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 1. MATTER WAVES.  DE BROGLIE WAVELENGTH 

 

In 1924, French physicist Louis de Broglie (1892-1987, Nobel Prize in Physics 

in 1929) made the suggestion that since light waves could exhibit particle-like 

behavior, particles of matter should exhibit wave-like behavior. De Broglie 

proposed that all moving matter has a wavelength associated with it, just as a wave 

does, and wavelength are applicable to particles as well as to waves. According to 

his theory the wavelength   of a particle is given by the same relation that applies 

to a photon: 

h

p
  , 

where 346.63 10h    J·s is Plank’s constant, p  is the linear momentum of the 

particle, and   is known as the de Broglie wavelength of the particle. Depending 

on the speed of the particle, its linear momentum may be calculated using the 

classical formula p mv  or relativistic formula 0

21

m c
p







 , where /v c  . 

Confirmation of de Broglie’s suggestion came in 1927 from the experiments of 

the American physicists Clinton J. Davisson (1881–1958) and Lester H. Germer 

(1896–1971) and, independently, those of the English physicist George P. 

Thomson (1892–1975). Davisson and Germer directed a beam of electrons onto a 

crystal of nickel and observed that the electrons exhibited a diffraction behavior; 

analogous to that seen when X-rays are diffracted by a crystal. The wavelength of 

the electrons revealed by the diffraction pattern matched that predicted by de 

Broglie’s hypothesis,  h p  .  Particles other than electrons can also exhibit 

wave-like properties. For instance, neutrons are sometimes used in diffraction 

studies of crystal structure. Although all moving particles have a de Broglie 

wavelength, the effects of this wavelength are observable only for particles whose 

masses are very small, on the order of the mass of an electron or a neutron. 
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2. BOHR’S ATOM 

 

2.1. Rutherford’s scattering experiment. Models of atom 

 

At the end of the 19th century a pattern of chemical properties of elements had 

begun to emerge and this was fully recognized by Dmitry Mendeleev when he 

constructed his Periodic Table. Immediately it was apparent that there must be 

common properties and similar behavior among atoms of different elements and 

the long process of atomic structure understanding had begun. The idea that matter 

is made up of atoms, was accepted by most scientists by 1900. The discovery of 

electron in 1897 by J.J. Thomson made scientists to think that atom is having a 

structure and electrons are part of it.  

The typical model of the atom (plum-pudding model) suggested by J.J. 

Thomson in 1890s visualized the atom as a homogeneous sphere of positive charge 

inside of which there were tiny negatively charged electrons, a little like plums in a 

pudding.   

Around 1911, Ernest Rutherford and his colleagues performed these famous 

experiments whose results contradicted Thomson's model of atom.  By scattering 
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fast-moving    -particles (charged nuclei of helium atoms emitted spontaneously 

in radioactive decay processes) from metal foil targets, Rutherford established that 

atoms consist of a compact positively charged nucleus (diameter 14 1510 10   m) 

surrounded by a swarm of orbiting electrons (electron cloud diameter 1010 ). 

Rutherford’s planetary model proposed that negative electrons orbit around a 

dense positive nucleus. The positive charge on the nucleus was taken to be equal to 

the sum of the electron charge so that the atom was electrically neutral.  

Rutherford's model, however, had several major problems, including the fact that it 

could not account for the appearance of discrete emission line spectra. In 

Rutherford's model the electrons continuously orbited around the nucleus. This 

circular, "accelerated" motion should produce a continuous band of 

electromagnetic radiation, but it did not. Additionally, the predicted orbital loss of 

energy would cause an atom to disintegrate in a very short time and thus break 

apart all matter. This phenomenon, too, did not occur. Clearly Rutherford's model 

was not sufficient. Some sort of modification was necessary, and it was Niels Bohr 

who provided it by adding an essential idea. 

 

 2.2. Bohr’s postulates 

 

Bohr had studied in Rutherford's Laboratory for several months in 1912 and 

was convinced that Rutherford's planetary model of atom was valid. But in order to 

make it work, he felt that the newly developed quantum theory would somehow 

have to be incorporated in it. Perhaps, Bohr argued, the electrons in an atom cannot 

loose energy continuously, but must do so in quantum ''jumps''. He formulated his 

reasons in the form of postulates: 

1. Stationary states postulate. Only certain electron orbits are stable and 

allowed. In these orbits, no energy in the form of electromagnetic radiation is 

emitted, so the total energy of the atom remains constant.   

2. Orbits quantizing postulate. The angular momentum L  of an electron in the 

stationary orbit satisfies a particular equation: 
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2

h
L mvr n n


   , 

where 1, 2, 3,n   is the number of state  (orbit, shell) – quantum number, 

h and 2h   are the Planck’s constants. 

In other words, the circumference of an electron’s orbit must contain an integral 

number of de Broglie wavelengths: 2 r n  . Taking into account 

that h p h mv   , it gives 2 r nh mv  , and finally, 
2

h
mvr n n


  . 

3. Frequency postulate. Electromagnetic radiation is emitted when the electron 

“jumps” from a more energetic stationary state to a less energetic state; and 

radiation is absorbed at the “jump” from the less to more energetic state. The 

frequency of the radiation emitted (absorbed) in the transition is related to the 

change in the atom’s energy, given by  

i kn nh E E    , 

where ,i kn n  ,
i kn nE E are the numbers of states and their energies, respectively.  

i kn nE E related to the emission of photon, and   
i kn nE E - to the absorption of 

photon. 

 

 2.3. Bohr’s model of hydrogen atom. Hydrogen spectrum. Balmer’s 

formula 

 

In a stationary orbit of radius r the electric force between the negative electron 

and the positive nucleus is balanced by the centripetal force on the electron due to 

its circular motion. According to the Newton’s 2 Law nma F   and 

2 2

2
0

1

4

v e
m

r r
  .                                                                                                 

The 2nd Bohr’s postulate is 

mvr n .                                                                                                             

Divide the first equation by the square of the second equation 
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2 2

2 2 2 2 2
0

1

4

mv e

rmv r r n
  . 

Bohr’s radii 

2
2 2

0 12
4nr n r n

me
   ,                                                                                     

where 1, 2,3,n  . 

According to Bohr's model, an electron can exist only in certain allowed orbits 

determined by the integer n .  The orbit with the smallest radius, called the Bohr 

radius corresponds to 1n   and has value                                           

10

1 0.53 10r   m. 

The electric potential energy of the atom consisting of the proton ( e ) and 

electron ( e ) separated by distance  r  is 

2

0 0

1 ( ) 1

4 4

e e e
PE

r r 

 
     . 

where 
0

1

4
 is the Coulomb constant.  

Assuming the nucleus is at rest, the total energy E of the atom is the sum of the 

kinetic and potential energies 

2 2

0

1

2 4

mv e
E KE PE

r
     . 

By Newton’s second law, the electric force of attraction on the electron, 

2

0

1

4

e

r
 , must equal ma, where 

2v
a

r
  is the centripetal acceleration of the 

electron, so 

2 2

2

0

1

4

mv e

r r
   . 

Therefore,
2 2

0

1

2 4 2

mv e

r
  , and  

2 2 2

0 0 0

1 1 1

4 2 4 4 2

e e e
E

r r r  
       . 
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Substitution of the 
2

2
0 2

4nr n
me

  into the expression for the energy gives 

 

2 4 17

2 2 2 2 2

0 0

1 1 1 2.17 10 13.6
J

4 2 24
n

e me
E

r n n n 


           eV. 

For the first energy level (ground level) of hydrogen ( 1n  ): 

17

1 2,17 10 J 13,6 eVE      . 

For other levels the total energies are  

2 3.4eVE  , 
3 1.51eVE   , 

4 0.85eVE  . 

Relationship between energies is 

2

n
n n

PE
E KE   .  

Note that energies of excited states (n = 2, 3, 4 …) are greater (smaller negative 

numbers) than those of the ground state (n = 1). 

The minimum energy required to remove an electron from the ground state of 

an atom is called the binding energy or the ionization energy. The ionization 

energy for hydrogen is 
iE =13.6 eV to remove an electron from the lowest state 

1E  

= - 13.6 eV up to 0E  where it can be free. 
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Excitation energy is the energy required to remove an electron from the ground 

state to exited states ( 2,3,4,...n   ) of an atom.  

For hydrogen-like ions (an ion with one electron and nucleus charge Ze , where 

Z is the number of the element in the Periodic Table) radii and energies are 

2 2 2
2 0

0 2 2
4n

h n
r n

Zme e m Z





   ,       

 

4 2 4 2

2 2 2 2 2 2

00

1

2 84
n

me Z me Z
E

n h n
       . 

According to Bohr’s frequency postulate  E  the frequencies of spectrum 

lines are described by Rydberg formula 

 

4

2 3 2 2 2 2

0

1 1 1 1 1

24

i kn n

i k i k

E E me
R

n n n n




    
        

   
, 

where 162.07 10R    s
-1

 is the Rydberg constant (for frequency), ,i kn n   are the 

numbers of levels. 

 

The wavelengths of hydrogen spectrum lines are described by Rydberg formula 

(taking into account that
2 c




 ): 

2 2

1 1 1

i k

R
n n

 
   

 
, 

where 71.1 10R    m⁻ ¹ is the Rydberg constant (for wavelength). 
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For hydrogen-like ions the frequencies of spectrum lines are: 

2

2 2

1 1

i k

Z R
n n


 
  
 

,  

and the wavelengths of spectrum lines:  

2

2 2

1 1 1

i k

Z R
n n

 
   

 
, 

These results correspond well to Balmer’s experiments, in which it was found 

that the hydrogen spectrum consists of discrete spectrum lines which wavelengths 

may be described by 
2

0 2 4

n

n
  


, where 

0 , 3, 4, 5,const n     

At room temperature, almost all hydrogen atoms are in the ground state (n = 1). 

At higher temperature or during electric discharge as the energy is externally 

supplied, the electrons can be excited to higher energy levels
2 3,E E , etc. Once in 

an excited state, an atom's electron can jump down to a lower state (not necessarily 

ground state) and give off a photon in the process. This is, according to the Bohr 

model, the origin of emission spectra of excited gases.  

In the energy level diagram the vertical arrows represent transitions that 

correspond to various observed spectral lines. 

 

The boundary of series (
kn  ) corresponds to the frequency (or to the 

wavelength) 
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max 2

i

R

n



 ,    

2

1
min

n

R
  . 

The main (head) line of series ( 1k in n  ) corresponds to the 
min  and 

max  in 

this series. 

Transitions to  

( 1in  )      -    Lyman series (ultraviolet); 

( 2in  )    -     Balmer series (visible); 

( 3in   )    -     Paschen series (infrared); 

( 4in   )    -     Bracket series (infrared); 

( 5in   )    -      Pfund series (infrared). 

The first experimental verification of the existence of discrete energy states in 

atoms was performed in 1914 by the German-born physicists James Franck and 

Gustav Hertz. They directed low-energy electrons through a gas enclosed in an 

electron tube. As the energy of the electrons was 

slowly increased, a certain critical electron energy 

was reached at which the electron stream made a 

change from almost undisturbed passage through 

the gas to nearly complete stoppage. The gas atoms 

were able to absorb the energy of the electrons 

only when it reached a certain critical value, 

indicating that within the gas atoms themselves the atomic electrons make an 

abrupt transition to a discrete higher energy level. As long as the bombarding 

electrons have less than this discrete amount of energy, no transition is possible 

and no energy is absorbed from the stream of electrons. When they have this 

precise energy, they lose it all at once in collisions to atomic electrons, which store 

the energy by being promoted to a higher energy level.  

Bohr's model of the atom was both a success and a failure.  The success of Bohr 

Theory is not only because that it can successfully explain the problem of 

hydrogen atom and hydrogen-like ion, but also embodied in following aspects.  
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1. Bohr correctly pointed out the existence of the atom energy level, i.e. the 

energy of atom is quantitative, and it only took some certain discrete values, which 

was not only testified by the hydrogen atom and hydrogen-like ion, but also proved 

by the Frank-Hertz experiment. That shows Bohr’s hypothesis about the energy 

quantization has more general meaning than his theory of hydrogen atom.  

2. Bohr correctly proposed the concept of the stationary state, i.e. the atom in 

certain energy state  
nE  didn’t radiate the electromagnetic wave, and only when 

the atom transited from certain one energy state  
inE  to another energy state

knE , it 

could emit the photons, and the frequency of photons is  

 
i kn nE E h   . 

The facts indicate that this conclusion is universally correct for various atoms, 

and his physical idea of the quantum jump has been accepted by the modern 

science.  

3. The angular momentum quantization derived from Bohr’s quantization 

condition  L n  is universally correct. It successfully predicted the frequencies of 

the lines in the hydrogen spectrum, so it seemed to be valid.  

4. Bohr’s theory successfully explained the line spectrum of the hydrogen atom 

and definitely pointed out the classical physics was inapplicable in the interior 

phenomena of the atom.  

Nevertheless the model was a total failure when it tried to predict energy levels 

for atoms with more than one electron. It could not explain the fine-structure (two 

or more closely spaced spectral lines) of emission lines, and why some spectral 

lines were brighter than others. However, Bohr’s theory is very meaningful in the 

history of physics. 
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3. NUCLEAR PHYSICS 

 

3.1. Some properties of nuclei 

 

All nuclei are composed of two types of particles: protons and neutrons. The 

only exception is the ordinary hydrogen nucleus, which is a single proton. The 

constituents of the nucleus that is protons and neutrons are called nucleons. 

Proton ( p ).  The nucleus of the simplest atom, hydrogen. It has a positive 

charge of 
191.6 10pq e    C and a mass of 

271.67 10pm    kg. In nuclear physics 

the mass is often expressed in unified atomic mass units (which is defined as 1 12 of 

mass of neutral atom of carbon
12

6C ) or in energy equivalent (MeV) 

1.007276pm   u = 938.28 MeV. 

Neutron (n ).  A particle found in the nucleus that is electrically neutral and that 

has a mass almost identical to the proton. It was discovered by James Chadwick in 

1932. Thus, its charge is  0q  ; its mass is 271.6749 10nm   = 1.00898 u = 939.55 

MeV. 

In the free state the neutron is unstable and spontaneously decays into a proton, 

an electron and a neutrino: 

 n p e    . 

In describing some of the properties of nuclei, such as their charge, mass, and 

radius, we make use of the following quantities: 

the atomic (charge) number  Z , which equals the number of protons in the 

nucleus; 

the atomic mass number  A , which equals the number of nucleons in the 

nucleus).  The mass of a nucleus is very close to A times the mass of one nucleon; 

the neutron number  N , which equals the number of neutrons in the nucleus. 

The number of neutrons N A Z  .  

Conventional symbols for nuclear species, or nuclides, is   
A

Z X , 
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where X  is the chemical symbol of the element.  

For example,   2 2 238

1 2 92, ,H He U . 

 The nuclei of all atoms of a particular element must contain the same number 

of protons, but they may contain different numbers of neutrons. Nuclei that are 

related in this way are called isotopes. The isotopes of an element have the same Z  

value, but different N and A  values.  

For example,  235 238

92 92andU U ; 1

1 H - ordinary hydrogen  – protium –  stable (one 

proton); 1

1 H – heavy hydrogen – deuterium   ( D ) stable (one proton + one 

neutron); 3

1 H - tritium (T ) unstable (one proton + two neutrons).  

Isobars:  nuclei that have the same atomic mass number A .   

For example,   40

18 Ar and 40

20Ca . 

Isotones: nuclei that have the same number of neutrons N A Z   (the number 

of protons is different).  

For example, 
13

6C  and 14

7 N . 

Isomers: nuclei that have the same number  Z  and A , but different life time 

periods.  

For example, there are two isomers 80

35 Br  with half-lives 18 min and 4.4 hours. 

 

Size and shape of nuclei  

Most nuclei are nearly spherical. A few, principally nuclei with  Z  between 56 

and 71, have ellipsoidal shape with eccentricities of less than 0.2. 

Assuming nucleus to be spherical in shape with nuclear radius R , the 

corresponding volume is 34

3
R . And so 3R  is proportional to A . This relationship 

is expressed in inverse form as  

1 1

153 3
0 1.3 10R R A A     (m) 

1

31.3 A  (Fm). 
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It should be noted that 
0R  is expressed in an indefinite way because nuclei do 

not have sharp boundaries. Despite this the value of  R  is the representative of the 

effective nuclear size.  

The value of
0R , as deduced by electron scattering experiments is slightly less 

than 1.3 Fm. This implies that nuclear matter and nuclear charges are not 

identically distributed through a nucleus. 

We can also look at a nucleus in terms of the forces that hold it together. The 

electric force described by Coulomb predicts that the nucleus should fly apart 

(since positive charges repel other positive charges). Another short-range attractive 

force must be acting within the nucleus. This force must be stronger than the 

electric force.  

Strong Nuclear Force.  An attractive force that acts between all nucleons. 

Protons attract each other via the strong nuclear force while they repel each other 

via the electric force. The strong nuclear force is the strongest force, but it acts 

only over very short distances (less than 1010  m). It is a short range force that is 

essentially zero when nucleons are separated by more than 1510  m.  

Stable nuclei tend to have equal numbers of protons and neutrons for nuclei 

with  Z  equal to about 30 or 40. If there are too many or too few neutrons relative 

to the number of protons, the nuclei tend to be unstable. For nuclei with Z  greater 

than 30 or 40, stable nuclei have more neutrons than protons. There are no stable 

nuclei with Z  greater than 83. They are all radioactive. As Z  increases, the 

electric repulsion increases. Nuclides with large numbers of protons need more 

neutrons (which only exert the attractive strong nuclear force) to overcome the 

electric repulsion between protons. For these very large nuclei, no number of 

neutrons can overcome the electric repulsion between protons. All elements with 

Z  greater than 92 do not occur naturally.  
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3.2. Mass defect. Binding energy 

 

The hydrogen isotope deuterium 
2

1 H has one electron, one proton and one 

neutron in its nucleus. Thus we would expect the mass of deuterium atom to be 

equal to that of an ordinary 1

1 H  atom (which has one proton and one electron) plus 

the mass of the neutron:  

mass of 1

1 H atom 1.007825 u 

mass of neutron 1.008665 u 

expected mass of 
2

1 H  (deuterium) 2.016490 u 

measured mass of 
2

1 H  (deuterium) 2.014102 u 

mass defect m  0.002388 u 

The measured mass is less than the combined mass of  1

1 H and neutron. This 

loss in mass is known as mass defect  m .  

What comes into mind is that the "missing" mass might correspond to the 

energy given off when a stable atom is formed from its constituents. In case of 

deuterium, the energy equivalent of mass defect (the missing mass) is 

 (u) 931.49 MeV u 2.224MeVE m     . 

In fact, it was experimentally observed that the energy required for breaking 

deuterium nucleus apart into a separate neutron and a proton is 2.224 MeV. When 

the energy less than 2.224 MeV is given to 
2

1 H nucleus, the nucleus stays together. 

When the energy supplied externally is more than 2.224 MeV, the exceed energy 

goes into kinetic energy of the neutron and proton as they fly apart.  

It should be noted that mass defect (“missing mass”) is not peculiar to 

deuterium atoms only rather all atoms have it. The energy equivalent of the 

missing mass of a nucleus is called the binding energy of the nucleus. The greater 

the binding energy of a given nucleus is, the more the energy that must be supplied 

to break it up.  

The binding energy is 
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  2
b p n nucleusЕ c Zm A Z m m      . 

Substitute ,p H nucleus am m m m   and rewrite: 

  2
b H n aЕ c Zm A Z m m      . 

This expression is more convenient as there are atomic masses in different 

manuals but not the nucleus masses. 

The mass defect is 

    p n nucleus H n aZm A Z m m Zm A Z m m                

or                                     

2

bЕ

c
  . 

The binding energy per nucleon refers to the average energy associated with 

every single constituent of the nucleus. For a given nucleus it can be calculated by 
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dividing its total binding energy by the number of nucleons (the sum of numbers of 

protons and neutrons) it contains.  

The greater the binding energy per nucleon is the more stable the nucleus is. 

The graph has its maximum of 8.8MeV nucleon  for 56

26 Fe , making it more stable 

of them all.  

Two remarkable conclusions can be drawn from the above curve.  

1.  If we can somehow split a heavy nucleus into two medium-sized ones, each 

of the new nuclei will have more energy per nucleon than the original nucleus did. 

The extra energy will be given off, and it can be a lot. For instance, if the heavy 

uranium nucleus 235

92U  is broken into two smaller medium sized nuclei, the binding 

energy difference per nucleon is about0.8MeV . The total energy given off is 

therefore  

   0.8MeV nucleon 235nucleons 188MeV  . 

This is a truly enormous amount of energy. Splitting a heavy nucleus into 

smaller nucleus is called nuclear fission. We will study this in more detail later on.  

2. Joining two light nuclei together to give a single nucleus of a medium size 

also means more binding energy. For instance, if two 
2

1 H deuterium nuclei 

combine to form a 4

2 Hehelium nucleus, over 23MeV  is released. Such a process, 

called nuclear fusion, is a very effective way to obtain energy. This in fact is the 

process that powers the sun and other stars.  

 

3.3. Radioactivity. Radioactive decay modes 

 

Many isotopes are radioactive. Radioactive nuclei are not stable; they decay 

into other nuclei after a certain amount of time. Radioactivity is the property 

exhibited by certain nuclei and it refers to the spontaneous emission of energy and 

subatomic particles by nuclei. Most of the elements are stable and have no 

radioactivity isotopes but still there are many of them that are unstable and 

spontaneously change into other nuclei by radioactive decay process. Of course, all 
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nuclei can be transformed by reactions with nucleons or other nuclei that collide 

with them.  

Radioactivity was first reported by the French physicist Henri Becquerel in 

1896, for a double salt of uranium and potassium. Soon thereafter it was found that 

all uranium compounds and the metal itself were similarly radioactive. In 1898, 

French physicists Pierre and Marie Curie discovered two other strongly radioactive 

elements, radium and polonium, that occur in nature. Although Becquerel's 

discovery was accidental, he realized its importance at once and explored various 

aspects of radioactivity of uranium for the rest of his life. He was awarded 1903 

Nobel Prize in physics for his work on radioactivity.  

There are two types of radioactivity: natural radioactivity (for elements which 

exist in nature) and artificial radioactivity (induced by nuclear reactions). There is 

no difference between them from the point of view of the laws describing them. 

The early experimenters distinguished three components in the radiation.   The 

radiations deflected in a horizontal magnetic field to the left are positively charged 

-particles, those deflected to the right are negatively charged -particles and those 

which remained undeflected were -rays. 

Later two more decay modes (the positron emission and the electron capture) 

were added to the list of decay modes.   

i.  -decay. If a nucleus emits an alpha particle 

 4

2 He , it loses two protons and two neutrons.     

The decay can be written symbolically as  

4 4

2 2

A A

Z ZX Y He

  .  

Here X is called the parent nucleus, while Y is the 

daughter nucleus. Note that the number of neutrons 

and the number of protons is conserved in the 

reaction. This is not a real requirement in the nuclear 

reaction, only the total number of nucleons and the 



 19 

total charge must be conserved. Since no other charged particles are present in the 

reaction this implies the separate conservation of neutron and proton numbers. 

 The decay happens because by this decay the system goes into a lower energy 

state. The energy of the state is lower because, for nuclei with 80A   the binding 

energy per nucleon increases if the nucleus becomes lighter.   

The typical examples of alpha-decay are                    

238 234 4

92 90 2U Th He  , 

226 222 4

88 86 2Ra Rn He  . 

 

ii.  -decay. This process is connected with emitting the electron (positron) by 

the nucleus or with the capture of the electron of the lowest levels by the nucleus. 

The production of a  - particle in the nucleus involves the action of so called 

weak nuclear forces. 

- The general form of the electron   - decay is 

0

1 1

A A

Z ZX Y e     . 

Note that the number of nucleons is conserved and the charge is conserved, 

because one of the neutrons is transformed into a proton and an electron 

( 1 1 0

0 1 1n p e  ). For the accomplishment of the conservation laws it is necessary 

for the nuclei to emit the massless and electrically neutral particle (antineutrino  ).  

The typical example:                      234 234 0

90 91 1Th Pa e    . 

- The general form for positron   -decay is 

0

1 1

A A

Z ZX Y e     . 

A positron is a positive electron produced in the nucleus by the decay of a 

proton into a positron and a neutron. It has a charge of q e   and essentially no 

mass. They are emitted by nuclei that have too few neutrons relative to their 

number of protons.For the accomplishment of the conservation laws it is necessary 

for the nuclei to emit a massless and electrically neutral particle (neutrino ). 

The typical example:                             
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13 13 0

7 6 1N C e    . 

Electron capture ( K -capture, L -capture, etc). Sometimes nuclei decay through 

electron capture which is a type of radioactive decay where the nucleus of an atom 

absorbs the inner electrons of K  -shell  1n   or L -shell   2n   and converts a 

proton into a neutron. A neutrino is emitted from the nucleus. Another electron 

falls into the empty energy level and so on causing a cascade of electrons falling. 

One free electron, moving about in space, falls into the outermost empty level.   

0

1 1

A A

Z ZX e Y      

The typical example:  

40 0 40

19 1 18K e Ar    . 

iii.  -decay.  In these decays neither Z  nor A  changes. This is the preferred 

decay mode of excited states of nuclei.  particles are photons, only much more 

energetic than those emitted in atomic or molecular decays. They have energy of 1 

MeV.  Many times a  -decay follows a  decay, which lands the nucleus in an 

excited state  

Z Z

A AX X    , 

where X   denotes an excited nuclear state. 

The typical example:                              87 87

38 38Sr Sr    . 

The spectrum of   radiation is discrete that confirms the discreteness of 

nucleus energy levels.  

 There are many isotopes especially of heavy elements that are naturally 

radioactive. All isotopes of elements with 83Z   (heavier then Pb and Bi ) are 

radioactive. All of them follow chains of decays that end up in stable isotopes of 

either Pb   or Bi . There three natural radioactive series, called the thorium, 

uranium-radium and actinium series (see Table).  

Also included in this table is the neptunium series, the longest member of which  
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has the half-life of 62.2 10  years. This is much less than the age of the Earth and 

so the series has long since decayed. However, Neptunium is produced artificially 

in nuclear reactors and can be important in some solutions. 

 

The term “series” is used because an atom undergoes a succession of 

radioactive transformations until it reaches a stable state. In Thorium series, the 

atom is initially 232

90Th   and undergoes a series of radioactive decays as follows: 

232 228 228 228 224

90 88 89 90 88

220 216 212 212 212 208

86 84 82 83 84 82

Th Ra Ac Th Ra

Ra Po Pb Bi Po Pb

    

    
  

The half-life of the members of the decay series range from 0.15 s for 216

84 Po  to 

about 101.4 10  years for 232

90Th . 

The summary of the information about decays is in the following table. 

Decay Transformation Example 

decay 4 4

2 2

A A

Z ZX Y He

 

 

238 234 4

92 90 2U Th He   

 de

cay 
  - 

decay 

0

1 1

A A

Z ZX Y e    

 

234 234 0

90 91 1Th Pa e   

 

  - 

decay 

0

1 1

A A

Z ZX Y e    

 

13 13 0

7 6 1N C e     

K -

capture 

0

1 1

A A

Z ZX e Y    

 

40 0 40

19 1 18K e Ar   

 

  decay Z Z

A AX X     87 87

38 38Sr Sr     

The * denotes an excited nuclear state.   

 

 

Series name Final stable element Longest-lived member 

Thorium 208

82 Pb   232

90Th  ( 101.39 10T    years) 

Uranium-radium 206

82 Pb  238

92U  ( 94.5 10T    years) 

Actinium 207

82 Pb  235

92U  ( 88.52 10T    years) 

Neptunium 209

83 Bi   237

93U  ( 82.2 10T    years) 
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3.4. Radioactive decay law 

 

Let us consider the radioactive decay statistically. Suppose that at a given 

moment we have N nuclei in a given state. Every nucleus in the excited state has 

the same chance to decay at any instant. This probability depends on the excited 

state itself; different excited states have different probabilities of decay. Suppose 

that at the initial moment we have 
0N  nuclei in a given state. After the decay these 

nuclei transform into another nuclei, so the number of nuclei in this state will 

decrease. The change of the nuclei number in time dt  is dN . Since every nucleus 

has the same chance to decay and the probability of decay is proportional to dt  and 

the amount of nuclei N at the moment t  we have 

dN Ndt  , 

where  is the constant of proportionality, the decay constant, characterizing 

the decay process. Sign “minus“ was taken to show that dN  is the increment of the 

number of undecayed nuclei.  

This equation is separable, giving 

dN
dt

N
   , 

or, after integration 

0ln lnN N t  , 

where 
0ln N  is an integration constant.  

Exponentiation gives the exponential decay law 

0

tN N e  , 

where 
0N  is the original number of nuclei and N  is the number of undecayed 

nuclei  at the instant t  . 

The number of nuclei decayed to the instant t is  
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 0 0 1 tN N N e    . 

Half- life is the time it takes half of the number of nuclei to decay. The half-

lives of radioactive nuclides vary from small fractions of a second to billions of 

years. 

Using the radioactive decay equation, it's easy to show that the half-life and the 

decay constant are related by: 

0 02 TN N e  ,    

ln2 0.693
T

 
  , 

Decay time (mean life-time)    is the time interval in which the number of 

radioactive nuclei of a sample has diminished by a factor of  e . 

0 0

0

N N
e e

N N e




              1        

1 ln2 0.693

T T



   . 

The activity,  A t  of a radioactive sample is defined as the number of decays 

per second. Thus,  

  0

tdN
A t N e N

dt

     . 

The activity is proportional to the decay constant   and to the number of 

radioactive nuclei that are present and, hence, decreases at the same exponential 

rate as  N t .  

SI unit of activity is the Becquerel (Bq): 1 Bq = 1 disintegration/second.  

The Becquerel is an extremely small unit so normally it is employed as kilo- 

Mega- or GigaBequerel (kBq, MBq or GBq).  

The special unit of activity for activity radiation is the Curie, abbreviated Ci.  

1 Ci = 3.7·10
10  

Bq. 
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SOLVED PROBLEMS 

 

1. MATTER WAVES.  DE BROGLIE WAVELENGTH 

 

Problem 1.1 

 

Find the de Broglie wavelengths for electrons that passed across the potential 

difference   
1 1U   V and 

2 100U   kV. 

 

Solution 

The de Broglie wavelength is determined by the expression 

h

p
   , 

where 346.63 10h    J·s is the Plank’s constant, and p  is a linear momentum 

of the particle. 

1. The kinetic energy of the particle is the result of the work of the accelerating 

electric field.  

2

1
2

mv
eU  . 

The speed of the electrons is 

19
51

31

2 2 1.6 10 1
5.93 10

9.1 10

eU
v

m





  
   


m/s. 

The linear momentum of the particle is equal to 

31 5 259.1 10 5.93 10 5.4 10p mv          kg·m·s
-1

. 

The de Broglie wavelength is 

34
9

25

6.63 10
1.23 10

5.4 10

h

p








   


 m. 



 25 

The same result may be obtained using the relationship  

12 2p m KE m eU      and 

34
9

19 31
1

6.63 10
1.23 10

2 2 1.6 10 9.1 10 1

h h

p emU








    

    
m. 

2. The said method used for the potential difference 
2 100U   kV =10

5
 V gives 

the calculated speed 

19 5
82

31

2 2 1.6 10 10
1.8 10

9.1 10

eU
v

m





  
   


 m/s. 

This speed is closed to the speed of light which is to say that the relativistic 

formulas have to be used. 

2

2 0 2

1
1

1
eU m c



 
  

  

, 

2

22
0

1
1

1

eU

m c
 


. 

After substitution of the numbers we obtain  

2

1
1.2

1 



, 

0.55   

The linear momentum makes 

31 8 220

2
9.1 10 0.55 3 10 1.2 1.8 10

1

m c
p





         


 kg·m·s
-1

. 

The de Broglie wavelength for electrons is 

34
12

22

6.63 10
3.68 10

1.8 10

h

p








   


 m. 

This problem may be solved by another method using the relationship between 

the linear momentum p , kinetic energy ( 
2KE eU  ) and the rest energy 

( 2

0 0m c  )
 02KE KE

p
c


 . 

The wavelength is 
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   2
0 2 2 0

2 2

hc hc

KE KE eU eU m c



  

 
 

  

34 8
12

2
19 5 19 5 31 8

6.63 10 3 10
3.68 10 m.

1.6 10 10 1.6 10 10 2 9.1 10 3 10




  

  
  

        

 

 

 

Problem 1.2 

 

The alpha-particle is rotating in the magnetic field H  =18.9 kA/m along the 

circular path of radius R  =8.3 mm. Find the de Broglie wavelength of this 

particle. 

 

Solution 

 

When electric charges move through a magnetic field, there is the Lorentz force 

acting on the charges ,F q v B    . The magnitude of the Lorenz force is equal to  

sinF qvB  . If the speed of the particle is perpendicular the magnetic field 

sin 1  .   The equation of the motion of the particle is 
nma F , then 

2v
m qvB

R
   . 

 The speed of the  -particle, taking into account that 2 , 4 pq e m m  , will be 

19 6 3 3
30

27

2 1.6 10 1.26 10 18.9 10 8.3 10
9.5 10

4 1.67 10

qBR q HR
v

m m

   



       
    

 
 m/s 

The de Broglie wavelength for  -particle is 

34
11

27 3

6.63 10
1.05 10

4 1.67 10 9.5 10

h h

p mv








    

   
 m. 
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Problem 1.3 

 

Find the change in de Broglie wavelength of the electron in the hydrogen atom 

if it emits the photon of the head line of Paschen series. 

 

Solution 

 

The head line of the Paschen series corresponds to the electron transition from 

the 4th to the 3rd level.  The speeds of electrons on these orbits according to the 

formula  

2 6

0

1 2.19 10

4
n

e
v

n n


  


   

are  5

3 7.29 10v    m/s and 5

3 5.48 10v    m/s.  

The de Broglie wavelengths are 

 
34

10

3 31 5

3

6.62 10
9.98 10

9.1 10 7.29 10

h

mv








   

  
 m, 

34
9

4 31 5

4

6.63 10
1.33 10

9.1 10 5.48 10

h

mv








   

  
m. 

The change in de Broglie wavelength is 

9 10 10

4 4 1.33 10 9.98 10 3.29 10               m. 

 

Problem 1.4 

 

The charged particle after the acceleration in the electric field U  =200 V has 

the de Broglie wavelength of 2.02 pm. Find the mass of the particle if its charge is 

equal to the elementary charge e . 
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Solution 

 

Relationship between the kinetic energy of the particle and the work of  the 

electric field done for the acceleration of electrons is  

2 2

2 2

mv p
eU KE

m
   . 

The linear momentum of the particle is equal to 

2p emU . 

The de Broglie wavelength is 

2

h h

p emU
    

and the mass of the charged particle is 

 

 

2
342

27

22 19 12

6.63 10
1.68 10

2 2 1.6 10 200 2.02 10

h
m

eU





 


   

    
 kg. 

 

2. BOHR’S ATOM 

 

Problem 2.1 

 

For a hydrogen atom, find the radii of the first three orbitals and the speeds of 

electrons on them. 

 

Solution  

The radius of  n -th orbital is 

2
2 2 11 2

0 12
4 5.29 10nr n r n n

m e
        


. 

Then the radii of the orbitals are 

1n            11

1 5.29 10r   m;      

2n            10

2 2.117 10r   m;     
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3n             10

3 4.76 10r   m. 

 

The speed of electron on the n -th orbital is given by 

2 6

1

0

1 2.19 10

4
n

n

e v
v n

m r n n n


     

 
 m/s. 

The speeds of electron are 

1n            6

1 2.19 10v    m/s;      

2n            6

2 1.09 10v    m/s;     

3n             5

3 7.29 10v    m/s. 

 

 

Problem 2.2 

 

Find the kinetic, potential and total energy of electron on the first ( 1n  ) and 

n -th orbitals. 

 

Solution 

 

The total energy of electron depends on the number of the orbital n   

 

4

1

2 2 2 2

0

1 1

24
n

Eme
E

n n
      , 

18

1 2.18 10E   J = 13.6 eV. 

The total energy of the electro may be expressed as 

2

13.6
nE

n
   eV. 

Kinetic energy of electron on the n -th orbital is 

n nKE E  , 

Therefore,  
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2

13.6
nKE

n
  eV, 

1 13.6KE   eV. 

The potential energy of electron on the n -th orbital is equal to 

2n nPE E .  

For the 1st orbital electron 

1 12 27.2PE E  eV 

 

Problem 2.3 

 

Find the frequency and the period of the electron on the first ( 1n  ) and n -th 

orbitals. 

 

Solution 

The period of electron is equal to the time of one revolution 
2 r

T
v


 . Taking 

into account that  

2
2 11 2

0 2
4 5.29 10nr n n

m e
      


  m 

and   

2 6

0

1 2.19 10

4
n

e
v

n n


  


 m/s,   

we obtain 

11 16

6 3 3

2 2 5.29 10 1 1.5 10

2.19 10

n
n

n

r
T

v n n

     
   


 s. 

For the first orbit, the period of electron rotation is 

16 16
161

1 3 3

1

2 1.5 10 1.5 10
1.5 10

1

r
T

v n

  
 

     s. 

The corresponding expressions for the frequency and the angular frequency are 
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3

16

1

2 1.5 10

n
n

n n

v n

T r


 
  


 Hz,   

3
15

1 16

1
6.67 10

1.5 10



  


Hz. 

3
16 3

16

2 2
2 4.19 10

2 1.5 10

n n
n n

n n

v v n
n

r r

 
 

 


      


 rad/s. 

16

1 4.19 10    rad/s. 

 

Problem 2.4 

 

Find the longest and the shortest wavelengths of the photons emitted by 

hydrogen in the ultraviolet and visible range.  

 

Solution 

The Lyman series for the hydrogen atom corresponds to electron transitions that 

end up in the state with quantum number 1n  (ground state). The longest 

wavelength photon is emitted at the transition from the 2n    level to the  1n   

level. The shortest-wavelength photon corresponds to the transition of electron  

from n  to the 1n   state. 

2 2

1 1 1

1
R

n

 
   

 
, 

where 71.1 10R    m
-1

 is the Rydberg  constant. 

6

2 2

max

1 1 1
8.25 10

1 2
R



 
    

 
 m

-1
, 

7

max 1.21 10   m. 

7

2

min

1 1 1
1.1 10

1
R



 
    

 
 m

-1
, 

8

min 9.1 10    m. 

Both wavelengths are in the ultraviolet spectrum. 
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The Balmer series for the hydrogen atom corresponds to electron  transitions 

that ends up in the state with quantum number 2n  . 

2 2

1 1 1

2
R

n

 
   

 
 

6

2 2

max

1 1 1
1.53 10

2 3
R



 
    

 
 m

-1
, 

7

max 6.55 10   m, 

7

2

min

1 1 1
2.75 10

2
R



 
    

 
 m

-1
, 

7

min 3.64 10   m. 

This value is out of the visible range ( 6 60.4 10 ... 0.76 10    m). Let’s calculate 

wavelengths for the possible transitions onto the second level from the higher 

levels  

4n   

6

2 2

1 1 1
2.0625 10

2 4
R



 
    

 
 m

-1
, 

 74.85 10   m; 

5n   

6

2 2

1 1 1
2.31 10

2 5
R



 
    

 
 m

-1
, 

74.33 10   m; 

6n   

6

2 2

1 1 1
2.44 10

2 6
R



 
    

 
 m

-1
, 

74.09 10    m, 

7n   

6

2 2

1 1 1
2.53 10

2 7
R



 
    

 
 m

-1
, 

73.96 10   m. 
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This line is in the ultraviolet range. Therefore, only four spectral lines are in the 

visible range of the Hydrogen spectrum. They correspond to the transitions of 

electrons on the second level from the 3
rd

, 4
th
, 5th, and 6

th
 levels. In the visible 

range, the longest-wavelength   photon has 7

max 6.55 10   m and the shortest-

wavelength photon has 74.09 10   m. 

In ultraviolet range, the longest wavelength is 7

max 1.21 10   m and the 

shortest wavelength is 8

min 9.1 10    m. Both lines are contained in Lyman series. 

 

Problem 2.5 

 

Electron in the hydrogen atom transited from the 3rd to the 2nd level. Find the 

wavelength, linear momentum and energy of the emitted photon. Determine the 

velocity of the recoiled atom. 

 

Solution 

 

The transition from the 3
rd

 to the 2
nd

 level is related to the Balmer series. The 

photon of visual range is emitted at this transition. Its wavelength may be found 

using the Rydberg relation 

6

2 2

max

1 1 1
1.53 10

2 3
R



 
    

 
 m

-1
, 

7

max 6.55 10   m. 

The linear momentum and the energy of the photon are 

34
27

7

6.62 10
1.01 10

6.55 10

h
p









   


kg·m·s

-1
, 

27 8 191.01 10 3 10 3.03 10
hc

pc


          J. 

The atom was initially at rest and its linear momentum was zero. According to 

the law of conservation of linear momentum 
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0 Hm v p  , 

27 31

27

1.66 10 9.1 10
1.65

1.01 10

p eH
m mm

v
p p

 



   
   


m/s. 

 

Problem 2.6 

 

Find the ionization potential and energy, and the first excitation potential and 

energy for the hydrogen atom. 

 

Solution 

 

Electrons are excited to higher energy levels when they absorb a photon's 

energy. This process is called excitation and the atom is said to be in the excited 

state. The energy absorbed to move from one orbit to the other is called excitation 

energy. If the energy supplied is large enough to remove an electron from the 

atom, then the atom is said to be ionized. The minimum energy needed to ionize an 

atom is called ionization energy. Here the removed electron will have zero energy. 

The potential difference which accelerated the electron that can excite or ionize 

atom is excitation or ionization potential, respectively. 

Actually, ionization is the transition of electron from the ground state 1n   to 

n . Therefore, the ionization energy and ionization potential are, respectively, 

34 8 7 18

2

1 1
6.63 10 3 10 1.1 10 2.18 10

1
i

hc
hcR



  
           

 
 J =13.6  eV, 

i ieU  ,         13.6i iU e   V. 

The first excitation energy and the first excitation potential which are related to 

the transition from the 1n   level to the  2n   level are given by 

 34 8 7

18

1 2 2

3 6.63 10 3 10 1.1 101 1
1.63 10

1 2 4

hc
hcR






     

      
 

J =10.2 eV, 

1 1eU  ,             
1 1 10.2U e   V. 
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 Problem 2.7 

 

Find the minimum energy of electrons that necessary for excitation of the 

hydrogen atom which gives all lines of all spectrum series. Find the speed of these 

electrons. 

 

Solution 

 

All spectral lines of all hydrogen series appear when atom obtains energy 

equaled the ionization energy  

18

2

1 1
2.19 10

1

hc
hcR hcR



 
      

 
 J =13.6 eV. 

This energy is imparted by electron with kinetic energy
2

2

mv
KE  . The electron 

obtained this energy in the electric field that did the work eU .  

Therefore, 
2

2

mv
eU   , and the speed of electron has to be not less than 

18
6

31

2 2 2.19 10
2.2 10

9.1 10
v

m

 



 
   


 m/s. 

 

 

Problem 2.8 

 

 Find the range for the wavelengths of the visual light photons that excite three 

spectral lines of the hydrogen atom. 

 

Solution 

 

Three spectral lines are observed a when the electrons after the transition from 

the first to the third energy level realize three types of transitions: from 3rd to the 
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2nd level, from the 3rd to the 1st level, and from the 2nd to the 1st level. As a 

result, one line of the Balmer series (
32 ) and two lines of the Lyman series ( 

31 21,  )   emerge. 

The wavelengths of these emerged lines according to the Rydberg formula 

2 2

1 1 1

ik i k

R
n n

 
  

 
 are 

7 6

2 2

32

1 1 1 5
1.1 10 1.53 10

2 3 36
R



 
       

 
 m

-1
,    7

32 6.55 10    m; 

7 6

2 2

31

1 1 1 8
1.1 10 9.78 10

1 3 9
R



 
       

 
 m

-1
,       7

31 1.023 10     

7 6

2 2

21

1 1 1 3
1.1 10 8.25 10

1 2 4
R



 
       

 
m

-1
,         7

21 1.21 10    m. 

Therefore, the range for photon wavelengths is  102.3 121   nm. 

 

Problem 2.9 

 

The hydrogen atom in its ground state absorbs the photon of the wavelength 

121.5   nm. Determine the electron orbit radius of the excited atom and the 

angular momentum of the electron on it. 

 

Solution 

 

Let’s find the number of the energy level where the electron gets after the 

absorption of the photon by the Rydberg formula
2 2

1 1 1

ik i k

R
n n

 
  

 
, taking into 

account that the 1in   for the ground state 

9 7

2 9 7

121.5 10 1.1 10
1 2

121.5 10 1.1 10 1
k i

i

R
n n

R n









  
   

    
. 
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This means that as a result of the photon absorption the electron made the 

upward transition from the 1st to the 2nd level. 

Since the radius of the n -th orbit is given by  

2
2 2 10 2

0 12
4 0.53 10nr n r n n

me
        , 

the radius of the 2nd orbit is  

10 2 10

2 0.53 10 2 2.12 10r        m. 

The angular momentum of the electron may be calculated in two ways. 

1.  The speed of electron according to the   expression 
6

1 2.19 10
n

v
v

n n


   (m/s) 

is  
6

6

2

2.19 10
1.09 10  

2
v


   m/s. Then, from the knowledge of mass of the 

electron 31

0 9.1 10m    kg and the radius of the electron orbit  10

2 2.12 10r    m, 

the angular moment is 

31 6 10 34

2 2 2 9.1 10 1.09 10  2.12 10  2.1 10  L mv r            kg·m
2
·s

-1
. 

2. The angular momentum according the Bohr postulate n n nL mv r n   is 

equal to 
34

34

2

6.63 10
2 2 2.1 10

2 3.14

h
L






       kg·m
2
·s

-1
. 

 

Problem 2.10 

 

Photon with energy 15 eV dislodges the electron that was in the ground state in 

the hydrogen atom. Find the speed of the electron at its motion from the atom. 

 

Solution 

 

The photon energy is spent to the ionization of the atom and the kinetic energy 

of the electron iE KE  .  
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Ionization is the process in which one electron is removed from an atom, i.e. the 

transition of the electron from the ground level ( 1in  ) to the level
kn  .  The 

ionization energy is 

2 2 2

1 1 1 1
13.6 13.6

1
i

i k

hc
hcR

n n




   
        

  
 eV. 

The kinetic energy of the electron is equal to 

15 13.6 1.4iKE E      eV = 192.24 10  J. 

From 
2

2

mv
KE  ,  the speed of electron is 

19
5

31

0

2 2 2.24 10
7 10

9.1 10

KE
v

m





  
   


 m/s. 

 

Problem 2.11 

 

Find the change of the kinetic energy of the electron in hydrogen atom after 

emitting the photon with the wavelength  =102.3 nm. 

 

Solution  

 

The given value of the wavelength is related to the ultraviolet range, therefore, 

the photon of the Lyman series ( 1in  ). The Rydberg formula implies that 

2 2

1 1 1

1
R

n

 
  

 
, 

2

1 1
1

n R
  . 

The number of the level of the electron upward transition is 

9 7

9 7

102.3 10 1.1 10
3

1 102.3 10 1.1 10 1

R
n

R









  
  

    
. 

 The total energy of the electron on the 3rd orbit is equal to  
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3 2 2

13.6 13.6
1.51

3
E

n
       eV. 

The kinetic energy of this electron is 
3 3 1.51KE E   eV. 

For the ground state, 

 
1 1 13.6KE E   eV. 

As a result, the change of kinetic energy is 

1 3 13.6 1.51 12.09KE KE KE       eV. 

 

Problem 2.12 

 

The light beam from the discharge tube filled by hydrogen is normally incident 

on the diffraction grating with grating constant d  =5 μm. Find the type of electron 

transition for the spectral line that is observed in the 5-th order spectrum at the 

angle  =41°. 

 

Solution 

 

From the diffraction maximum condition for the diffraction grating 

sind k   the wavelength is 

6 0
6sin 5 10 sin 41

0.656 10
5

d

k





 

     m. 

This line is related to the visual range, hence, to the Balmer series. Therefore, 

2in   in the Rydberg formula: 

2 2

1 1 1

2 k

R
n

 
  

 
,  

6 7

1 1 1 1 1
0.333

4 4 0.656 10 1.1 10kn R 
    

  
, 

3kn  . 

And it is clear that the electron transited from the 3rd to the 2nd level. 
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Problem 2.13 

 

Determine the ionization potential and ionization energy for the doubly-ionized 

Lithium Li . 

 

Solution 

 

The Rydberg formula for the hydrogen like ions is given by  

2

2 2

1 1 1

i k

Z R
n n

 
   

 
, 

where Z  is the number of the element in the Periodic Table ( 3Z   for Lithium) 

Ionization energy is 

2

2

1 1
9 13.6

1
i

hc
Z hcR



 
     

 
 eV= 122.4 eV =  152.4 10  J. 

The electrons obtained the kinetic energy due to the work of electric field with 

the potential difference
i : 

i ie KE    , 

15

19

2.4 10
122.4

1.6 10

i
i

e









   


 V. 

 

Problem 2.14 

 

Is it possible for the photon related to the transition between the first and the 

second levels in the doubly-ionized Lithium to dislodge the electron from the 

ground state of the singly-ionized Helium? 

 

Solution 

 

For the ionization of the Helium ion it is necessary that the energy of the photon 

emitted by Li   has to be more than the ionization energy for Helium. 
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The energy of the photon emitted by Lithium at the electron transition from the 

second to the first level is  

2 2

1 12 2

1 1 3 27
6.75 13.6

1 2 4 4

hc
Z hcR Z hcR hcR



 
       

 
 eV= 91.8 eV 

The ionization energy of Helium ia 

2 2

2 22

2

1 1
4 4 13.6

1
i

hc
Z hcR Z hcR hcR



 
       

 
 EV = 54.4 eV. 

Since  
i  > the photon emitted by Lithium can ionize Helium.  

 

3. NUCLEAR PHYSICS 

 

Problem 3. 1 

Initially a certain radioactive sample contains 1010  of the sodium isotope 24

11
 Na, 

which has a half-life of 15 h.  Find the number of parent nuclei present 90 h later. 

Find the initial activity of the sample and the activity 90 h later (in Bq). 

 

Solution 

Taking into account that the half-life T  and delay (or disintegration) constant   

are related by 
ln2

T


 ,  the number of undecayed nuclei remaining at time t  is 

given by  

ln 2ln 2
90

10 815
0 0 10 1.56 10

t
t TN N e N e e

 
      . 

The activity (or rate of decay) is equal to A N . To get the value of the 

activity in Becquerel we have to express the decay constant in seconds
-1

.   

5ln2 0.693
4.6 10

15 3600T
    


 s

-1
. 

Then the activities of the initial sample and after 90 hours are, respectively, 

5 10 5
0 0 4.6 10 10 4.6 10A N        Bq, 

5 8 34.6 10 1.56 10 7.18 10A N         Bq. 



 42 

Problem 3.2 

 

How many Radon nuclei are decayed for the time period of 1 day if the initial 

amount of nuclei was 6

0 10N  and half-life 3.82T   days? 

  

Solution 

According to the radioactive decay law the amount of remained (undecayed) 

nuclei is 
0

tN N e   , where 
0N  is the initial amount of nuclei. From this 

consideration, the amount of decayed nuclei is  

 0 0 0 0 1t tN N N N e N e       . 

Taking into account that the delay constant   related to the half-life as 

ln2

T
  , the amount of undecayed nuclei is 

 
ln 2 1

6 53.82
0 0 1 10 1 1.66 10tN N N e e





 

        
 

. 

 

Problem 3.3 

 

The charred bones of a sloth that was found in a cave in Chile represent the 

earliest evidence of human presence in the southern tip of South America. A 

sample of the bone has a specific activity of 87 mBq per gram of carbon. If the 

12 14

6 6C C  ratio for living organisms results in a specific activity of 255 mBq per 

gram, how old are the bones ( 5730T   years)?  

 

Solution 

 

Radioisotopic (radiometric) dating   developed by Willard F. Libby (Nobel 

1960) is the technique that is based on measuring the amount of 
14

6C  and 
12

6C  in 

materials of biological interest. The ratio  12 14

6 6C C  is constant when organism lives 
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as it takes up 
14

6C  and it stops when it dies. So in dead organisms the ratio 12 14

6 6C C  

increases because of the decay of 
14

6C . The difference in the 12 14

6 6C C ratio between 

the living and dead organisms reflects the time elapsed since the organism died.  

Activity depends on time as
0

tA A e  , where 
ln2

T
   is decay constant and 

0A  

is activity for the living organism. Since 0ln
A

t
A

  , the age of the sample is 

 00
ln1

ln
ln 2

A AA
t T

A
    .  

Taking into account that for 
14

6C    activity 87A   mBq per gram of carbon, 

0 255A   mBq per gram and 5730T  years, the age of the bones from a cave is 

 ln 255 87
5730 8891

0.693
t     years. 

 

Problem 3.4 

 

Tellurium
128

52Te , the most stable of all radioactive nuclides, has a half-life of 

about 241.5 10  years. How long would it take for 75 percent of a sample of this 

isotope to decay? 

 

Solution 

 

After 75% of the original sample decays, 25%, or one-fourth, of the parent 

nuclei remain. The rest of the nuclei have decayed into daughter nuclei. Therefore, 

the remained amount of nuclei is 0
00.25

4

N
N N  .  Using the delay law  

ln 2

0

t
TN N e

 

 , we get 

ln 2

0

t
T

N
e

N

 

  ,        

ln 2

0
t

T
N

e
N



 , 
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0 ln2
ln

N
t

N T
  , 

   0 0 0 24 24ln ln 4 ln4
2 2 1.5 10 3 10

ln2 ln2 ln2

N N N N
t T T T T             years. 

 

Problem 3.5 

 

Find the decay constant of Radon 86 Rn   if it is known that the amount of its 

nuclei is decreased by 18% every day. 

 

Solution 

 

The fraction of the decayed nuclei respectively the initial amount of nuclei is 

0

0

0.182
N N

N


 . Then according to the decay law  

0 0

0 0 0

1 1 1
t

tN N N N e
e

N N N







      . 

Therefore, 

1 0.182te   ,           0.818te   .  

Solving for   we get  

ln0.818t  ,  

6ln0.818
2.33 10

24 3600
    


 s

-1
. 

 

Problem 3.6 

 

The activity of radioactive sample is 
9

0 14.8 10A    Bq. How long will it be 

before the activity will decrees to the value of 92.22 10A   Bq if the half-life is 

3.82T   days. 

 



 45 

Solution 

The ratio of activities from the data is 
9

0

9

14.8 10
6.67

2.22 10

A

A


 


. Since the activity 

of the radioactive sample is A N ,  

0 0 0

0

t

t

A N N
e

A N N e







 
   . 

Hence, from the above,  6.67te  , and desired time period 

ln6.67 ln6.67 ln6.67 3.82
10.45

ln2 ln2
t T




      days. 

 

Problem 3.7 

 

What nuclide results when a 232

90Th  undergoes a succession of radioactive 

decays consisting of four  -decays and two 
-decays? 

 

Solution 

The equations of the corresponding processes are 

232 4 216

90 2 824Th He Pb  , 

216 0 216

82 1 842Pb e Po  . 

This radioactive chain may be written in one line  

232 4 0 216

90 2 1 844 2Th He e Pb   . 
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Speed of light in vacuum с = 2,99810
8 
m/s = 83 10  m/s 

Plank’s constant 342 6.62 10 J sh       
342 1.055 10 J sh       

Rydberg constant (for wavelength) 71.1 10R    m
-1

 

Rydberg constant (for frequency) 162.07 10R    s
-1 

Compton wavelength for the electron 12

0 2.43 10c h m c    m =2.43 pm 

Electron rest mass 31

0 9.1 10em    kg 

Proton rest mass 27

0 1.67 10pm   kg 

  -particle rest mass 27

0 6.64 10m 

  kg 

Elementary charge (proton/electron) 191.6 10e   C 

 -particle charge  192 3.2 10q e

    C 

Electric constant (vacuum 

permittivity) 
0 = 8.8510

-12
 F/m  

01 4  = 910
9
 m/ F 

1 electron-Volt 1eV = 191.6 10 J 

Rest energy of electron 2 14

0 0 8.187 10e em c    J =  

= 55.12 10 eV = 0.512 MeV 

Rest energy of proton 2 10

0 0 1.49 10p pm c    J = 

=9.315·10
8
 eV = 0.93 GeV 

 

Rest energy of   -particle 2 10

0 0 5.97 10m c     J = 

= 93.72 10 eV = 3.72 GeV 

   22

0 2.73 10em c   kg·m/s 

 
2 44

0 7.46 10em c    kg
2
·m

2
/s

2
 

 251.986 10hc   J·m 

  
2 503.95 10hc   ( J·m)

2 

 182.18 10hcR    J = 13.6 eV 


