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Abstract—The electrodynamic characteristics of a high-
dielectric whispering gallery mode resonator in the form of a
hemisphere positioned on an impedance plane were studied. The
analysis of the anisotropic resonator was modeled using Maxwell
equations and the impedance Leontovich boundary condition.
The interaction coefficient of the conductor and microwave
field was determined using a frequency and field distribution of
the -type mode in the hemisphere resonator considering a perfect
conducting plane. Results of the theoretical study and experi-
mental measurements of the Teflon resonator frequency spectrum
and factor are in good agreement. The results obtained are con-
firmed by calculations using Microwave Studio CST 2008. In the
case of the sapphire hemispherical resonator with an impedance
plane, comparison of the experimental and simulation results
allows us to identify the -type modes in the resonator and their
electromagnetic field distribution. In such anisotropic hemisphere
resonators, the quasi-TE modes are revealed. The modes are
excited together with TE modes inherent to the isotropic resonator
and they have an identical distribution of electromagnetic field.

Index Terms—Dielectric resonators, electromagnetic fields, fre-
quency, impedance measurement, millimeter-wave measurements,

factor.

I. INTRODUCTION

Q UASI-OPTICAL dielectric resonators excited on whis-
pering gallery modes have found applications in a wide
frequency range: from microwave [1] to optical [2]

bands. Increased interest in such resonators is related to their
high factor and higher operation frequencies due to the
larger dimensions of the whispering gallery mode resonator
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in comparison to dielectric resonators excited on fundamental
modes. They are used in the microwave frequency range for the
development of high-quality filters [3] and of oscillators with
decreased phase noise and high-frequency stabilization [4]–[6],
and also for the power combining of several oscillators [7].

They also can be used for the measurement of the complex
permittivity of dielectric substances [8], [9], surface impedance
of high-temperature superconducting (HTS) films [10]–[12],
and studies of semiconductor properties [13], [14].

The increasing sensitivity in the microwave band is impor-
tant for HTS surface impedance measurements, the develop-
ment of HTS-based devices, and for a deeper understanding
of the nature of unconventional superconductivity phenomena.
Obtaining surface impedance data for HTS material is of great
significance in a broad temperature range including very low
temperatures where the highest sensitivity of microwave loss
measurement is required [15].

Resonators excited on whispering gallery modes are usually
studied and used in the form of circular cylinders (see, e.g.,
[16]–[18]). It should be noted that [18] was one of the first
papers that compared the matching of theory and experiment
in the case of anisotropic dielectric resonators. Recently, it has
been shown that these resonators with conducting endplates can
be used for measurement of HTS thin-film surface resistance
[10], [11], [19]. Such an approach allows enhancing the accu-
racy of small surface resistance , value measurement due to
the increased factor of the resonator, and means there is no
need for a calibration procedure of measurement setup. In addi-
tion, the possibility of measuring the films with different forms
and dimensions is an additional advantage. However, the mea-
sured is the averaged value of two films. In principle, in-
dividual values of conducting endplates can be found by
using a so-called “round robin” procedure [20], which requires
three thermal cycle measurements of three different pairs of
HTS films and is a very time-consuming procedure.

Therefore, resonators have recently been developed in a form
that allows only one conducting endplate to be studied. In such a
resonator, the microwave field has to be localized near the con-
ducting surface. The resonator can be designed in the form of a
truncated cone [21] or a hemisphere [22] placed on a conducting
plane, i.e., a conducting endplate. It was shown experimentally
that, in these resonators, whispering gallery modes can be ex-
cited near the surface of the plate, i.e., close to the resonator
base [23]. The resonator in the form of a truncated cone was
studied in [24]. However, the electrodynamics of hemispherical
resonators has not been explored in detail, which substantially
hinders their application.
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Fig. 1. Hemispherical dielectric resonator with conducting infinite plane.

In this paper, we report on the results of a theoretical and ex-
perimental study of hemispherical whispering gallery mode res-
onators with an impedance plane. Microwave properties of the
resonators designed on the basis of isotropic and anisotropic di-
electrics were analyzed. The experiment and theory were found
to be in good agreement.

II. THEORY

Hemispherical resonators are very promising for practical ap-
plications in a microwave technique. It is evident that the elec-
trodynamics of a spherical whispering gallery modes resonator
is a starting point for theoretical studies of a hemispherical res-
onator with a plane conducting surface. Recently, the authors
of [25] and [26] theoretically analyzed the whispering gallery
mode resonator in the form of a sphere made of anisotropic di-
electric, taking into account that most materials with a small loss
are anisotropic. At the same time, analyzing the effect of dielec-
tric anisotropy on the electromagnetic properties of hemispher-
ical whispering gallery mode resonators remains the most im-
portant issue of the day. The dependence of hemispherical whis-
pering gallery mode resonator eigenfrequencies and factor on
impedance properties of the plane surface have to be studied.

A. Hemispherical Dielectric Resonator With Perfect
Conducting Plate

Electromagnetic fields of the eigen -mode of a hemispher-
ical dielectric resonator with a perfect conducting plane surface
(Fig. 1) can be calculated using Maxwell equations

(1)

where material equations were taken into account.
Here, and , where is the time

and is the eigen complex frequency of the resonator with
a -mode: , ; and are the ten-
sors of permittivity and permeability of the -medium, counting
from the center of the studied resonator taking into account
the surrounding environment; is the velocity of light. Tensor
components and are complex values and characterize the
anisotropic properties of -medium with loss. If the media of the
resonator or surrounding environment are isotropic with respect

to electric or magnetic fields, they are characterized by corre-
sponding tensors or , matrices of which have a diagonal
form with the same components. Using such an approach, all
expressions obtained by analysis of the case of anisotropic res-
onator can be transformed easy into those suitable for analysis
of the isotropic resonator case. Index consists of three mode
indices, namely, . Azimuthal mode index has magni-
tudes and equals half a number of field vari-
ations along angle . At the same time, index , where a
polar index is determined through the quantity of field varia-
tions along the polar angle in a spherical coordinate system:

. We used the relation between indices and
and quantity of field variations ( with bar accent) along the

polar angle taking into account the field distribution on a sphere
surface of the resonator [27], which is generally determined by
the associated Legendre function. The radial index , which is
an ordinal number of the root of the characteristic equation for
the studied resonator, corresponds to the quantity of field vari-
ations along a radial coordinate . Expressions for electric and
magnetic vector components of the -type -mode are used as in
[25] and [27]. In the case of isotropic media in the resonator and
surrounding environment, the eigencomplex frequencies are
determined by solving a corresponding characteristic equation
[27]. For the -type mode, we assume or , i.e., eigen TM or
TE modes, respectively (and additional quasi-TM or quasi-TE
modes for the anisotropic resonator or in the presence of an
anisotropic environment). We have found experimentally that
additional quasi-TE modes appear in the case of an anisotropic
hemisphere. These modes are absent in isotropic resonators. In
hemispherical dielectric resonators, a sum of indices has
odd numbers for eigen -type modes and even numbers for

-type modes [27].
One-mode approach used in solving the electrodynamic

problem is justified by the physical background. In the ex-
perimental studies, the resonator is excited by some source
positioned in the definite point of the space. The source forms
monochromatic radiation. As a result of frequency and space
selection, as a rule, only one mode is excited in the resonator.
A spatial selection is provided by positioning the excitation
source in the field maximum of the resonator eigenmode.
Therefore, a superposition field of excited modes with the
same frequency is formed mainly by the field of the dominant
eigenmode in the resonator. This fact exhibits in a theory of
stimulated oscillations in the resonator under study, when
we solve the electrodynamic problem using a separation of
variables. At the same time, we obtain components of the
field formed by a superposition of the fields of eigenmodes
with the same frequency. The main contribution to the field
is introduced by a dominant mode, determined by a spatial
selection implemented using the excitation source. Therefore,
in a theory of eigenmodes, it is sufficient to study the influence
of imperfect conductivity of a plane surface on the field of
one (dominant) mode. In addition, in a case of an isotropic
resonator with a perfect conducting plane, electrodynamic anal-
ysis reduces to a solution of independent differential equations
for degenerate TM and TE modes with the same polar indices.
The effect of the conducting plane results in the resonator
spectrum sparseness, determined by boundary conditions on
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the conducting surface, and manifested itself in a sum of polar
and azimuthal indices. The field distribution pattern of these
modes indicates the possibility of their selection using a polar
coordinate [27]. Thus, the vector fields with mode indices in
(1) describe the resulting electric and magnetic fields whose
structure corresponds to the dominant mode in a resonator with
a perfectly conducting plane surface.

The energy of the electromagnetic field created by the -mode
of -type in the resonator with a perfect conducting plane is
determined by the expression [28]

(2)

where integration is performed over a total volume of
medium , and tensor components and are real mag-
nitudes that characterize the anisotropic properties of the

-medium without losses. Here, electric and magnetic
fields are represented by resolutions of vectors of identical

fields (the -mode of -type) in a resonator in a spherical
coordinate system and

, where , , and are
unit vectors of the corresponding axes. The elementary volume

and limits of integration in accordance with the geometry of
the resonator are also taken in the spherical coordinate system.
Here and below, the symbol “ ” indicates complex conjugation.

B. Resonator With Impedance Plane

Imperfect conductivity of a plane surface has a considerable
influence on the spectral and energy characteristics of the res-
onators (Fig. 1) [29], [30]. They are determined by solutions of
the set of homogeneous equations

(3)

where and , and is the
eigenfrequency of the resonator . It should be noted
that both (1) and (3) have to be written for the correct mapping
technique for obtaining integral (5).

In the opposite case to the perfect conductor, the electromag-
netic field in a real conductor penetrates into the depth of the
skin layer, the thickness of which is finite and small, especially
in the microwave frequency range. In this respect, the perfect
conductor in the main reflects the real metal conductor proper-
ties [31]. However, Joule heat losses are equal to zero in a perfect
conductor, and if it is necessary to take them into account, the
idea of a perfect conductor cannot be applied. These losses exist
in a real conductor, and their value increases with decreasing
skin layer. The case of a real conductor can be considered in
an electrodynamic study by taking into account the impedance
boundary condition (Leontovich boundary condition) on its sur-
face [31]

(4)

where is the normal vector directed into the conductor to-
ward the surface, 1 is the surface impedance
with and —the surface resistance and surface reactance
of a conductor, respectively. Fields and in (4) correspond
to their values in the points of the -medium, which are infin-
itely near, but do not belong to a conductor surface. The relation
(4) is an approximation and is feasible in the case of a strong
skin effect, when: 1) a field penetration depth in a conductor is
much smaller than a wavelength in the -medium and 2) a skin
layer thickness is small in comparison to the conductor thick-
ness and radius of curvature of the surface. It should be empha-
sized that, in (4), both penetration of the electromagnetic field
into the conductor and corresponding losses are taken into ac-
count. According to [31], the fractional error is related to the
influence of the conductor on the electromagnetic field and is
of the order of magnitude , where permittivity and
permeability correspond to the conductor medium.

After multiplying the set of complex conjugate (3) by ,
, respectively, and the set (1) by complex conjugate magni-

tudes , , we add them. After integrating the obtained
expression over the total space taking into account, the diver-
gence theorem and using the continuity conditions of tangen-
tial-field components on the spherical surface of the resonator

and also the impedance boundary condition (4) on the
plane , we obtain the integral equation in the
form

(5)

The integration on the left is performed over the total volume
of the -medium and on the right over the conducting plane

surface contacting with the -medium. It should be noted
that fields and , included in (5) on the right, correspond
to field magnitudes in the -medium points infinitely near to the
conductor surface. The vector is the unit vector of the

-axis.
The fields and are represented in the eigenmode sub-

setting of and for a resonator with a perfect conducting
surface

(6)

where is the subsetting coefficient.

1It should noted that, in electrodynamics, as a rule, quasi-monochromatic
fields are used with time dependence in the form of ���������, which gives
a sign “minus” in the expression for surface impedance � (see, e.g., [32]). In
contrast, in microwave superconductivity, the time dependence is used in the
form of ��������, which changes the sign before the imaginary part of � (see,
e.g., [15] and [33]).
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By substituting (6) in (5) and taking into account (2), we ob-
tain the infinite in respect of the -modes set of equations

(7)

where the factor

reflects the energy
loss of the electromagnetic field created by the -mode of the
-type in the general case of the anisotropic medium in the

resonator studied with a perfect conducting plane.
The parameter of

includes loss in the sur-
face of the plane with finite conductivity and interaction of the
modes in the resonator.

The condition for the existence of nontrivial solutions of the
system (7) in regard to can be found from the equation when
the determinant is equal to zero

(8)

where is the Kronecker symbol. Expression (8) is the
equation for determining the eigenfrequencies of the res-
onator shown in Fig. 1 with finite conducting plates. Equation
(8) physically represents the energy conversation law for
quasi-monochromatic fields of resonator eigenmodes. In addi-
tion, (8) determines the eigenfrequency shift of the resonator
studied with a finite conducting plane in respect of the resonator
with a perfect conducting plane.

By neglecting the interaction of modes ( at ,
reflecting that surface current in a conducting plane is induced
by a dominant mode field in the resonator), (8) can be reduced
to the form

(9)

where is the squared
surface current in a resonator conducting plane. This current is
the result of the penetration of an eigen -mode electromagnetic
field into the conductor. For the resonator studied and

.
In the general case, (9) also has to be applied for a resonator
with a perfect conducting surface (i.e., at ). In such a
resonator, the frequencies do not shift and . Therefore,
between the electromagnetic energy and its loss in
the resonator (Fig. 1) with a perfect conducting plane, the fol-
lowing relation is fulfilled: , which results
in a doubling of the value of the eigen factor of the resonator
with a -type mode. Using (9) and , the res-
onator eigenfrequency shift as a result of the finite conductivity
of the conducting plane can be described as

The shift of the eigenfrequency of the real part of the resonator
is determined, in the main, by the imaginary part of surface
impedance (by reactance) . Nondissipative energy stored in
the surface layers of the plane wall of the resonator depends
on the magnitude of the reactance. Surface resistance de-
termines the power of the Joule losses in the
impedance surface of the studied resonator averaged over the
period. Finite conductivity of the surface results in decreasing
real parts and increasing imaginary parts of the eigenfrequen-
cies in respect of a resonator with a perfect conducting plane.
The effect is caused by the penetration of eigenmode fields into
the resonator’ conducting plane, which, in turn, is accompanied
by an increase in resonator volume. Assuming identical eigen-
mode field configurations for two resonators with different con-
ductivity of the plane surface, the resonator with the larger sur-
face resistance and surface reactance has a smaller value
of .

In principle, (9) allows us to determine the surface impedance
of the resonator conducting plane using eigencomplex fre-

quency measured experimentally.

C. Interaction Between Microwave Field and Resonator
Conducting Plane: Conductor Inclusion Factor

In the case of small attenuation of the eigenmode field, i.e.,
when the decrease in mode amplitude is small and the field
can be considered as harmonic within one period, a resonator

factor is determined by a ratio of energy , stored in the
resonator volume, to the energy , which is lost per period

. If the mode amplitude in the resonator is
kept constant using an external source, compensating the energy
losses, the factor can be calculated by

(10)

where is the loss power, which consists of losses in
the medium, filling a restricted volume, radiated losses into
the surrounding environment, and losses due to the conducting
medium . Therefore, the total losses of elec-
tromagnetic energy in a resonator with the -type mode are
determined by the relation

(11)

Here, is the resonator factor determined by radiation
loss and loss in the dielectric, and is determined by the
loss in the conducting surface of the resonator. In the case of
strong damping of the mode, (10) cannot be applied to find the

factor including all loss components, and the following ex-
pression should be used , which is correct under
any damping of eigenmode in the resonator.

The factor related to both energy loss in the dielectric and
radiation can be determined using . In the case of
exciting weakly damped whispering gallery modes, accordingly
to (10), the resonator factor due to loss in the conducting
surface is determined by the expression .
The resonator factor can be presented in the form of

, taking into account . Here,
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TABLE I
CHARACTERISTICS OF THE RESONATOR WITH �� MODES

TABLE II
CHARACTERISTICS OF THE RESONATOR WITH �� MODES

the conductor inclusion factor describes the interaction of
the microwave field and conducting plane. It depends on the
field distribution of the -mode near the resonator conducting
surface and can be calculated using

(12)

Hence, the coefficient is determined by the eigenmode
frequency and field distribution in a resonator with a perfect
conducting plane. In other words, depends on the geometric
parameters of a resonator and the electrophysical properties of
its media including the surrounding environment and is inde-
pendent of the properties of the conducting plane. The coeffi-
cient is calculated using (12) in the frame of the theory of
eigenmodes of the resonator because the squared surface cur-
rent in the resonator conducting surface and energy of
the -type eigen -mode are determined by field components,
which are represented by expressions [25], [27] containing the
same constant. It should be noted that, for the resonator under
study with a spherical interface of media, the energy can be
obtained using an analytical solution. However, the integral rela-
tionship can be found only using numerical methods. In the
case when the energy includes only the energy of the mag-
netic field, the inverse value of the conductor inclusion factor

is the geometric factor [34].
Tables I and II summarize the results of numerically studying

the hemispherical Teflon resonator of radius cm with
and modes. The hemisphere is placed on

the copper m or brass m planes.
A resonator with an -type mode has the largest values of

the coefficient when and with an -type mode when
. This indicates the localization of eigen

and mode electromagnetic fields near the conducting
plane of the resonator. This case is important for increasing the
sensitivity of the method for impedance determination.

D. Eigenfrequencies and Factor of Resonator With
Impedance Plane

Using the solutions of (9), the solutions of the characteristic
equation for the resonator with a perfect conducting plane

[27], the relation , and taking into account
the conductor inclusion factor from (12), the eigencomplex
frequencies of the resonator (Fig. 1) can be determined by the
expression

(13)

Since and using (13), the real part of the
eigenfrequency of a resonator with the -mode of -type can be
reduced to

(14)

Frequency agrees with the resonance frequency measured
experimentally in the exciting -mode of -type in the resonator
under conditions of weak coupling between the resonator and
exciter. The imaginary part of the eigenfrequency can be deter-
mined as

(15)

Equation (15) corresponds physically to the case when energy
total losses in the resonator satisfy (11). This
indicates that, in the case of a strong skin effect, the factor of
the resonator determined by loss in its conducting surface can
be represented in the form of .

In real conductors with a strong skin effect, the surface re-
sistance equals the surface reactance and has a
positive magnitude that indicates the inductive nature of the
surface impedance of the conducting surface of the resonator.
This can be explained by the fact that the total surface current

has a phase shift in comparison with the tangential elec-
tric field on the conducting surface of
the resonator. According to [31], only volume currents on the
conducting surface are in phase with the surface electric field,
and currents in the deeper layers of conductor have a phase shift
from the surface electric field because of wave excitement and
propagation along the direction normal to the conductor plane.
In a resonator with a real conducting (i.e., impedance) plane sur-
face, the frequency of the eigenmode can be determined using
(13) by the expression

(16)

Therefore, from (16), the real part of the eigenfrequency of
a resonator with the -mode of -type is equal to

, which corresponds to the fre-
quency determined by (14) at . At the same time, the
imaginary part of the frequency is determined by (15), which
indicates the universality of (11) for calculating the total energy
losses in the resonator. Besides, the real and imaginary parts of
the resonator eigenfrequency are related

(17)
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Fig. 2. Eigenfrequencies of the hemispherical resonator designed from Teflon
with �� and �� modes: closed symbols—experimental data, open
symbols—calculation results, dashed line represents simulation results using
MWS.

Thus, in the general case, the eigenfrequency of the resonator
(Fig. 1) with a -mode of -type is determined by (13). At the
same time, the resonator eigen factor is . When
the conducting plane of the resonator is a real metal conductor,
the eigenfrequencies of the resonator can be determined by (16).

In the case of an isotropic dielectric hemisphere with a perfect
conducting plane surface, the eigen -type and -type modes
are frequency degenerated, - and -fold, respectively
[27]. The finite conductivity of the plane surface of the hemi-
sphere dielectric resonator according to (13) removes the fre-
quency degeneration because the factor of (12) is expressed
by the ratio of integral relationships for and , which con-
tain the field components for the -mode of -type depending on
the mode indices , , and .

III. EXPERIMENTAL STUDY OF HEMISPHERICAL RESONATORS

A. Teflon Hemisphere

Teflon is an isotropic material with permittivity measured
using a cylindrical disc whispering gallery mode resonator in
the present work and determined as .
It demonstrates relatively small losses of eigenmode energy in a
resonator made of this material. Moreover, Teflon can be easily
machined, which is convenient for producing resonators of dif-
ferent forms. Therefore, we started resonator studies using a
hemispherical resonator made of Teflon. The radius of the res-
onator is cm. The metal plane of the resonator (Fig. 1)
was produced from brass m . The experimental
data on the eigenfrequency and factor were measured using
Agilent Network Analyzer PNA-L N5230A in the frequency
band from 30 to 40 GHz.

The eigenfrequencies of the resonator with and
modes at different azimuthal indices are

calculated using the equation
, which was obtained from (14) at .

The results are compared with the measured values, as well
as with those calculated using CST Microwave Studio 2008
(MWS) for the same modes (Fig. 2).

Fig. 3. � factor of hemispherical resonator from Teflon with �� and
�� modes: closed symbols—experimental data, open symbols—calcu-
lation results.

Fig. 2 demonstrates that the results of the calculated and
experimental data are in good agreement for both
( -type, for which ) and for ( -type, for
which ) modes. This fact confirms that the analytical
approach is correct and can be used for spectrum identification
of an isotropic hemisphere whispering gallery mode resonator.
The experimental and calculated data deviate insignificantly,
which is caused by the slight surface roughness of the spherical
resonator made from Teflon and the brass plane. The rough-
ness is difficult to take into account in the calculations. For
correct identification of the resonator modes excited in the
experiment, we compared the field distributions obtained by
different methods: 1) calculated using a computer program
developed at the Institute of Radiophysics and Electronics,
National Academy of Sciences (NAS) of Ukraine; 2) calculated
using the program package CST MWS 2008 (transient solver);
and 3) measured experimentally using the small perturbation
method, i.e., using a small-size test probe. A combination
of methods allows us to determine the indices of the modes
excited in the resonator.

In addition, the energetic characteristics of the resonator
were studied. -factor values of the Teflon resonator with

and modes are shown in Fig. 3. The cal-
culated -factor values were obtained using (11) taking into
account that and . Fig. 3
shows that whispering gallery mode resonator with
and modes had different values of factor. They
increase with increasing azimuthal index , which, in
turn, is accompanied by an increase of the eigenfrequencies.
The factors strongly depend on values and . Neverthe-
less, the difference between the calculated and experimental
energetic characteristics for both mode types does not exceed
the relative error of the resonator -factor measurement , which
corresponds to the value .

B. Sapphire Hemisphere Resonator

In order to study the special electrodynamic features of
a hemispheric resonator made of uniaxial anisotropic single
crystals, the spectral and energetic characteristics of a sapphire
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Fig. 4. Calculated distribution of field � component. (a) �� and (b) �� modes in a hemispherical whispering gallery mode resonator with
conducting plane using MWS.

Al O resonator were measured. A permittivity tensor of a
single-crystal sapphire can be expressed as the equation shown
at the bottom of this page.

A hemisphere with radius cm was produced with
an optical axis perpendicular to the conducting copper plane of
the resonator (see Fig. 1). The surface resistance of the copper
plate was measured using a sapphire disc resonator and deter-
mined as 55 m at room temperature.

Since there is no analytic solution of the electrodynamic
problem for an anisotropic hemisphere with a conducting
plane, the sapphire resonator was numerically simulated using
the MWS package (transient and eigenmode solvers). The
resonance frequencies and field redistribution of the excited
modes were calculated.

Fig. 4(a) and (b) shows the distributions
of field components and modes, respec-
tively, in the sapphire hemisphere whispering gallery mode res-
onator with a copper plate in the planes (in cross
section) and (in cross section). Excitation of the
resonator was realized by a quasi-image sapphire waveguide ar-

ranged in a plane . Fig. 4 demonstrates that the res-
onator fields of both modes are concentrated near the conducting
plane. In the future, we will concentrate our studies on modes
in a hemisphere sapphire resonator, because for the mode, the
maximum density of the field energy spreads close to the metal
plate surface [23], which indicates a preference of this mode for

measurements.
The frequency dependencies of the resonator -parameters

are shown in Fig. 5. The experimental data were measured in the
frequency band from 30 to 40 GHz. In addition, the dependen-
cies are calculated using MWS (Fig. 5). Both the calculated and
measured frequency spectra are in good agreement. The relative
difference of the calculated and measured frequencies does not
exceed 1% and can be decreased easy by fitting the permittivity
tensor.

The resonator modes are identified from a comparison of the
calculated and measured mode frequencies and field structures.
The slight deviation of the calculated and experimental results
can be explained by a systematic inaccuracy of the numerical
method defined in the program, which depends on the relation
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Fig. 5. Spectrum of the studied whispering gallery mode resonator designed
from sapphire: dashed line—results of calculation (MWS), solid line—experi-
mental results.

Fig. 6. Spectrum of whispering gallery mode hemispherical resonator designed
from sapphire, calculated using MWS (for the case without a plate).

of the resonator wavelength and the dimension of the mesh cells
of the studied structure. Additional resonance peaks are resolved
in the calculated spectrum, and missing or weakly pronounced
peaks in the measured spectrum.

The deviation can be explained by the difficulty in fulfilling
the identity of excitation conditions for the resonator in these
two cases.

It should be noted that the quasi- modes were ex-
cited in the studied resonator, containing all six components of
electromagnetic fields, space distributions of which are identical
to those of the corresponding modes, except that the
modes have only five field components because . The
quasi- modes are a result of anisotropy in the material
of the spherical resonator made according to [25]. In addition,
the quasi-TE modes are also registered in the hemispherical res-
onator without any conducting plane (Fig. 6). In the case of the
isotropic material, the spherical resonator made from Teflon was
only excited with the TE and TM modes, which have only five
field components.

To study the anisotropy effect of a uniaxial single crystal on
the properties of a whispering gallery mode resonator, the case
of hemispherical resonators of cm was calculated

Fig. 7. Resonance frequencies of a hemispherical whispering gallery mode
resonator with different kinds of anisotropy corresponding to the case of
�� and quasi-�� modes: closed symbols—TE modes, open
symbols—quasi-TE modes.

numerically for dielectrics with different anisotropy. The di-
electric permittivity was considered with a longitudinal (along
the optical axis of crystal) component of

and with a transversal (in a perpendicular direc-
tion with respect to the optical axis of crystal) component of

. The is varied in the in-
terval from 4 to 11.59. In the resonators, the optical axis was
perpendicular to the conducting plane. The calculation results
of resonance frequencies for two modes are shown in Fig. 7.
The indices of the resonator eigenmode was identified by ana-
lyzing field distribution in the resonator. This approach is used
for experimental, as well as numerical (MWS) studies.

The results demonstrate that quasi- and
modes have only slightly different frequencies. This fact
confirms that the nature of quasi-TE modes is related to the
anisotropy of sapphire . The resonance frequencies
of modes depend weakly on in comparison with
quasi- ones.

For the application of a hemispherical sapphire resonator in
microwave investigations of an HTS film surface [21], [35],
it is necessary to determine the conductor inclusion factor .
This factor cannot be calculated due to a lack of electrodynamic
analysis for the case of an anisotropic resonator. Work on de-
veloping a technique for the determination of coefficient in
an anisotropic hemispherical resonator with a conducting plane
and the method of measurement is under way and will be
published in a separate paper.

IV. CONCLUSION

The spectral and energy characteristics of a whispering
gallery mode resonator in the form of a hemisphere with
an impedance plane have been studied. An electrodynamic
analysis of the resonator was carried out using Maxwell equa-
tions and an impedance boundary condition: the Leontovich
boundary condition. It was shown that the inclusion factor
of a conductor in the resonator was determined by the field
distribution and frequency of the -type eigenmode in the
resonator with a perfect conducting plane.
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Results of the theoretical study and experimental measure-
ments of the Teflon resonator frequency spectrum and factor
agree well. The results were also confirmed by calculations
using Microwave Studio CST 2008. It was found that the
electromagnetic field localizes near the impedance plane.

In the case of a sapphire hemispherical resonator with an
impedance plane, the results of the experiments are compared
with a numerical simulation using Microwave Studio CST 2008
because, at the present, a characteristic equation and expressions
for eigenmode field components in an anisotropic hemispher-
ical resonator with an impedance plane cannot be calculated
analytically. This approach allowed us to identify the -type
modes in the resonator by analyzing the distribution of the elec-
tromagnetic field. It was found that, in such a resonator, the
quasi-TE modes are excited together with TE modes inherent
to the isotropic resonator. It was established that the
and quasi- modes are excited with practically identical
distribution of field components, which is confirmed by the co-
incidence of their mode indices. In the hemisphere sapphire res-
onator studied, the and quasi- mode frequen-
cies differ by approximately 1 GHz.

The results obtained show that high-quality hemisphere
whispering gallery mode resonators can be applied in the
microwave technique. In particular, they make it possible to im-
prove the technique for measuring electrophysical parameters
for different substances including HTS films. They can be used
for the development of low-phase noise microwave oscillators
including millimeter-wave oscillators and advanced dielectric
resonator-based devices.
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