HIGHER MATHEMATICS

COURSE SYLLABUS

ASSESSMENT AND GRADING

Range s of points corres pondi ng to grades	core (points) for all types of learning activities	ECTS grading scale	The national grading scale	Allocation of grade points	100\% final assessment in the form of EXAM (40\%) and current assessment (60\%). 40\% EXAM: individual task (calculation task) and its oral presentation 60\% current rating: - 30% assessment of tasks in practical classes (task solving); - 30\% intermediate control (2 online tests)
	90-100	A	excellent		
	82-89	B	good		
	74-81	C			
	64-73	D	satisfactory		
	60-63	E			
	35-59	FX	Unsatisfactory (with the exam retake option)		
	0-34	F	Unsatisfactory (with mandatory repetition of the course)		
Students are expected to attend classes regularly, to get to class on time and stay for the duration of the class. In the case of absence, students will be Course policy required to submit all assignments to make up for the missed classes. Students are also expected to come to class having read all the required material and being ready to productively participate in the class discussions. Written assignments should be submitted before the specified deadlines.					

COURSE STRUCTURE AND CONTENT

Lecture $\mathbf{1}$	Definition of a matrix, types of matrices, performance of actions with matrices. Determinants of arbitrary order, their properties and calculations. Inverse matrix and its calculations. Solving matrix equations AX = B using an inverse matrix. Cramer's formulas for solving SLAE.	Workshop 1- Lecture 2
Rank and minor of the matrix. Base minor. Elementary matrix transformations. Jordan-Gauss method. Homogeneous SLAE.	Workshop 3- $\mathbf{5}$	
Lecture 3	Vectors: basic definitions. Linear dependence and independence of vectors. Decomposition of a vector by three non-coplanar vectors in space. Projection of the vector on the axis. Vector product of two vectors, properties, calculations. Mixed product of three vectors, properties, calculations, geometric content.	Workshop 6- $\mathbf{7}$
Lecture 4	Plane: its vector and general equations. Different means of setting the plane, the distance from the point to the plane.	Workshop 8
	Direct in space: its vector, canonical and parametric equations. Mutual location of the line and the plane. Right on the plane. Types of equations, the angle between two lines, the distance from a point to a line.	

Performing actions on matrices.
Calculation of determinants of arbitrary order by different methods. SLAR solution by Cramer's formulas.
SLAE solution by Jordan-Gauss method. Solution of homogeneous SLAE.
Arithmetic operations with vectors. Solving problems using the concept of scalar product of two vectors. Solving problems on the vector product of two vectors and on the mixed product of three vectors.
Problem solving: line and plane in space. Solving problems about a line in a plane. Application of line equations in problems with economic content.

Studying the main notions of linear algebra.

Solution of systems of linear algebraic equations.

Studying the main notions of vector algebra.

Solving of problems on straight and plane in space.

Lecture 5	Second order curves: circle and ellipse: definition, equation, eccentricity, directrix. Hyperbola and parabola: definitions, equations.	Workshop 9	Solving problems: ellipse, circle, parabola, hyperbola.	Solving problems related to the study of properties of ellipse, circle, parabola, hyperbola.
Lecture 6	Limit of numerical sequence and function, its economic content. Properties of convergent sequences. Infinitely small and infinitely large numerical sequences: definitions, properties. The first and second important border. Continuity of the function. Properties of continuous functions. Breakpoints of the function and their classification.	Workshop 10-13	Basic elementary functions, their properties and graphs. The simplest rules for calculating boundaries. Apply the first important boundary to calculate boundaries	Studying of main notions of mathematical analysis.
Lecture 7	Derivative, its geometric and economic meaning. Table of derivatives, rules for calculating derivatives. Derived from a complex, inverse and parametrically given function. Differential, its geometric and economic meaning.	Workshop $14-15$	Differentiation using a table of derivatives. Application of the derivative in economic analysis	Studying of main notions of differential calculus.
Lecture 8	Derivatives and higher order differentials. Leibniz formula. Lopital's rule.	Workshop 16	Calculation of derivatives of a complex, inverse and parametrically given function. Calculation of derivatives of a function that is given implicitly. Derivatives and higher order differentials.	Study of methods for finding derivatives.
Lecture 9	Growth, decline of functions. Extreme function. Necessary and sufficient conditions of the extremum. Convexity and concavity. Intersection points. Necessary and sufficient conditions of convexity, concavity, asymptotes.	Workshop 17	Research of functions.	Function research and graphing.
Lecture 10	Indefinite integral, its properties. Table of the simplest integrals.	Workshop 18	Integration by variable replacement method.	Investigation of methods for substituting a variable in the indefinite integral.
Lecture 11	Variable replacement and integration by parts in the indefinite integral.	Workshop 19	Integration by parts.	Application of variable replacement and part integration methods.
Lecture 12	Defined integral, its properties, Newton-Leibniz formula. The simplest means of integration	Workshop 20	Integration by replacing a variable in a definite integral.	Study of basic concepts related to the definite integral.
Lecture 13	Improper integrals. Signs of convergence.	Workshop 21	Calculation of improper integrals of the first kind. Calculation of improper integrals of the second kind.	Study of basic concepts related to the improper integral.

Lecture 14	Functions of many variables: general concepts. Partial derivatives, gradient. First order differentials.	Workshop 22	Calculation of partial derivatives of the function of many variables.	Study of basic concepts related to the functions of many variables.
Lecture 15	Extremes of functions of many variables. Necessary and sufficient living conditions. Conditional extremum, the method of indefinite Lagrange factors.	Workshop 23	Calculation of function extremum of many variables.	Investigation of functions of mane variables.
Lecture 16	The concept of double integral, basic properties, calculations.	Workshop 24	Calculation of double integrals.	Study of main notions related to the double integrals.

RECOMMENDED READING

Rec 1.

nd

ed

Elihman Mahmudov. (2013) Single variable differential and integral calculus. Paris: Atlantis Press.
2. Kletenik DV Collection of problems in analytical geometry. - M.: Fizmatgiz, 1970.
3. Proskuryakov IV Collection of problems in linear algebra. - M .: Fizmatgiz, 1970.
4. Linear algebra. Textbook, ed. prof. Л.В.Курпы. - Kharkiv, KhGPU, 2000.
5. Fichtenholtz GM Fundamentals of mathematical analysis.- M .: GITL, 1956. - Vol.1,2.
6. Ilyin VA, Poznyak EG Fundamentals of mathematical analysis. -

M .: Nauka, 1973.
7. Zamkov OO, Tolstopyatenko AV, Cheremnykh Yu.N.

Mathematical methods in economics.- M .: "DIS", 1998.

Academic integrity

Students are expected to adhere to the Code of Ethics of Academic Relations and Integrity of NTU "KhPI".
The content of this syllabus is consistent with the Higher mathematics course program.

