)

L,R = ∆t(+,+)
L,R = 0, the mean square current, hence the heat production

rate, is as twice as larger compared to the one in the regime ofseparately emitted
particles, Eq. (B.55).

Combining Eq. (B.58) with Eq. (B.65) we obtain an equation describing
all the considered regimes: [41]

T〈I2〉 = e2

2π

(
1
ΓτL
+

1
ΓτR

){
2+ γ

(
∆t(−,+)

L,R

)
+ γ
(
∆t(+,−)

L,R

)

(B.66)

−γ
(
∆t(−,−)

L,R

)
− γ
(
∆t(+,+)

L,R

)}
.

Note that this equation is in the leading order inΩ0Γτ j ≪ 1. The higher order
corrections arise from the currentJ(2,2) in Eq. (B.42) and from approximations
we made evaluating the Fourier coefficients, Eq. (B.20).

B.3.4 Shot noise of a two-particle source

Let the double-cavity capacitor is connected to a linear edge state which in
turn is connected to another linear edge state via a central QPC with transmis-
sion TC, Fig. B.3. Our aim is to investigate how the shot noise, arising when
emitted particles (electrons and holes) are scattered at the central QPC, depends
on the regime of emission of the double-cavity capacitor.

By analogy with the single-cavity capacitor case, Eq. (B.18), we can write:

P12 = −P0

∞∑

q=1

q
{∣∣S(2)

q

∣∣2 +
∣∣S(2)
−q

∣∣2
}
, (B.67a)
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B.3 Two-particle source

UL(t) UR(t)

TC
I1(t) I2(t)

Figure B.3: The double-cavity quantum capacitor is connected to the linear edge state
which in turn is connected via the central QPC with transmission TC to another linear
edge state. The arrows indicate the direction of motion. ThepotentialsUL(t) andUR(t)
induced by the back-gates acting on the corresponding cavities generate an ac currentI (t)
which is splitted at the central QPC into the currentsI1(t) andI2(t) flowing into the leads.

and taking into account thatS(2) = SLSR:

P12 = −P0

∞∑

q=1

q
{∣∣(SLSR)q

∣∣2 +
∣∣(SLSR)−q

∣∣2
}
. (B.67b)

To evaluate this cross-correlator for the different emission regimes we proceed
similarly to what we did in Sec.B.3.3.

B.3.4.1 Emission of separate particles

If all the particles are emitted at different times, Eq. (B.49), then calculat-
ing the sum overq we can neglect the termξ(χ)

q in Eq. (B.51). Then using the
following sum (to the leading order inΩ0Γτ j ≪ 1),

∞∑

q=1

qe−2qΩ0Γτ j =
−1
2Ω0

∂A1, j

∂Γτ j
≈ 1

4Ω2
0Γ

2
τ j

,
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B Mesoscopic capacitor as a particle emitter

(see Eq. (B.52) for A1, j) we calculate,

P12 = −4P0 , (B.68)

This noise is due to four particles (two electrons and two holes) emitted by both
cavities during the periodT = 2π/Ω0.

B.3.4.2 Particle reabsorption regime

Under conditions given in Eq. (B.56) all the photon-assisted probabilities
are reduced by the same factor, see Eq. (B.57). Therefore, we can immediately
write instead of Eq. (B.68) the following equation,

P12 = −2P0

{
γ
(
∆t(−,+)

L,R

)
+ γ
(
∆t(+,−)

L,R

)}
. (B.69)

If electrons and holes are emitted at close times, then both the noiseP12,
Eq. (B.69), and the mean square current

〈
I2
〉
, Eq. (B.58), are suppressed. On

the other hand their ratio remains the same as in the regime ofemission of sep-
arate particles. It tells us that in the reabsorption regimethe rarely emitted (not
absorbed) electrons and holes remain uncorrelated.

B.3.4.3 Two-particle emission regime

We will show that the shot noise is not sensitive whether two electrons
(two holes) are emitted at close times, Eq. (B.59), or not. This means that two
particles are scattered at the central QPC independently alike they are emitted at
different times. Therefore, despite the fact that the energy of two electrons (two
holes) emitted simultaneously is enhanced compared to the sum of energies of
two separately emitted electrons (holes), they remain uncorrelated rather than
constitute a pair.

To calculate Eq. (B.67) we use Eqs. (B.47), (B.60), and (B.61) and evaluate
the following sum,
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B.3 Two-particle source

∞∑

q=1

q
∣∣S(2)

q

∣∣2 = F1 + F2 , (B.70a)

where

F1 =

∣∣∣SL

(
t(−)
pR

)∣∣∣
2 ∞∑

q=1

q
{∣∣SL,q

∣∣2 +
∣∣SR,q

∣∣2
}
= −2Ω0

∣∣∣SL

(
t(−)
pR

)∣∣∣
2

(B.70b)

×
∑

j=L,R

Γ2
τ j
∂A1, j

∂Γτ j
= 2

(
∆t(−,−)

L,R

)2
+ (ΓτL + ΓτR)2

(
∆t(−,−)

L,R

)2
+ (ΓτL − ΓτR)2

,

and

F2 =
∞∑

q=1
qξ(−)

q = 8Ω2
0ΓτLΓτR

×ℜ
{

SR

(
t(−)
pL

)
S∗L
(

t(−)
pR

)
ei(θrL−θrR)

∞∑
q=1

qe−qΩ0ΓτΣ eiqΩ0∆t(−,−)
L,R

}
.

(B.70c)

Using the productSR

(
t(−)
pL

)
S∗L
(

t(−)
pR

)
given just before Eq. (B.61) we write:

F2 =
8Ω2

0ΓτLΓτR(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

{
− 2∆t(−,−)

L,R ΓτΣ

∞∑
q=1

qe−qΩ0ΓτΣ sin
(

qΩ0∆t(−,−)
L,R

)

+

((
∆t(−,−)

L,R

)2
− Γ2

τΣ

) ∞∑
q=1

qe−qΩ0ΓτΣ cos
(

qΩ0∆t(−,−)
L,R

)}
,

and rewrite it, using Eqs. (B.53) and (B.54):

F2 =
8Ω2

0ΓτLΓτR(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

{
2∆t(−,−)

L,R ΓτΣ

Ω0

∂A3
∂ΓτL
−
(
∆t(−,−)

L,R

)2
−Γ2

τΣ

Ω0

∂A2
∂ΓτL

}
.
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In the regime under consideration the derivatives∂A2/∂ΓτL and∂A3/∂ΓτL are
given just below Eq. (B.63). Then we find:

F2 =

(−8ΓτLΓτR)

{(
2∆t(−,−)

L,R ΓτΣ

)2
+

((
∆t(−,−)

L,R

)2
−Γ2

τΣ

)2
}

{(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

}((
∆t(−,−)

L,R

)2
+Γ2

τΣ

)2 =
−8ΓτLΓτR(

∆t(−,−)
L,R

)2
+(ΓτL−ΓτR)2

.

Substituting above equation and Eq. (B.70b) into Eq. (B.70a) we get,

∞∑
q=1

q
∣∣S(2)

q

∣∣2 =
2
(
∆t(−,−)

L,R

)2
+2(ΓτL+ΓτR)2−8ΓτLΓτR

(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

= 2

(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

(
∆t(−,−)

L,R

)2
+(ΓτL−ΓτR)2

= 2 .

The same result is for negative harmonics,
∑∞

q=1 q
∣∣∣S(2)
−q

∣∣∣
2
= 2.

Thus the noise power, Eq. (B.67), is PLR = −4P0. This is the same as in
the regime when the particles are emitted at different times, Eq. (B.68). There-
fore, the noise is not sensitive to whether two electrons (two holes) are emitted
simultaneously or not. Note the equation (B.69) is applicable for all considered
regimes.

B.4 Mesoscopic electron collider

Consider the circuit presented in Fig.B.4 where the two quantum capac-
itors (two SPSs) are placed in arms located at the different sides of the cen-
tral QPC. The particles emitted by the different SPSs are uncorrelated, hence
they contribute to noise independently. However if the two SPSs emit electrons
(holes) simultaneously, then these particles become correlated after scattering
at the central QPC. The correlations arise due to the Pauli exclusion princi-
ple: Two electrons (holes) can not be scattered to the same edge state, instead
they are necessarily scattered to different edge states and arrive at different con-
tacts. Therefore, in this regime the system comprising two SPSs and the central
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UL(t)

UR(t)

TC
I1(t) I2(t)

Figure B.4: Two quantum capacitors are connected to linear edge states which in turn are
connected via the central QPC with transmissionTC. The arrows indicate the direction of
motion. The potentialsUL(t) andUR(t) induced by back-gates acting on the corresponding
capacitors generate ac currentsI1(t) andI2(t) at leads.

QPC serves as a two-particle source emitting only particlesin pairs whose con-
stituents are directed to different contacts.

By mere changing the phase difference between the potential driving two
cavities,2 one can switch the statistics of particles emitted during a period from
classical to quantum (fermionic).

B.4.1 Shot noise suppression

The elements of the frozen scattering matrixˆ̃S0(t) for the circuit under
study, Fig.B.4, are:

2This phase difference controls a difference of emission times of particles exiting the cavities
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B Mesoscopic capacitor as a particle emitter

ˆ̃S0(t) =




eikFL11SL(t)rC eikF L12SR(t)tC

eikFL21SL(t)tC eikF L22SR(t)rC



 , (B.71)

whereS j(t) is a frozen scattering amplitude of the capacitorj = L, R. Other
quantities are the same as in Eq. (B.17). With this scattering matrix from
Eq. (B.16) we calculate:

P12 = −P0

∞∑

q=1

q
{∣∣(S∗LSR)q

∣∣2 +
∣∣(S∗LSR)−q

∣∣2
}
. (B.72)

Comparing Eq. (B.72) with Eq. (B.67b) we see that the difference is only a
replacementSL → S∗L. From Eq. (B.8) we conclude that the complex conjugate
scattering amplitude corresponds to emission of a hole (an electron) if a bare
scattering amplitude corresponds to emission of an electron (a hole). Therefore,
one can use the results of Sec.B.3.4if one to replace∆t(−,−)

L,R → ∆t(+,−)
L,R , etc.

If two capacitors emit particles at different times or they emit an electron
and a hole at close times, then the noise,

P12 = −4P0 , (B.73)

is due to independent contributions of four uncorrelated particles emitted during
a period by both capacitors. Note the possible collision of an electron and a hole
at the central QPC does not affect the shot noise, since an electron and a hole
have different energies (above and below3 the Fermi energy, respectively) and
are not subject to the Pauli exclusion principle which couldlead to appearance
of correlations crucial for a noise.

In contrast, if two electrons (two holes) are emitted at close times,∆t(−,−)
L,R =

t(−)
0L − t(−)

0R . ΓτL, ΓτR (∆t(+,+)
L,R = t(+)

0L − t(+)
0R . ΓτL, ΓτR) then the noise is suppressed:

[116]
P12 = P

(e)
12 + P

(h)
12 , (B.74a)

3There is no contradiction with the fact that a hole carries a positive heat, see Eq. (B.15). Since heat is defined
as an extra energy obtained by the reservoir with fixed chemical potential. To maintain it fixed we need to add one
electron with energyµ0 after a hole will enter the reservoir.
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B.4 Mesoscopic electron collider

where electron and hole contributions,P
(e)
12 andP

(h)
12, are:

P
(e)
12 = −2P0γ

(
∆t(−,−)

L,R

)
= −2P0





1 − 4ΓτLΓτR(

t(−)
0L − t(−)

0R

)2
+ Γ2

τΣ





, (B.74b)

P
(h)
12 = −2P0γ

(
∆t(+,+)

L,R

)
= −2P0





1 − 4ΓτLΓτR(

t(+)
0L − t(+)

0R

)2
+ Γ2

τΣ





. (B.74c)

We give the noise as a sum of electron and hole parts since theycontribute
independently.

When each of the time differences∆t(χ,χ)
L,R is larger than the sum of half-

widths of current pulses, then the two sources contribute toa shot noise in-
dependently, Fig.B.5, lower solid (green) line. In this case Eq. (B.74) leads to
Eq. (B.73). In contrast if there is some overlap in time between the particle wave
packets arriving at the central QPC,∆t(−,−)

L.R ∼ ΓτL + ΓτR (∆t(+,+)
L.R ∼ ΓτL + ΓτR),

then the correlations between electrons (holes) arise and the noise decreases. In
the case of the full overlap,∆t(χ,χ)

L,R = 0 andΓτL = ΓτR, the noise is suppressed
down to zero:

P
(e)
12 = 0 , if t(−)

0L = t(−)
0R , (B.75a)

P
(h)
12 = 0 , if t(+)

0L = t(+)
0R . (B.75b)

In Fig. B.5 the dashed (red) line shows a noise generated by the two identical
sources as a function of the amplitudeUL,1 of a potential acting onto the capac-
itor L. If UL,1 , UR,1 then the times when particles are emitted by the different
sources are different. In this case both sources contribute to noise indepen-
dently. However ifeUL,1 approacheseUR,1 = 0.5∆R then the time differences
∆t(χ,χ)

L,R → 0 that results in a suppression of a shot noise.
In contrast to the case considered in Sec.B.3.4.2, where the noise decreases

together with a current, here the noise vanishes while the currents remain non-
zero, I1(t) , 0, I2(t) , 0. Taking into account the conservation law for the

253



B Mesoscopic capacitor as a particle emitter
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Figure B.5: The noiseP12, Eq. (B.72), as a function of the amplitudeUL,1 of a potential
UL(t) = UL,0 + UL,1 cos(Ω0t + ϕL) acting upon the left capacitor, see Fig.B.4. Upper
solid (black) line: The right capacitor is stationary. Lower solid (green) line: The right
capacitor is driven by the potentialUR(t) = UR,0+UR,1 cos(Ω0t+ϕR) which is out of phase,
ϕR = π, and have an amplitudeeUR,1 = 0.5∆R. Dashed (red) line: The right capacitor is
driven by the in phase potential,ϕR = 0, with amplitudeeUR,1 = 0.5∆R. Other parameters
are:eUL,0 = eUR,0 = 0.25∆R (∆L = ∆R), ϕL = 0, TL = TR = 0.1.

zero-frequency noise power,
∑

β=1,2 Pαβ = 0, we derive from Eqs. (B.75) that

P
(x)
11 = P

(x)
22 = 0, wherex = e, h. In other words, there are regular electron (hole)

flows entering the contactsα = 1, 2. This regularity is due to the following.
First, the electrons (holes) are regularly emitted by the sources. And, second,
due to the Pauli exclusion principle, each two electrons (holes) incident upon
the QPC will be scattered into different contacts.

While electrons (holes) emitted by the different SPSs are statistically in-
dependent, after the collision at the central QPC electrons(holes) become cor-
related (i.e., indistinguishable in the quantum-statistical sense) since they lose
their origin: It is impossible to indicate which SPS emittedan electron (hole)
arrived at the given contact. Thus the disappearance of a shot noise [116] in-
dicates an appearance of the Fermi correlations between electrons (holes) after
colliding at the QPC. This effect looks similar to the Hong, Ou, and Mandel
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B.4 Mesoscopic electron collider

[123] effect in optics. However as we show for electrons the probability to de-
tect particles at the different contacts peaks while for photons it shows a dip
[123].

B.4.2 Particle probability analysis

For definiteness we will concentrate on electrons. Remind that during the
period T = 2π/Ω0 each SPS emits one electron att(−)

0L and t(−)
0R , respectively

for L andR sources. The single-particle probabilityNα, i.e., the probability to
detect an electron at the contactα = 1, 2 during a period, is independent of
the time difference∆t(−,−)

L,R = t(−)
0L − t(−)

0R . In contrast the two-particle probability
N12, i.e., the probability to detect electrons at both contactsduring a period
depends crucially on this time difference. Moreover at∆t(−,−)

L,R = 0 the two-
particle probabilityN12 becomesa joint detection probabilityintroduced by
Glauber [124], which means a probability to detect two particles at two contacts
simultaneously, i.e., on the time-scaleΓτ j ≪ T.

B.4.2.1 Single-particle probabilities

At ∆t(−,−)
L,R ≫ Γτ = ΓτL = ΓτR the particles emitted by the different sources

remain distinguishable and we can write,

N1 = N
(L)
1 + N

(R)
1 , (B.76a)

N2 = N
(L)
2 + N

(R)
2 , (B.76b)

where the upper indices (L) and (R) stand for the origin of an electron. The
single particle probability can be calculated as the squareof a single-particle
amplitude for the particle emitted by some SPS to arrive at the given contact,
N( j)
α =

∣∣Aα j

∣∣2, with

A1L = eikFL1L rC , A1R = eikF L1R tC ,

(B.77)
A2L = eikF L2L tC , A2R = eikF L2R rC .
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B Mesoscopic capacitor as a particle emitter

whereLα j = LαC + LC j is the distance from the sourcej = L, R though the
quantum point contactC to the contactα = 1, 2 along the linear edge state, see
Fig. B.4 and compare to Eq. (B.71). Then we find,

N
(L)
1 = RC , N

(R)
1 = TC , (B.78a)

N
(L)
2 = TC , N

(R)
2 = RC , (B.78b)

and
N1 = N2 = 1 . (B.79)

For ∆t(−,−)
L,R = 0 we can not distinguish the SPS an electron came from.

However apparently one electron should be detected at each contact. Therefore,
Eq. (B.79) remains valid.

B.4.2.2 Two-particle probability for classical regime

At ∆t(−,−)
L,R ≫ Γτ = ΓτL = ΓτR the electrons emitted by the different SPSs

remain uncorrelated. Therefore, we can write,

N
(LR)
12 = N

(L)
1 N

(R)
2 , N

(RL)
12 = N

(R)
1 N

(L)
2 . (B.80)

For N( j)
α see Eqs. (B.78). Taking into account that the two-electron probability

can be represented as follows,

N12 = N
(L)
12 + N

(LR)
12 + N

(RL)
12 + N

(R)
12 , (B.81)

and that a single electron can not be detected at two distant places,

N
(L)
12 = N

(R)
12 = 0 , (B.82)

we find,
N12 = N

(LR)
12 + N

(RL)
12 = R2

C + T2
C . (B.83)
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B.4 Mesoscopic electron collider

NoteN12 < 1 since with probabilityRCTC the two electrons can reach the same
(either 1 or 2) contact.

Using Eq. (B.79) we find,δN12 = N12−N1N2 = −2RCTC, that is, by virtue
of Eq. (B.31), consistent with a shot noise due to electrons,P

(e)
12 = −2P0, see

Eq. (B.73) for the total noise. Alternatively we can proceed as follows. Since in
this regime the electrons emitted by the different SPSs are statistically indepen-
dent, the particle correlation function,δN12 = N12− N1N2, can be represented
as the sum,

δN12 = δN
(L)
12 + δN

(R)
12 , (B.84)

where the single-particle correlation functions are,

δN
(L)
12 = −N

(L)
1 N

(L)
2 , δN

(R)
12 = −N

(R)
1 N

(R)
2 . (B.85)

Using Eqs. (B.78) we find again,δN12 = −2RCTC.

B.4.2.3 Two-particle probability for quantum regime

If ∆t(−,−)
L,R = 0 then the electrons collide at the central QPC and become

correlated, i.e. they acquire fermionic statistics. Therefore, we can not use
Eq. (B.80). Strictly speaking, we even can not introduce the upper indices,
since we can not indicate the origin of an electron arriving at the given contact.
In this regime we can still use Eq. (B.79). Since there are no events with two
electrons arriving at the same contact, we find:

N12 = 1 . (B.86)

This quantum result is independent of the parameters of the central QPC in
contrast to its classical counterpart, Eq. (B.83). Using Eqs. (B.79) and (B.86)
we calculate the particle correlation function:δN12 = 0. This is consistent with
a zero noise result, Eq. (B.75a), if one uses Eq. (B.31) relating a shot noise and
a particle correlation function.
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B Mesoscopic capacitor as a particle emitter

The result given in Eq. (B.86) can also be calculated as a two-particle prob-
ability, N12 =

∣∣A(2)
∣∣2. Note due to colliding at the central QPC electrons be-

come indistinguishable. Then scattering of two electrons,describing by the
following two two-particle amplitudesA(2)

a = A1LA2R andA
(2)
b = −A1RA2L

4,
result in the same final state. Therefore, these amplitudes should be added up,
A(2) = A(2)

a + A
(2)
b , and the two-particle amplitude can be written as the Slater

determinant,

A(2) = det

∣∣∣∣∣∣

A1L A1R

A2L A2R

∣∣∣∣∣∣
. (B.87)

Using single-particle amplitudes given in Eq. (B.77) and taking into account
that L1L + L2R = L1R + L2L (due to crossing of the trajectories at the central
QPC) andrCt∗C = −r∗CtC (due to unitarity) we arrive at Eq. (B.86).

Comparing Eqs. (B.86) and (B.79) one can see thatN12 = N1N2. This
equation seems to tell us that the arrival of electrons at onecontacts is not cor-
related with the arrival of electrons at another contact. However we found that
electrons arrive at contacts in pairs, i.e., electrons are strongly correlated. This
seeming inconsistency is due to a special value of single-particle probabilities,
N j = 1. In the next section we consider a circuit withN j < 1 when the single
particles as well as the pairs of correlated (due to colliding at the central QPC)
particles do contribute to noise. We show that colliding particles are positively
correlated.

B.5 Noisy mesoscopic electron collider

In Fig. B.6 we show a set-up where the regular flows, emitted by the two
quantum capacitorsSL and SR, become fluctuating (noisy) after passing the
quantum point contactsL andR, respectively. There are events with two, one,
or zero particles entering the central part of the circuit (CPC) and contributing
to the cross-correlatorP12 of the currentsI1(t) and I2(t) flowing into the con-
tacts 1 and 2, respectively. Under the conditions when the electrons (holes)
emitted by the different SPSs can collide at the quantum point contactC, there

4The sign minus is due to fermionic statistics: Two electronsare interchanged in incoming scattering channels
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Figure B.6: The two noisy flows originated from the quantum point contactsL and
Rcan collide at the quantum point contactC.

are different contributions intoP12.5 Namely, there are single- and two-particle
contributions. In the case if the two particles enter the CPCthey become cor-
related (after colliding at the contactC) and cause a two-particle contribution
to the noise. While if only one particle (either from the contact L or from the
contactR) enters the CPC it causes a negative single-particle contribution, see
Eq. (B.26). In the caseTL = TR the cross-correlator is zero,P12 = 0. Therefore,
the two-particle contribution is positive: After colliding at the quantum point
contactC the two electrons (holes) become positively correlated.

B.5.1 Current cross-correlator suppression

The elements of the frozen scattering matrixˆ̃S0(t) for the circuit, Fig.B.6,
we need to calculateP12 are the following:

5If the electrons (holes) do not collide at the contactC then there are only negative single-particle contributions
into the noise
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B Mesoscopic capacitor as a particle emitter

S̃0,11(t) = eikFL11rLrC , S̃0,12(t) = eikF L12rRtC ,

(B.88a)
S̃0,13(t) = eikFL13SL(t)tLrC , S̃0,14(t) = eikF L14SR(t)tRtC ,

S̃0,21(t) = eikFL21rLtC , S̃0,22(t) = eikFL22rRrC ,

(B.88b)
S̃0,23(t) = eikFL23SL(t)tLtC , S̃0,24(t) = eikFL24SR(t)tRrC ,

where the lower indicesL, R, andC at the reflection and transmission coeffi-
cients denote the corresponding quantum point contacts. Using these elements
in Eq. (B.16) we calculate by analogy with Eqs. (B.74):

P12 = P
(e,1)
12 + P

(e,2)
12 + P

(h,1)
12 + P

(h,2)
12 , (B.89a)

where the single particle,

P
(e,1)
12 = P

(h,1)
12 = −P0

(
T2

L + T2
R

)
, (B.89b)

and the two-particle,

P
(e,2)
12 = 2P0TLTR

4ΓτLΓτR(
t(−)
0L − t(−)

0R

)2
+ (ΓτL + ΓτR)2

, (B.89c)

P
(h,2)
12 = 2P0TLTR

4ΓτLΓτR(
t(+)
0L − t(+)

0R

)2
+ (ΓτL + ΓτR)2

, (B.89d)

contributions to the current cross-correlator are introduced. The cross-correlator
P12 is given in Fig.B.7. The equation (B.89a) describes a shot noise at the
second plateau (P12 ∼ −P0) of this plot.
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Figure B.7: The current cross-correlatorP12 as a function of the amplitudeUL,1 of a
potentialUL(t) = UL,0 + UL,1 cos(Ω0t + ϕL) driving the left SPS. The parameters of
SPSs are the same as in Fig.B.5 butϕL = ϕR. Other parameters are:TL = TR = 0.5.

In the classical regime,∆t(χ,χ)
L,R ≫ ΓτL, ΓτR, when the emitted particles

remain statistically independent, the two-particle contribution is not present,

P
(x,2)
12 ∼ O

(
Γτ j/∆t(χ,χ)

L,R

)2
≈ 0, wherex = e, h, and the cross-correlator,

P12 = −2P0

{
T2

L + T2
R

}
, (B.90)

is due to a contribution of single particles only. In this classical regime the
measurements at contacts 1 and 2 can give the following outcomes (during one
period separately for electrons and holes): (i) Two particles can be detected at
the same contact, (ii) two particle can be detected at different contacts, (iii) one
particle can be detected at either of contacts, and (iv) no particle can be detected
at all.

While if the electrons (holes) can collide at the central QPC,∆t(χ,χ)
L,R = 0, the

cross-correlator is suppressed compared to Eq. (B.90). AssumingΓτL = ΓτR ≡
Γτ we find from Eq. (B.89a),
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B Mesoscopic capacitor as a particle emitter

P12 = −2P0 (TR− TL)2 . (B.91)

The current cross-correlator becomes zero in the symmetriccase,TL = TR. We
should stress that the current flowing into either of contacts is noisy,

〈
δI2
α

〉
> 0,

α = 1, 2, despite the fact that the current cross-correlator is suppressed. This
suppression is due to a positive two-particle contributioncompensating a neg-
ative single-particle one. This regime differs from the classical one considered
above in two points: (i) There are no events with two electrons (holes) detected
at the same contact, (ii) if two electrons (holes) are detected at different contacts
they are detected simultaneously.

B.5.2 Particle probability analysis

As before, we concentrate on electrons. The holes can be considered in the
same way.

B.5.2.1 Single-particle probabilities

The single-particle probabilities are insensitive to whether electrons emit-
ted by different sources can collide at the central quantum point contact C or
not. Therefore, we assume∆t(−,−)

L,R ≫ ΓτL, ΓτR and use Eqs. (B.76) with the
following single-particle amplitudes:

A1L = eikFL1L tL rC , A1R = eikFL1R tR tC ,

(B.92)
A2L = eikFL2L tL tC , A2R = eikF L2R tR rC .

Then we find,
N

(L)
1 = TLRC , N

(R)
1 = TRTC , (B.93a)

N
(L)
2 = TLTC , N

(R)
2 = TRRC , (B.93b)
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and

N1 = TL + TC (TR − TL) ,
(B.94)

N2 = TR − TC (TR − TL) .

Apparently it should beN1+N2 = TL+TR : How many electrons enter the CPC
so many electrons reach contacts 1 and 2.

B.5.2.2 Two-particle probability for classical regime

We can use results of Sec.B.4.2.2. Substituting Eqs. (B.93) into Eq. (B.80)
and then into Eq. (B.83) we arrive at the following:

N12 = TLTR

(
R2

C + T2
C

)
. (B.95)

This equation differs from Eq. (B.83) by the factorTRTL which is a probability
for two particles to enter the CPC and to contribute toN12.

CalculatingδN12 = N12−N1N2 with Eqs. (B.94) and (B.95) we find,

δN12 = −RCTC

(
T2

L + T2
R

)
, (B.96)

that is consistent with a single-electron contribution to the cross-correlator,
Eq. (B.89b) by virtue of Eq. (B.31).

Alternatively Eq. (B.96) can be represent as Eq. (B.84) with

δN
(L)
12 = −RCTCT2

L , δN
(R)
12 = −RCTCT2

R . (B.97)

B.5.2.3 Two-particle probability for quantum regime

If ∆t(−,−)
L,R = 0 then those electrons emitted by the SPSs which reach the

contacts 1 and 2 are correlated. Therefore, instead of Eq. (B.84) we should
write:
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δN12 = δN
(L)
12 + δN

(R)
12 + δN

(L̂R)
12 , (B.98)

where the single-particle cross-correlation functions are given in Eq. (B.97) and
the two-particle correlation function is:

δN
(L̂R)
12 = N12−N

(L)
1 N

(R)
2 −N

(R)
1 N

(L)
2 . (B.99)

The two-particle probabilityN12 can be calculated as follows,N12 =
∣∣A(2)

∣∣2,
with a two-particle amplitude (in the case of indistinguishable electrons) being
the Slater determinant, Eq. (B.87). Using the single-particle amplitudes given
in Eq. (B.92) we calculate,

N12 = TLTR . (B.100)

Note this equation is independent of the parameters of the central QPC, that can
be used as an indication of a quantum regime. Stress in the quantum regime the
two-particle probability becomes the Glauber joint detection probability [124].

The equation (B.100) can be understood as follows: If and only if the two
electrons enter the CPC (one electron fromL and one electron fromR) then they
necessarily collide at the central QPC and reach different contacts. Therefore,
the probability to detect one electron at the contact 1 and one electron at the
contact 2 is equal to a probability for two electrons to enterthe CPC.

Using Eqs. (B.100) and (B.93) we calculate the two-particle cross-
correlation function, Eq. (B.99),

δN
(L̂R)
12 = 2TLTRRCTC . (B.101)

which, by virtue of Eq. (B.31), is consistent with a two-particle contribution to
the cross-correlation function, Eq. (B.89c), atΓτL = ΓτR andt(−)

0L = t(−)
0R .

With Eqs. (B.97) and (B.101) we calculate the total particle cross-
correlation function, Eq. (B.98):
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δN12 = −RCTC (TR − TL)2 , (B.102)

which is consistent with an electron contribution to the current cross-correlation
function P

(e)
12 = P12/2 = −P0 (TR− TL)2, see Eq. (B.91) for the total current

cross-correlation function.

B.6 Two-particle interference effect

Let us consider a circuit with two interferometers, Fig.B.8, and show that
the particles emitted by the SPSs can show even such a subtle effect as a two-
particle interference effect. [117]

In contrast to previous sections, now we consider a non-adiabatic regime:
We take into account the time necessary for electrons (holes) to propagate along
circuit’s branches, while the process of emission by the SPSis treated adiabat-
ically. If the difference of times of a propagation along the different arms,U
andD, of an interferometer is larger thanΓτ j , then the single-particle interfer-
ence is suppressed and the currents flowing into contacts areinsensitive to the
magnetic flux though the interferometer. However if the parameters of a circuit
are adjusted in such a way that the particles emitted bySL andSR can collide
at the outputsL1 andR2, then the current cross-correlation function becomes
sensitive to magnetic fluxesΦL andΦR of both interferometers. This effect is a
manifestation of a two-particle interference taking placein the system.

B.6.1 Model and definitions

The circuit, Fig.B.8, has four contacts and, therefore, it is described by
the 4× 4 scattering matrixŜin(t,E) defining the corresponding elements of
the Floquet scattering matrix,SF,αβ(En,E) = Sin,αβ,n(E), α, β = 1, 2, 3, 4. All
the contacts are in equilibrium and have the same Fermi distribution function,
fi(E) = f0(E),∀i, with chemical potentialµ0 and temperatureT0. Each source
SL andSR emits one electron and one hole during a period.

We are interested in a zero-frequency cross-correlation function P12 for
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currentsI1 andI2. At zero temperature,kBT0 = 0, it reads [see Eq. (6.16)],

P12 =
e2

2h

∞∑

q=−∞
sign(q)

µ0�
µ0−q~Ω0

dE
∞∑

n.m=−∞

4∑

γ,δ=1

(B.103)
×SF,1γ(En,E)S∗F,1δ(En,Eq)SF,2δ(Em.Eq)S

∗
F,2γ(Em,E) ,

whereEn = E + n~Ω0. UsingŜin and summing up overn andm we find,

P12 =
e2

2h

∞∑

q=−∞
sign(q)

µ0�
µ0−q~Ω0

dE
4∑

γ,δ=1

(B.104)
×
{

Sin,1γ(E)S∗in,1δ(Eq)
}

q

{
Sin,2γ(E)S∗in,2δ(Eq)

}∗
q .

In the circuit under consideration there are no paths from the contact 4 to the
contact 1 and from the contact 3 to the contact 2. Therefore, the relevant in-
dices areγ, δ = 1, 2. Thus the final expression for the current cross-correlator
becomes:

P12 =
e2

2h

∞∑

q=−∞
sign(q)

µ0�
µ0−q~Ω0

dE
{

Aq + Bq +Cq + Dq

}
, (B.105a)

where

Aq =
{

Sin,11(E)S∗in,11(Eq)
}

q

{
Sin,21(E)S∗in,21(Eq)

}∗
q
, (B.105b)

Bq =
{

Sin,11(E)S∗in,12(Eq)
}

q

{
Sin,21(E)S∗in,22(Eq)

}∗
q , (B.105c)

Cq =
{

Sin,12(E)S∗in,11(Eq)
}

q

{
Sin,22(E)S∗in,21(Eq)

}∗
q , (B.105d)

Dq =
{

Sin,12(E)S∗in,12(Eq)
}

q

{
Sin,22(E)S∗in,22(Eq)

}∗
q . (B.105e)
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B Mesoscopic capacitor as a particle emitter

Note because of integration over energy in Eq. (B.105a) only the quantities with
q , 0 are relevant. ShiftingEq → E (under the integration over energy) and
replacingq → −q (under the sum overq) one can show that the contributions
due toAq andDq are real, while the contributions due toCq andBq are complex
conjugate each other.

Manipulating with Fourier coefficients we will use the following relations:

{X(t)}q eiqΩ0τ = {X(t − τ)}q ,
(B.106)

{X(t)}q {Y(t)}∗q = {X(t − τ)}q {Y(t − τ)}∗q .

Before presenting expressions for the scattering matrix elements we intro-
duce some definitions. We assume that kinematic phaseϕL(E) acquired by an
electron with energyE along the trajectoryL of a lengthLL is linear in energy,

ϕL(E) = ϕL + (E − µ0) τL/~ , (B.107)

whereϕL = kFLL andτL is an independent of energy time spent by an electron
within the trajectoryL. We will label each trajectory by the three-letter lower
index, where the first letter is a number of a destination contact, the second
letter indicates the branch of a corresponding MZI, and the third letter indicates
the source of electrons. For instance, the labelL = 2UL indicates a trajectory
starting at the left single-particle sourceSL, passing across the upper branch
of the (right) MZI, and finishing at the contact 2. We will nameMZI’s branch
as upper (the lower indexU) or down (the lower indexD) if an electron going
through this branch encircles the magnetic flux counter-clockwise or clockwise,
respectively, see Fig.B.8.

It is convenient to introduce an interferometer imbalance time∆τ j, j = L,R
and a time delay∆τLR,

∆τL = τ1U j − τ1D j , ∆τR = τ2U j − τ2D j , ∆τLR = ταYL− ταYR, (B.108)

whereα = 1, 2, Y = U,D, and j = L,R. The quantity∆τLR characterizes the
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B.6 Two-particle interference effect

asymmetry in position of the sourcesSL andSR with respect to the central QPC.
With these definitions some differences which we need below read as follows,

τ1UL − τ1DR = ∆τL + ∆τLR , τ1UR− τ1DL = ∆τL − ∆τLR ,

(B.109)
τ2UL − τ2DR = ∆τR+ ∆τLR , τ2UR− τ2DL = ∆τR− ∆τLR .

The magnetic flux,Φ j, j = L,R, through the corresponding MZI we
present as the sum of fluxes associated with upper and lower branches,

Φ j = Φ jU + Φ jD , (B.110)

Each MZI has two quantum point contacts which we will label byj1 and
j2, j = L,R. Without loss of generality we choose the scattering matrices for
these QPCs as

Ŝ jα =





√
Rjα i

√
T jα

i
√

T jα
√

Rjα



 . (B.111)

Hereα = 1, 2. For the central quantum point contactC connecting two branches
of the circuit we use a scattering matrix of the same form but with index jα
being replaced by the indexC.

We assume also that the dwell timeτ j for electrons in each single-particle
source,j = L for SL and j = R for SR, is short compared to the period of a drive
[see Eq. (A.57)],

Ω0τ j ≪ 1 . (B.112)

Therefore, for the left and right single-particle sources we can use the frozen
scattering amplitudes, which we denote asSL(t,E) andSR(t,E), respectively. In
particular, within this approximation one can useS j(t,E) ≈ S j(t,En). In what
follows we useS j(t,E) ≈ S j(t, µ0) ≡ S j(t). The amplitudesS j(t) are given in
Eq. (B.8) with θr , Γτ, andt(∓)

0 being replaced byθr j , Γτ j, andt(∓)
0 j , respectively.
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B Mesoscopic capacitor as a particle emitter

We are interested in the regime when the interferometer imbalance times
are large compared to the duration of wave packets but small compared to the
period of a drive,

T ≫ ∆τL, ∆τR≫ ΓτL, ΓτR . (B.113)

Then there is no a single-particle interference effect which could result in
magnetic-flux dependence of a current cross-correlator. Onthe other hand if,

∆τL ± ∆τR = 0 , (B.114)

then, the interference of two-particle amplitudes makesP12 dependent onΦL ±
ΦR.

B.6.2 The scattering matrix elements

Calculating the scattering matrix elements we take into account that an
electron can follow to a given contact along the different trajectories. For in-
stance, we have:

SF,11(En,E) = SF,1U1(En,E) + SF,1D1(En,E) ,

SF,1U1(En,E) =
√

RCRL1RL2 ei2πΦLU
Φ0 eiϕ1UL(En)SL,n ,

=
√

RCRL1RL2 ei2πΦLU
Φ0 eiϕ1UL(E)einΩ0τ1ULSL,n ,

SF,1D1(En,E) = −
√

RCTL1TL2 e−i2πΦLD
Φ0 eiϕ1DL(En)SL,n ,

= −
√

RCTL1TL2 e−i2πΦLD
Φ0 eiϕ1DL(E)einΩ0τ1DLSL,n .

where the dependenceϕL(E) is given in Eq. (B.107). After the inverse Fourier
transformation, we arrive at the following,
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B.6 Two-particle interference effect

Sin,11(t,E) =
√

RC

{√
RL1RL2 ei2πΦLU

Φ0 eiϕ1UL(E)SL(t − τ1UL,E)

(B.115a)

−
√

TL1TL2 e−i2πΦLD
Φ0 eiϕ1DL(E)SL(t − τ1DL,E)

}
,

By analogy we find other scattering matrix elements we need tocalculate
Eqs. (B.105):

S∗in,11(t,Eq) =

{√
RL1RL2 e−i2πΦLU

Φ0 e−iϕ1UL(E)e−iqΩ0τ1ULS∗L(t − τ1UL,E)

(B.115b)

−
√

TL1TL2 ei2πΦLD
Φ0 e−iϕ1DL(E)e−iqΩ0τ1DLS∗L(t − τ1DL,E)

}√
RC ,

Sin,12(t,E) = i
√

TC

{√
RL1RL2 ei2πΦLU

Φ0 eiϕ1UR(E)SR(t − τ1UR,E)

(B.115c)

−
√

TL1TL2 e−i2πΦLD
Φ0 eiϕ1DR(E)SR(t − τ1DR,E)

}
,

S∗in,12(t,Eq) =

{√
RL1RL2 e−i2πΦLU

Φ0 e−iϕ1UR(E)e−iqΩ0τ1URS∗R(t − τ1UR,E)

(B.115d)

−
√

TL1TL2 ei2πΦLD
Φ0 e−iϕ1DR(E)e−iqΩ0τ1DRS∗R(t − τ1DR,E)

}(
−i
√

TC

)
,

Sin,21(t,E) = i
√

TC

{√
RR1RR2 ei2πΦRU

Φ0 eiϕ2UL(E)SL(t − τ2UL,E)

(B.115e)

−
√

TR1TR e−i2πΦRD
Φ0 eiϕ2DL(E)SL(t − τ2DL,E)

}
,
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B Mesoscopic capacitor as a particle emitter

S∗in,21(t,Eq) =

{√
RR1RR2 e−i2πΦRU

Φ0 e−iϕ2UL(E)e−iqΩ0τ2ULS∗L(t − τ2UL,E)

(B.115f)

−
√

TR1TR2 ei2πΦRD
Φ0 e−iϕ2DL(E)e−iqΩ0τ2DLS∗L(t − τ2DL,E)

}(
− i
√

TC

)
,

Sin,22(t,E) =
√

RC

{√
RR1RR2 ei2πΦRU

Φ0 eiϕ2UR(E)SR(t − τ2UR,E)

(B.115g)

−
√

TR1TR2 e−i2πΦRD
Φ0 eiϕ2DR(E)SR(t − τ2DR,E)

}
,

Sin,22(t,Eq) =

{√
RR1RR2 ei2πΦRU

Φ0 eiϕ2UR(E)eiqΩ0τ2URSR(t − τ2UR,E)

(B.115h)

−
√

TR1TR2 e−i2πΦRD
Φ0 eiϕ2DR(E)eiqΩ0τ2DRSR(t − τ2DR,E)

}√
RC .

Using given above equations we calculate the cross-correlator P12 and analyze
its dependence on magnetic fluxesΦL andΦR.

B.6.3 Current cross-correlator

We consider separately quantitiesAq, Bq. Cq, and Dq entering
Eq. (B.105a).

B.6.3.1 Partial contributions

First we calculate quantitiesAq, Dq and corresponding contributionsP(A)
12 ,

P
(D)
12 to the cross-correlator. Substituting Eqs. (B.115) into Eq. (B.105b) we find

for q , 0:

Aq = RCTCζLζR

4∑

i=1

Ai,q , ζ j =
√

Rj1Rj2T j1T j2 , j = L,R, (B.116)
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where

A1,q = ei2πΦL+ΦR
Φ0 ei E

~
(∆τL+∆τR)

{
SL(t − ∆τL)S∗L(t)

}
q

{
SL(t + ∆τR)S∗L(t)

}∗
q ,

A2,q=e−i2πΦL+ΦR
Φ0 e−i E

~
(∆τL+∆τR)

{
SL(t+∆τL)S∗L(t)

}
q

{
SL(t−∆τR)S∗L(t)

}∗
q
,

A3,q = ei2πΦL−ΦR
Φ0 ei E

~
(∆τL−∆τR)

{
SL(t − ∆τL)S∗L(t)

}
q

{
SL(t − ∆τR)S∗L(t)

}∗
q ,

A4,q=e−i2πΦL−ΦR
Φ0 e−i E

~
(∆τL−∆τR)

{
SL(t+∆τL)S∗L(t)

}
q

{
SL(t+∆τR)S∗L(t)

}∗
q ,

Notice the sumsA1,q+A2,−q andA3,q+A4,−q become real (only) after integrating
over energy in Eq. (B.105a). The Fourier coefficients are:

{
SL(t ∓ ∆τL)S∗0L(t)

}
q = − sL,q

{
eiqΩ0t(−)

0L e±iqΩ0∆τL + eiqΩ0t(+)
0L , q > 0 ,

eiqΩ0t(+)
0L e±iqΩ0∆τL + eiqΩ0t(−)

0L , q < 0 ,

{
SL(t ± ∆τR)S∗0L(t)

}∗
q = − sL,q

{
e−iqΩ0t

(−)
0L e±iqΩ0∆τR + e−iqΩ0t

(+)
0L , q > 0 ,

e−iqΩ0t
(+)
0L e±iqΩ0∆τR + e−iqΩ0t

(−)
0L , q < 0 ,

wheresL,q = 2Ω0ΓτLe−|q|Ω0ΓτL. And the corresponding products read as follows:

{
SL(t − ∆τL)S∗0L(t)

}
q

{
SL(t + ∆τR)S∗0L(t)

}∗
q
= s2

L,q

×





1+ eiqΩ0(∆τL+∆τR) + e

iqΩ0

(
t(−)
0L −t(+)

0L +∆τL

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L −∆τR

)

, q > 0 ,

1+ eiqΩ0(∆τL+∆τR) + e
iqΩ0

(
t(−)
0L −t(+)

0L +∆τR

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L −∆τL

)

, q < 0 ,
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{
SL(t + ∆τL)S∗0L(t)

}
q

{
SL(t − ∆τR)S∗0L(t)

}∗
q = s2

L,q

×





1+ e−iqΩ0(∆τL+∆τR) + e

iqΩ0

(
t(−)
0L −t(+)

0L −∆τL

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L +∆τR

)

, q > 0 ,

1+ e−iqΩ0(∆τL+∆τR) + e
iqΩ0

(
t(−)
0L −t(+)

0L −∆τR

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L +∆τL

)

, q < 0 ,

{
SL(t − ∆τL)S∗0L(t)

}
q

{
SL(t − ∆τR)S∗0L(t)

}∗
q = s2

L,q

×





1+ eiqΩ0(∆τL−∆τR) + e

iqΩ0

(
t(−)
0L −t(+)

0L +∆τL

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L +∆τR

)

, q > 0 ,

1+ eiqΩ0(∆τL−∆τR) + e
iqΩ0

(
t(−)
0L −t(+)

0L −∆τR

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L −∆τL

)

, q < 0 ,

{
SL(t + ∆τL)S∗0L(t)

}
q

{
SL(t + ∆τR)S∗0L(t)

}∗
q = s2

L,q

×





1+ e−iqΩ0(∆τL−∆τR) + e

iqΩ0

(
t(−)
0L −t(+)

0L −∆τL

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L −∆τR

)

, q > 0 ,

1+ e−iqΩ0(∆τL−∆τR) + e
iqΩ0

(
t(−)
0L −t(+)

0L +∆τR

)

+ e
−iqΩ0

(
t(−)
0L −t(+)

0L +∆τL

)

, q < 0 .

Taking into account Eqs. (B.53), (B.54) and the presence of integration
over energy in Eq. (B.105a) we conclude that the quantityAq (after summing up
overq) results in a noticeable contribution to the cross-correlator only if it does
not oscillate in energy. This is the case under conditions given in Eq. (B.114).
Then we calculate,

P
(A)
12 = 4P0ζLζR cos

(
2π
ΦL ± ΦR

Φ0

)
. (B.117)

The quantityDq leads to the same contribution,P
(D)
12 = P

(A)
12 . Then the

corresponding part of a cross-correlator,P
(A+D)
12 = P

(A)
12 + P

(D)
12 , is:

P
(A+D)
12 = 8P0ζLζR cos

(
2π
ΦL ±ΦR

Φ0

)
. (B.118)
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Next we calculateBq. Using Eqs. (B.115) we calculate the corresponding
products of scattering amplitudes entering Eq. (B.105c):

Sin,11(E)S∗in,12(Eq) = −i
√

TCRC ei E∆τLR
~

{

RL1RL2 e−iqΩ0τ1URSL(t − τ1UL) S∗R(t − τ1UR)

+TL1TL2 e−iqΩ0τ1DRSL(t − τ1DL) S∗R(t − τ1DR) −

−ζL ei E∆τL
~ ei2πΦL

Φ0 e−iqΩ0τ1DRSL(t − τ1UL) S∗R(t − τ1DR)

−ζL e−i E∆τL
~ e−i2πΦL

Φ0 e−iqΩ0τ1URSL(t − τ1DL) S∗R(t − τ1UR)

}
,

Sin,21(E)S∗in,22(Eq) = i
√

TCRC ei E∆τLR
~

{

RR1RR2 e−iqΩ0τ2URSL(t − τ2UL) S∗R(t − τ2UR)

+TR1TR2 e−iqΩ0τ2DRSL(t − τ2DL) S∗R(t − τ2DR)

−ζR ei E∆τR
~ ei2πΦR

Φ0 e−iqΩ0τ2DRSL(t − τ2UL) S∗R(t − τ2DR)

−ζR e−i E∆τR
~ e−i2πΦR

Φ0 e−iqΩ0τ2URSL(t − τ1DL) S∗R(t − τ1UR)

}
.

The Fourier coefficients are:

{
Sin,11(E)S∗in,12(Eq)

}
q
= −i

√
TCRC ei E∆τLR

~

{

{RL1RL2 + TL1TL2}
{

SL(t − ∆τLR) S∗R(t)
}

q−
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−ζL ei E∆τL
~ ei2πΦL

Φ0

{
SL(t − ∆τL − ∆τLR) S∗R(t)

}
q

−ζL e−i E∆τL
~ e−i2πΦL

Φ0

{
SL(t + ∆τL − ∆τLR) S∗R(t)

}
q

}
,

{
Sin,21(E)S∗in,22(Eq)

}∗
q
= −i

√
TCRC e−i E∆τLR

~

{

{RR1RR2 + TR1TR2}
{

SL(t − ∆τLR) S∗R(t)
}∗

q
−

−ζR e−i E∆τR
~ e−i2πΦR

Φ0

{
SL(t − ∆τR− ∆τLR) S∗R(t)

}∗
q

−ζR ei E∆τR
~ ei2πΦR

Φ0

{
SL(t + ∆τR− ∆τLR) S∗R(t)

}∗
q

}
.

Then the quantityBq, Eq. (B.105c), can be represented as follows:

Bq = −RCTC

{
B0,q + ζLζR

4∑

i=1

Bi,q +

6∑

i=5

Bi,q

}
, (B.119)

where

B0,q = T(L,0)
MZI T(R,0)

MZI

∣∣∣
{

SL(t − ∆τLR) S∗R(t)
}

q

∣∣∣
2
,

B1,q = ei2πΦL+ΦR
Φ0 ei E

~
(∆τL+∆τR)

{
SL(t − ∆τL − ∆τLR)S∗R(t)

}
q

×
{

SL(t + ∆τR− ∆τLR)S∗R(t)
}∗

q ,

B2,q = e−i2πΦL+ΦR
Φ0 e−i E

~
(∆τL+∆τR)

{
SL(t + ∆τL − ∆τLR)S∗R(t)

}
q

×
{

SL(t − ∆τR− ∆τLR)S∗R(t)
}∗

q ,
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B3,q = ei2πΦL−ΦR
Φ0 ei E

~
(∆τL−∆τR)

{
SL(t − ∆τL − ∆τLR)S∗R(t)

}
q

×
{

SL(t − ∆τR− ∆τLR)S∗R(t)
}∗

q ,

B4,q = e−i2πΦL−ΦR
Φ0 e−i E

~
(∆τL−∆τR)

{
SL(t + ∆τL − ∆τLR)S∗R(t)

}
q

×
{

SL(t + ∆τR− ∆τLR)S∗R(t)
}∗

q
,

B5,q = −T(L,0)
MZI ζR

{
SL(t − ∆τLR)S∗R(t)

}
q

{

e−i E∆τR
~ e−i2πΦR

Φ0 ×
{

SL(t − ∆τR− ∆τLR) S∗R(t)
}∗

q

+ei E∆τR
~ ei2πΦR

Φ0

{
SL(t + ∆τR− ∆τLR) S∗R(t)

}∗
q

}
,

B6,q = −T(R,0)
MZI ζL

{
SL(t − ∆τLR)S∗R(t)

}∗
q

{

ei E∆τL
~ ei2πΦL

Φ0

{
SL(t − ∆τL − ∆τLR) S∗R(t)

}
q

+e−i E∆τL
~ e−i2πΦL

Φ0

{
SL(t + ∆τL − ∆τLR) S∗R(t)

}
q

}
,

where T( j,0)
MZI = Rj1Rj2 + T j1T j2. The quantitiesT( j,0)

MZI and ζ j [see
Eq. (B.116)] define the transmission probabilityT( j)

MZI(E) = T( j,0)
MZI −

2ζ j cos
(
2πΦL/Φ0 + E∆τ j/~

)
for electrons with energyE through the interfer-

ometer j from the central QPC to the contact 1(2) forj = L(R).
We see from Eq. (B.119) that the termB0,q always contributes leading to

the cross-correlator similar to what we got in Sec.B.4.1. The difference is
only in an additional factorTL,0

MZIT
R,0
MZI due to interferometers and in the time

delay∆tL,R appeared in the non-adiabatic regime. Other terms in Eq. (B.119)
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do contribute in the case they lose oscillating dependence on energyE: Some
of termsB1,q – B4,q do contribute if∆τL = ±∆τR. While the termsB5,q and
B6,q (both or either of them) do contribute to current cross-correlator in the case
of symmetrical interferometers∆τL = 0 and/or ∆τR = 0. Alternatively, all
the terms do contribute in the adiabatic regime. Therefore,with Eqs. (B.113),
(B.114) the relevant coefficients areB0,q andB1,q - B4,q which we combine as:

B±,q = ei2πΦL±ΦR
Φ0

∣∣∣
{

SL(t − ∆τL − ∆τLR)S∗R(t)
}

q

∣∣∣
2

(B.120)

+ e−i2πΦL±ΦR
Φ0

∣∣∣
{

SL(t + ∆τL − ∆τLR)S∗R(t)
}

q

∣∣∣
2
.

Note the sign “+” or “−” is chosen depending on which sign (“+” or “−”) is in
Eq. (B.114). For the geometry given in Fig.B.8 it is ∆τL = ∆τR < 0. Therefore,
in Eq. (B.114) the sign “−” should be kept.

Taking into account that after allC∗q = Bq we can write the relevant coeffi-
cients as follows,

B0,q +C0,q = 2T(L,0)
MZI T

(R,0)
MZI

∣∣∣
{

SL(t − ∆τLR) S∗R(t)
}

q

∣∣∣
2
, (B.121a)

B±,q +C±,q = 2 cos

(
2π
ΦL ± ΦR

Φ0

){
(B.121b)

∣∣∣
{

SL(t − ∆τL − ∆τLR)S∗R(t)
}

q

∣∣∣
2
+

∣∣∣
{

SL(t + ∆τL − ∆τLR)S∗R(t)
}

q

∣∣∣
2
}
.

Let us consider the partP(B+C,0)
12 of a cross-correlator due toB0,q andC0,q.

With Eq. (B.121a) the integration in Eq. (B.105) is trivial. Then summing up
overq by analogy with how we did in Sec.B.4.1we calculate:

P
(B+C,0)
12 = − 2P0T

(L,0)
MZI T(R,0)

MZI

{
γ
(
∆t(−,−)

L,R + ∆τLR

)
+ γ
(
∆t(+,+)

L,R + ∆τLR

)}
,

(B.122)
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where the damping factorγ(∆t) is given in Eq. (B.57).
Similarly we calculate the part due toB±,q andC±,q:

P
(B+C,Φ)
12 = − 2P0ζLζR cos

(
2π
ΦL ± ΦR

Φ0

){
(B.123)

γ
(
∆t(−,−)

L,R − ∆τL + ∆τLR

)
+ γ
(
∆t(+,+)

L,R − ∆τL + ∆τLR

)

+γ
(
∆t(−,−)

L,R + ∆τL + ∆τLR

)
+ γ
(
∆t(+,+)

L,R + ∆τL + ∆τLR

)}
.

B.6.3.2 Total equation and its analysis

Using Eqs. (B.118), (B.122), and (B.123) we find the total current cross-
correlation function,P12 = P

(A+D)
12 + P

(B+C,0)
12 + P

(B+C,Φ)
12 :

P12 = − 2P0T
(L,0)
MZI T(R,0)

MZI

{
γ
(
∆t(−,−)

L,R + ∆τLR

)
+ γ
(
∆t(+,+)

L,R + ∆τLR

)}

+2P0ζLζR cos

(
2π
ΦL ±ΦR

Φ0

){
4

(B.124a)

−γ
(
∆t(−,−)

L,R − ∆τL + ∆τLR

)
− γ
(
∆t(−,−)

L,R + ∆τL + ∆τLR

)

−γ
(
∆t(+,+)

L,R − ∆τL + ∆τLR

)
− γ
(
∆t(+,+)

L,R + ∆τL + ∆τLR

)}
.

Notice, the suppression of a magnetic-flux independent contribution and the
appearance of a contribution dependent on a magnetic flux occur at different
conditions.

If particles emitted by the sourcesSL andSR propagate through the circuit
without collisions between themselves then it is,
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P12 = −4P0T
(L,0)
MZI T(R.0)

MZI , (B.125)

(compare to Eq. (B.73) in an adiabatic regime without interferometers). Here
the factor 4 reflects the presence of four particles (two electrons and two holes)
emitted by the two sources during a pumping period. The factor T( j,0)

MZI = Rj1Rj2+

T j1T j2 is a probability for an electron (a hole) to pass through the interferometer
j. In the non-adiabatic regime under consideration, Eq. (B.113), this probability
is a sum of probabilities to pass through each arm of an interferometer: The
probabilityRj1Rj2 is for the armU, and the probabilityT j1T j2 is for the armD,
see Fig.B.8.

To analyze the effect of particle collisions we consider the sources emitting
wave-packets with the same shape,ΓτL = ΓτR. If two emitted during a period
electrons collide at the central QPC,∆t(−,−)

L,R + ∆τLR = 0, then the correlator
is suppressed:P12 = −2P0T

(L,0)
MZI T(R.0)

MZI . If in addition the two holes collide,
∆t(+,+)

L,R + ∆τLR = 0, then it is suppressed down to zero:P12 = 0. We already
discussed this effect in previous sections.

B.6.3.3 Magnetic-flux dependent correlator

An interesting effect arises if two electrons (or two holes) can collide at the
interferometer’s exit, i.e., at the quantum point contactL1 (R2) for the interfer-
ometerL (R), see Fig.B.8. Because of Eq. (B.114) the collision conditions are
satisfied for both interferometers simultaneously. For definiteness we consider
an electron contribution and assume the following condition:

∆t(−,−)
L,R − ∆τL + ∆τLR = 0 , ∆τL = ∆τR . (B.126)

Then we find,

P
(e)
12 = −2P0

{
T(L,0)

MZI T(R.0)
MZI − ζLζR cos

(
2π
ΦL − ΦR

Φ0

)}
, (B.127)

that the current cross-correlator depends on magnetic fluxes of distant interfer-
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B.6 Two-particle interference effect

ometers. This non-local effect is due to two-particle correlations being a conse-
quence of erasing which-path information for electrons arriving simultaneously
at contacts 1 and 2. As it was shown in Ref. [117], these correlations are quan-
tum, since they violate the Bell inequalities [125].

To clarify the origin of this effect and to relate the magnetic-flux dependent
part ofP(e)

12 to the two-electron probabilityN12 we consider in detail propagating
of two electrons through the circuit.

Let us consider two electrons going to the same, sayL, interferometer.
From Eq. (B.126) we have,τ1DC + τCL + t(−)

0L = τ1UC + τCR+ t(−)
0R . This means

that an electron emitted by the sourceSL and going along the down arm of the
left interferometer, the pathL1DL, does meet an electron emitted by the source
SR and going along the upper arm of the same interferometer, thepathL1UR.
Therefore, after the quantum point contactL1 we do not know where an elec-
tron came from. The same happens if two electrons go to the interferometerR:
Again due to Eq. (B.126) there is,τ2DC+τCL+t(−)

0L = τ2UC+τCR+t(−)
0R . Therefore,

an electron emitted by the sourceSL and going along the down arm of the right
interferometer, the pathL2DL, and an electron emitted by the sourceSR and go-
ing along the upper arm of the same interferometer, the pathL2UR, lose their
which-path information after the quantum point contactR2. We stress these
events do not manifest themselves in the cross-correlatorP12. We considered
them only with a purpose to show an existence of two pairs of single-particle
trajectories,L1DL, L1UR andL2DL, L2UR, responsible for losing of which-path
information.

From these single-particle trajectories one can compose two-particle tra-
jectories corresponding to particles going to different interferometers. These
trajectories are the following,L(2)

a = L1DLL2UR andL
(2)
b = L2DLL1UR. With

Eq. (B.126) the trajectoriesL(2)
a andL

(2)
b correspond to two-particle indistin-

guishable events: They have the same initial and final states. The final state is
characterized by the places where electrons are appeared and the times when
electrons are appeared at these places. Electrons going along these trajectories
are responsible for magnetic-flux dependence of the cross-correlatorP(e)

12. Since
there are a number of different two-particle trajectories, the amplitudeA(2) for
mentioned trajectories defines only a part of the two-particle probability which
we denote asN(2)

12 =
∣∣A(2)

∣∣2. Since the amplitudeA(2) comprises contributions
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from two indistinguishable trajectories, it is the Slater determinant,

A(2) = det

∣∣∣∣∣∣

A1DL A1UR

A2DL A2UR

∣∣∣∣∣∣
, (B.128)

with following single-particle amplitudes,

A1DL = −
√

RCTL2TL1 e− i2πΦLD
Φ0 eikFL1DL ,

A1UR = i
√

TCRL2RL1 ei2πΦLU
Φ0 eikF L1UR ,

A2DL = −i
√

TCTR1TR2 e− i2πΦRD
Φ0 eikFL2DL ,

A2UR =
√

RCRR1RR2 ei2πΦRU
Φ0 eikF L2UR .

After squaring we find,

N
(2)
12 = R2

CTL1TL2RR1RR2 + T2
CRL1RL2TR1TR2

(B.129)

+2RCTCζLζR cos

(
2π
ΦL − ΦR

Φ0

)
.

Note here it is a difference of magnetic fluxes since we chose∆τL = ∆τR,
Eq.B.126, see explanation after Eq. (B.120).

Using Eq. (B.31) one can check that the magnetic-flux dependence
of the two-electron probabilityN(2)

12, Eq. (B.129), completely explains the
magnetic-flux dependence of the current cross-correlatorP

(e)
12, Eq. (B.127).
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