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PROBLEMS 

 

Problem 1 

 

Two forces  1 3 5F i j   and  2 2F i j   N are applied to the particle of a 

mass m=1.5 kg. Find the acceleration a  of this particle. 

 

Solution   

 

Newton’s 2 Law gives  

ma F ,  

where F  is a net force (the vector sum of all forces that act on the particle).  

     
 

3 5 2 5 4
3.33 2.67

1.5 1.5

i j i j i jF
a i j

m

   
      m/s². 

The magnitude of the acceleration is  

2 23.33 2.67 4.27a     m/s². 

It is directed at the angle 

02.67
arctan arctan 0.8 38.7

3.33


 
   

 
 below the 

positive x -axis. 

 

 

Problem 2 

 

Forces of 1F = 85 N to the east, 2F =25 N to the north, 3F  =45 N to the south, 

4F = 55 N to the west are simultaneously applied to a box of mass 14 kg. Find the 

magnitude of the box's acceleration?  
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Solution  

Two forces 1F  and
4F  act in the x -direction. Their vector sum is 

14 1 4xF F F F   , and the magnitude is 

14 1 4 85 45 40xF F F F      N. 

Two other forces are directed along y-axis.  

 23 2 3yF F F F   , 

23 3 2 45 25 20yF F F F       N. 

The net applied to the box is 

14 13 x yF F F F F    . Its magnitude using 

Pythagorean Theorem is 2 2 2 240 20 44.7x yF F F     N. 

According Newton’s Second Law F ma , therefore,  

44.7
3.2

14

F
a

m
    m/s². 

 

Problem 3 

 

A 5-kg object undergoes an acceleration given by   3 5a i j   m/s². Find the   

magnitude and direction of the resultant force acting on it. 

 

Solution 

 

Using Newton’s 2 Law, we obtain     5 3 5 15 25F ma i j i j       N. 

The magnitude of the net force is 

2 215 25 29.1F    N 

Direction of the force is determined by the angle   that the acceleration makes 

with the positive direction of the x -axis 

    0arctan arctan 15 25 30.9x yF F    . 
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Problem 4 

 

A hockey puck having a mass of 0.15 kg slides on the horizontal, frictionless 

surface of an ice rink. Two hockey-players strike the puck simultaneously by their 

sticks, exerting the forces on the puck shown in Figure. The force 
1F  has a 

magnitude of 6 N, and it makes the angle 060  above the x -axis. The force 
2F  has 

a magnitude of 9 N and direction 020 below the x -axis.   Determine both the 

magnitude and the direction of the puck’s acceleration assuming that the puck 

slides on the horizontal, frictionless surface of the ice rink. 

 

Solution 

 

Firstly resolve the force vectors into components. The net force acting on the 

puck in the x -direction is 

0 0

1 2 1 2cos cos 6 cos60 9 cos( 20 ) 11.5x x xF F F F F             N. 

The net force acting on the puck in y -direction is 

0 0

1 2 1 2sin sin 6 sin60 9 sin( 20 ) 2.1y y yF F F F F              N. 

Now we use Newton’s 2 Law in component form to find the x - and y -

components of the puck acceleration: 

11.5
76.7

0.15

x

x

F
a

m
  


m/s², 

2.1
14

0.15

y

y

F
a

m
  


 m/s². 

The acceleration has a magnitude of 

2 2 2 276.7 14 77.9x ya a a     m/s², 

and its direction relative to the positive x -axis is 

    0arctan arctan 14 76.7 7y xa a    . 
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Problem 5 

 

Two blocks of masses 
1m =5 kg and 

2m =3 kg are place in contact with each 

other on a frictionless, horizontal surface. A constant force F =20 N is applied to 

the block 
1m  in horizontal direction. (a) Find the magnitude of the acceleration of 

the system, and (b) the magnitude of the contact force between the two blocks. 

 

Solution 

 

(a) Here we have a force applied to a system consisting of two masses 
1m  and 

2m .  

1 2( )F M a m m a     , 

1 2

20
2.5

5 3

F
a

m m
  

 
m/s². 

(b) The contact force is internal to the system of two blocks. Thus, we cannot 

find this force by modeling the whole system (the two blocks) as a single particle. 

We must now treat each of the two blocks individually by categorizing each as a 

particle subject to a net force.  The only horizontal force acting on 
2m   is the 

contact force 
12P  (the force exerted by 

1m   on 

2m ), which is directed to the right. Applying 

Newton’s second law to 
2m  gives  

12 2P m a   

Substituting the value of the acceleration 

obtained in the previous part  into expression for 12P  gives 

2
12 2

1 2

3
20 7.5

5 3

m
P m a F

m m

   
      

   
 N. 

We see from this result that the contact force 12P  is less than the applied force  

F . This is consistent with the fact that the force required to accelerate the second 
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block alone must be less than the force required to produce the same acceleration 

for the two-block system. The horizontal forces acting on 
1m  are the applied force  

F  to the right  and the contact force 
21P  to the left (the force exerted by 

2m  on 

1m ).  From Newton’s third law,  
21P   is the reaction to

12P , so
21 12P P . Applying 

Newton’s second law to m1 gives 

1 21 12m a F P F P    . 

Substituting the expression for acceleration, we obtain 

2
12 1 1

1 2 1 2

F m
P F m a F m F

m m m m

   
       

    
 

 Thus, magnitudes of contact forces are equaled. 

 

 

Problem 6 

 

The load of mass 1 kg is suspended by the thread. Find the tension  T  if   

(a) the thread is at rest; (b) the thread is moving downwards at acceleration 

a =5 m/s
2
; (c) the thread is moving upwards at acceleration a =5 m/s

2
. 

 

Solution 

 

This problem deals with forces (gravity, tension) and accelerations. That 

suggests we should apply Newton's Second Law. To apply this law we draw the 

forces and accelerations for all cases that are under consideration. Since the load 

has mass, there is gravity mg . The load is suspended by the thread, so there is the 

tensionT .  

ma mg T  . 

Let y–axis is directed downwards. Then the projections of this equation for 

different cases are following. 

(a) At rest acceleration 0a  , so     
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0 mg T  , 

1 9.8 9.8T mg    N; 

(b) Acceleration a  is directed downwards.  

ma mg T  , 

   1 9.8 5 4.8T m g a     N; 

(c) Assume that the acceleration a  is upwards. 

ma mg T   , 

   1 9.8 5 14.8T m g a      N. 

 

 

Problem 7 

 

A tension of 6000 N is experienced by the elevator cable of an elevator moving 

upwards with an acceleration of 2 m/s
2
. What is the mass of the elevator? 

 

Solution 

 

From the second Newton's law we have 

ma mg T  . 

Let’s use the figure to previous problem (the third case) for finding projections  

ma mg T   , 

Then  

6000
508

9.8 2

T
m

g a
  

 
kg. 
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Problem 8 

 

A box is pulled with 20 N force making angle=60
0
 with horizontal. Mass of 

the box is 2 kg. Find the acceleration of the box if  (a) the  surface is frictionless, 

and (b) coefficient of friction is  =0.1.  

 

Solution 

 

We show the forces acting on the box with following free body diagram (FBD). 

A free body diagram (or force diagram) is a pictorial representation used to analyze 

the forces acting on a body of interest. Drawing such a diagram can aid in solving 

for the unknown forces or the equation of motion of the body.  

(a)  The body is moving under the action of following forces: gravitational 

force mg , normal force N , and force F . 

 

The equation of motion according the II Newton’s Law is  

ma mg N F   . 

Let’s find the projections of these forces on x– and y–axes: 

,

0 ,

x

y

ma F

mg N F




   
 

or  

cosxma F F   . 

Finally,   
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cos 20 0.5
5

2

F
a

m

 
   m/s

2
. 

(b) When friction has to be taken into account, the equation of motion 

according the II Newton’s Law is 

frma mg N F F    . 

Projections of this equation on  x– and y–axes are 

,

0 .

x fr

y

ma F F

mg N F

 


   
 

Since 
frF N , and sinyN mg F mg F      , acceleration is 

   cos sin cos sincos
.

x frF F F mg F FF N
a g

m m m m

      


    
    

Substituting the numerical values, we’ll obtain the acceleration 

 0 020 cos60 0.1 sin60
0.1 9.8 4.87

2
a

  
     m/s

2
. 

 

 

Problem 9 

 

The body under the effect of applied force F = 10 N is moving according the 

dependence 2s A Bt Ct   , where C = 1 m/s
2
.  Find the mass of the body. 

 

Solution 

 

Let find the acceleration of the body by differentiation of 3s A Bt Ct   . 

2v B Ct   , 

2 2 1 2a C    m/s
2
. 

Using the Second Law F ma , we can find the mass of the body. 

10
5

2

F
m

a
   kg. 
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Problem 10 

 

A 0.01 kg object is moving in a plane. The x and y coordinates of the object are 

given by   3 22x t t t   and   34 2y t t t  . Find the linear momentum and the net 

force acting on the object at  t = 2 s. 

 

Solution  

 

The velocity of the object may be determined by differentiating of the  x t  and 

 y t  dependencies. 

  2 26 2 6 2 2 2 20
2

x

dx
v t t t

tdt
       


m/s, 

  2 212 2 12 2 2 50
2

y

dy
v t t

tdt
      


m/s. 

The magnitude of velocity is 2 2 2 220 50 53.9x yv v v      m/s, 

the linear momentum is 0.01 53.9 0.539p mv    kg·m/s. 

To find the net force we need to find acceleration of the object. The 

acceleration is the second derivative of coordinate of the object. Then the x and y 

components of acceleration are given by the following expressions 

 
 2

2
12 2 12 2 2 22

2
x

d x t
a t t

tdt
      


m/s², 

 
 2

2
24 24 48

2
y

d y t
a t t

tdt
    


m/s² 

Then the magnitude of acceleration is 

2 2 2 222 48 53x ya a a     m/s
2
. 

The net force is 

0.01 53 0.53F ma     N. 
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Problem 11 

 

A body with a mass of 1.0 kg is accelerated by a force F = 2.0 N. What 

is velocity of this body after 5.0 s of motion? 

 

Solution 

 

From Newton’s Second Law of motion ma F  we get expression for 

acceleration  

F
a

m
 . 

Velocity, according to general formula 
0v v at  , where 

0 0v  , is 

F t
v at

m


  . 

Substituting numbers given in the problem we get 

2 5
10

1
v


   m/s. 

 

Problem 12 

 

The coefficient of friction between the tires of a car and a horizontal road is 

0.55. (a) Find  the magnitude of the maximum acceleration of the car when it is 

braked; (b) What is the shortest distance in which the car can stop if it is initially 

traveling at 17 m/s? Neglect air resistance and rolling friction.   

 

Solution 

 

(a) During braking the forces acting on the car are: the gravity, the normal force 

and the friction force.  If the velocity of the car is to the right the acceleration is 

directed to the left. Applying Newton’s 2 Law of motion gives  
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frma mg N F   . 

Its x and y  projections are 

frma F , 

0 N mg  . 

Friction force is
frF N mg     , therefore,  

frma F mg   , 

Solving for a  and substituting numerical 

values, we obtain 

0.55 9.8 5.39a g     m/s². 

(b) Using a constant-acceleration equation, relate the stopping distance s  of the 

car to its initial speed 
0v  and final speed 0v  , and its acceleration a : 

2 2 2

0 0

2 2

v v v
s

a a


  . 

The stopping distance is 

217
26.8

2 5.39
s  


m. 

 

 

Problem 13 

 

Two blocks 
1 15m  kg and 

2 20m  kg connected by a rope of negligible mass 

are being dragged by a horizontal force F =70 N.   The coefficient of kinetic 

friction between each block and the surfaces is  =0.1. Determine the acceleration 

a  of the system and the tension  T  in the rope. 

 

Solution 

 

Because the string does not stretch, the blocks will have the same acceleration,  

and their   motions  may be described by equations 
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1 1 1 1

2 2 2 2

,

.

fr

fr

m a m g F N T

m a m g F N T F

    


    
 

Projections of these equations on the x  and y  axes, relatively, are given by 

1 1

2 2

,
:

.

fr

fr

m a F T
x

m a F T F

  


   
 

 
1 1

2 2

0 ,
:

0 .

m g N
y

m g N

  


  
 

Adding x -projections, we obtain 

   1 2 1 2fr fra m m F F F    . 

The y -projections gives 
1 1N m g  and 

2 2N m g . Taking into account that 

1 1 1frF N m g     , and 
2 2 2frF N m g     , finally we have 

 1 2

1 2 1 2

70
0.1 9.8 1.02

35

F g m m F
a g

m m m m




 
      

 
 m/s². 

The tension determined from the x -projection of the first load equation of 

motion is equal to  

   1 1 1 1 1 15 1.02 0.1 9.8 30frT m a F m a m g m a g             N. 

 

Problem 14 

 

A block of mass 5 kg is pushed up against a wall by a force  F  that makes 

angle  = 40° with the horizontal as shown in Figure. The coefficient of static 

friction between the block and the wall is 0.3. Determine the possible values for the 

magnitude of F that allow the block to remain stationary. 

 

Solution 

 

According to  Newton’s 1 Law if this load is at rest the vector sum of the forces 

applied to it is zero: 
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0frmg N F F    . 

 Depending on the relationship between the magnitudes of forces mg  and F , 

friction force  frF  may be directed upwards or downwards preventing the 

downward and upward motion of the load, respectively. Taking into account that 

the system is at rest,   the projections on the x  and y  axes   are 

0,

0,

x

y fr

F N

F mg F

 


  
    

x y frF N F mg F    , 

where cosxF F   , sinyF F   . 

Since  

( ) cosxF fr N F F          , 

sin cos 0F mg F         

 sin cosF mg     , 

sin cos

mg
F

  


 
 

 
0 0

5 9.8

sin40 0.3 cos40
F




 
. 

1 57.0F   N, 

2 116.7F  N. 

 The possible values for the magnitude 

of F  that allow the block to remain stationary are 
min 57F  N and 

max 116.7F  N. 

 

 

Problem 15 

 

A box is placed on a plane with slope angle   = 4
0
. (a)  What is the static 

coefficient of friction needed for this box begins to move?(b)  Find an acceleration 

of the box if the coefficient of kinetic friction is   = 0.03. What time does it take to 
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the box to cover the distance 100 m. What is its velocity in the terminal point of 

motion? 

 

Solution 

  

Friction forces act between two bodies which are in contact but not moving or 

sliding with respect to each other. The friction in such case is static friction, and 

the force of static friction is 
fr sF N  , where 

s is the coefficient of static 

friction. 

Newton’s II Law for the box motion is  

frma mg N F   . 

Projections on chosen x and y axes of the equation are 

sin ,

0 cos .

frma mg F

mg N





 


  
 

(a) For the first case we have to find the coefficient of static friction
s .  From 

the second equation of the system cosN mg  , and from the first equation 

 sin sin cos sin coss s sma mg N mg mg mg                . 

Taking into account that 0a  , we obtain  

 0 sin cossg      . 

Therefore, 

sin
tan tan5 0.08

cos
s


 


     . 

(b) When two surfaces are moving with respect to 

one another, the friction force depends on the 

coefficient of kinetic friction
k .  The coefficient of 

kinetic friction is typically smaller than the coefficient of static friction. 

Consequently, the box is sliding along the incline at acceleration 

 (sin cos ) 9.8 0.087 0.02 0.996 0.66ka g           m/s
2
. 
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Since the object is moving at acceleration from the rest, the time of motion and 

the terminal speed may be found by means of the kinematical equations 

2

0

0

2

at
s v t

v v at


 


  

 

Taking into account that 
0 0v  , we obtain 

2 2 10
5.5

0.66

s
t

a


    s,            

0.66 5.5 3.6v at     m/s. 

 

 

Problem 16 

 

A box is sliding up an incline that makes an angle of 20 degrees with respect to 

the horizontal. The coefficient of kinetic friction between the box and the surface of 

the incline is 0.2. The initial speed of the box at the bottom of the incline is 2 m/s. 

How far does the box travel along the incline before coming to rest? 

 

Solution 

 

The first part in the problem is to find an acceleration of the motion. Newton’s 

II Law for the box motion is  

frma mg N F   , 

or, in projections on x  and y axes   

sin ,

0 cos .

frma mg F

mg N





  


  
 

Since    

cosN mg  ,  

the second equation of the system is 
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sin sin sin cosfrma mg F mg N mg mg                . 

Than the acceleration is  

 (sin cos ) 9.8 0.342 0.2 0.94 5.2a g            m/s
2
. 

The second part is to write down the kinematic equations of motion. In this 

problem we need to use the relation between the travelled distance and initial and 

final (the final velocity is 0) velocities: 

0 2v as , 

where s is the travelled distance.  

Then      

2

0 4
0.32

2 2 5.2

v
s

a
  


m. 

 

 

Problem 17 

 

A 10.0 kg block is towed up an inclined at =30
0 

 with respect to the 

horizontal. The rope is parallel to the incline and has a tension of 100 N. Assume 

that the block starts from rest at the bottom of the hill, and neglect friction. How 

fast is the block going after moving 40 m up the hill? 

 

Solution 

 

To find the speed of the block we need to find the acceleration of the block. 

The motion of the block is described by the 

Second Law 

ma mg N T   .  

Projections on chosen axes are 

sin ,

0 cos .

ma T mg

mg N





 


  
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The acceleration is given by the first equation of the system 

0sin 100 10 9.8 sin30
5.1

10

T mg
a

m

   
   m/s

2
. 

The kinematic equations that describe the accelerated motion of the block are 

2

0

0

,
2

.

at
s v t

v v at


 


  

 

Taking into account that 
0 0v   and excluding time of motion, we obtain 

relationship between acceleration and travelled distance 

2 2 5.1 40 20.2v as      m/s. 

 

 

Problem 18 

 

A car is going at a speed of 
0v  = 25.2 km/h when it encounters a 150 m long 

slope of angle 30º.  The friction coefficient between the road and the tyre is 0.3. 

Show that no matter how hard the driver applies the brakes; the car will reach the 

bottom with a speed greater than 100 km/h. Take g =10 m/s². 

 

 

Solution 

 

The forces acting on the car during 

downward accelerated motion are: the gravity, 

normal force and friction force.  

frma mg N F   . 

Projections on x  and y  axes are 

sin ,

0 cos .

frma mg F

N mg





  


  
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The brake, even the hardest one, will produce the friction force 

cosfrF N mg       , thus the acceleration is 

 0 0(sin cos ) 10 sin30 0.3 cos30 2.4a g           m/s². 

The initial speed of the car is 
0 25.2v   km/h = 7 m/s; the covered distance is 

150s  m. Using the expression from kinematics 2 2

0 2v v as  , we obtain the final 

speed of the car as 

2 2

0 2 7 2 2.4 150 27.7v v as        = 100 km/h 

 

 

Problem 19 

 

Two blocks of masses 2 kg and 1 kg are connected by 

the inextensible rope passing over a small frictionless fixed 

pulley. If the rope and the pulley are weightless, find the 

acceleration a  of the blocks and tension T  of the rope. 

 

Solution 

 

The acceleration of the block 1 is equal by magnitude to 

the acceleration of the other block but they are directed 

oppositely. If the tension of the rope is T, then the motion of the blocks are 

following: 

 
1 1

2 2

m a m g T

m a m g T

  


 

 

If the axis y is directed downwards, the projections of these equations are 

1 1

2 2

m a m g T

m a m g T

 

  

 

Consequently, the acceleration and tension are 
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   1 2

1 2

9.8 2 1
3.27

2 1

g m m
a

m m

 
  

 
 m/s

2
, 

  1 2 1 2
1 1

1 2 1 2

2 2 2 1 9.8
1 13.07

2 1

m m m m g
T m g a m g

m m m m

    
       

   
 N. 

 

 

 

Problem 20 

 

A block of mass 
1m  =4 kg on the inclined plane of angle = 30

0
 (coefficient of 

friction  = 0.1) is connected by a rope over a pulley to another block of mass 

2m =1 kg. What are the magnitude and direction of the acceleration of the second 

block?  

 

Solution 

 

According to Newton’s Second Law the equations of the blocks motion are  

1 1

2 2

,

.

frm a m g N T F

m a m g T

    


 
 

Let’s assume that   block 
2m  will move with acceleration a  directed upwards. 

If our assumptions are wrong, the calculated value of acceleration will be 

negative. 

The projections on the x, y, and y  axis are following: 

1 1

1

2 2

sin ,

0 cos ,

.

frm a m g T F

m g N

m a m g T





  


  
   

 

Let’s express the normal force from the 

second equation of system  
1 cosN m g   and 

tension from the third equation
2 2T m g m a  , 
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and substitute them to the first equation taking into account that 
frF N  : 

1 1 2 2 1sin cosm a m g m a m g m g        

After a little of elementary algebra we get 

 1 2

1 2

sin 1 cosm m
a g

m m

    



. 

Substituting numbers given in the problem we get 

 4 0.5 1 1 0.1 0.866
9.8 1.79

4 1
a

   
  


m/s

2
. 

The plus sign tells us, that acceleration has direction to the one chosen by us for 

writing equations leading to the solution of the problem. This is a general rule in 

all kinds of problems. Negative numerical value means the direction of the 

parameter found is opposite to the one which was assumed for writing equations.  

 

 

Problem 21 

 

Two masses 
1m = 1 kg  and 

2m = 10 kg  are on inclines (=50º and  =30º) 

and are connected together by a string as shown in the figure. The coefficient of 

kinetic friction between each mass and its incline is  = 0.25. If  
1m  moves up, and 

2m  moves down, determine their acceleration. 

 

Solution 

 

We define the positive  x  and x  directions to be the directions of motion 

for each block.  Newton’s 2 law for both objects are 

1 1 1 1frm a m g N T F    , 

2 2 2 2frm a m g N T F     . 

Projections on the chosen axes are 

x : 
1 1 1sin frm a T m g F    , 
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x :
2 2 2sin frm a m g T F    , 

y : 
1 10 cosm g N   , 

y : 2 20 cosm g N    . 

The friction forces with regard to the last equations are 

1 1 1 cosfrF N m g       , 

2 2 2 cosfrF N m g       . 

Now add the x   and  x projections, substitute the friction forces, and solve for 

acceleration 

   2 1

1 2

sin cos sin cosm m
a g

m m

         
 


. 

Substitute the numerical values and obtain 

   10 sin30 0.25 cos30 1 sin50 0.25 cos50
9.8 2.67

1 10
a

      
  


 m/s². 

 

Problem 22 

 

A 2-kg load placed on a frictionless, horizontal table is connected to a string 

that passes over a pulley and then is fastened to a hanging 3-kg load. (a) Find the 

acceleration of the two loads and the tension in the string. (b) Solve the problem if 

the coefficient of kinetic friction between the first load and the table is  k =0.1. 
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Solution 

 

(a) Since we neglect the masses of the cable and the pulley, and the pulley is 

frictionless, the magnitudes of tension T  at both ends of the cable are the same.  

Load 
2m   accelerates downward with magnitude a . The load 

1m  connected by the 

string to the first load moves at the same acceleration to the right.  The equations 

according to the Newton’s 2 Law for each 

load are 

 1 1

2 2

,

.

m a T N m g

m a T m g

   


 
  

The projections of these equations on 

the x  and y  axes are 

1

1

2 2

,

0 ,

.

m a T

m g N

m a m g T




 
  

 

Substituting the tension T  from the first 

equation to the third equation gives 

2 2 1m a m g m a  . 

It follows that 

2

1 2

3 9.8
5.88

2 3

m g
a

m m


  

 
m/s². 

(b) If the friction is between the first load and the surface of the table, the 

equations of motion are given by 

1 1

2 2

,

.

frm a T N m g F

m a T m g

    


 
 

As a consequence, the projections on the on the x  and y  axes are 

1

1

2 2

,

0 ,

.

frm a T F

m g N

m a m g T

 


 
  
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Allow for the fact that 
1frF N m g     , we obtain 

2 2 1 2 1 1frm a m g m a F m g m a m g       , 

   2 1

1 2

3 0.1 2 9.8
5.49

2 3

m k m g
a

m m

     
  

 
.  

 

Problem 24 

 

A car of the mass m =1000 kg moves on a flat, horizontal road negotiates 

along the circular path. If the radius of the curve is 40 m and the coefficient of 

static friction between the tires and dry pavement is 0.55, find the maximum speed 

the car can have and still make the turn successfully. 

 

Solution  

 

The force that enables the car to remain in the 

circular way is the force of static friction. (Static, 

because no slipping occurs at the point of contact 

between road and tires. If this force of static 

friction were zero - for example, if the car were 

on an icy road -the car would continue in a 

straight line and slide off the road.) The 

maximum speed the car can have around the curve is the speed at which it is on the 

verge of skidding outward.  

According Newton’s 21 Law the equation of the car’s motion is 

frma mg N F   ,                                                                                          (1)                                                

and   x and y  projections of (1) are 

frma F ,                                                                                                          (2) 

0 N mg  . 
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The maximum friction force is 
frF N mg     . Since the car moves along 

the curvilinear path its normal (or centripetal) acceleration is 2

na v R  , and 

equation (2) is given by 

2mv
mg

R
  . 

The maximum speed of the car is determined by the 

maximum friction force is equal to 

0.55 40 9.8 14.7v R g       m/s =52.9 km/h. 

 

Problem 25  

 

The designated speed for the ramp is to be 13.4 m/s; the radius of the curve is 

40 m.  At what angle should the curve be banked? 

 

Solution 

 

The curved parts of the roads have to be designed 

in such a way that a car will not have to rely on 

friction to round the curve without skidding. In other 

words, a car moving at the designated speed can 

negotiate the curve even when the road is covered 

with ice. Such a ramp is usually banked; this means 

the roadway is tilted toward the inside of the curve.  

On a level (unbanked) road the force that causes the centripetal acceleration is 

the force of static friction between car and road, as we saw in the previous 

Problem.  However, if the road is banked at an angle  , the equation of the motion 

according Newton’s 2 Law is 

ma mg N  , 

Its x and y  projections are 
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sinma N   , 

0 cosN mg   . 

Now, the normal force  N  has a horizontal component sinN  , pointing 

toward the center of the curve. Because the ramp is to be designed so that the force 

of static friction is zero, only the component sinN   causes the centripetal 

acceleration. 

2 sin
sin tan

cos

v mg
m N mg

R


 




     , 

2

tan
v

gR
  . 

2 2
017

arctan arctan arctan0.74 36.4
9.8 40

v

gR
    


. 

 

Problem 26 

 

The freeway off-ramp is circular with 60-m radius. 

The off-ramp has a slope   = 15
0
. If the coefficient of 

static friction between the tires of a car and the road 

is  = 0.55, what is the maximum speed at which it 

can enter the ramp without losing traction? 

 

Solution 

 

The equation that describes the motion of the car according to Newton’s 2 Law 

is 

frma mg N F   , 

and its x and y  projections are 

sin cos ,

0 cos sin .

fr

fr

ma N F

N mg F

 

 

  


    
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Since the friction force is 
frF N  , these equations takes the form 

sin cos ,

cos sin ,

ma N N

mg N N

  

  

    


    
 

 

 

sin cos ,

cos sin .

ma N

mg N

  

  

   


   
 

Dividing the first equation of the system by the second one gives 

 
 

sin cos

cos sin

Nma

mg N

  

  

  


  
, 

Finally, taking into account that 
2

n

v
a a

R
  , we obtain 

sin cos

cos sin
v gR

  

  

  
  

  
m/s 

Substitution of the numerical values gives the maximum speed 

 0 0

0 0

9.8 60 sin15 0.55 cos15
23.9

cos15 sin15
v

k

   
 

 
m/s =85.9 km/h. 

 

 

Problem 27 

 

 The car is moving along the convex bridge with radius of curvature R =100 m 

at the speed v =36 km/h. Find the force of its pressure on the middle of the bridge? 

Find the force of pressure on concave bridge of the same radius of curvature. 

 

Solution 

 

Since the car moves along the curvilinear path it has normal (centripetal) 

acceleration  

2

n

v
a a

R
  . 
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Newton’s 2 Law  gives the following equation of the car’s motion 

ma mg N  . 

According to Newton’s 3 Law the magnitude of the force of car’s pressure on 

the bridge is equal to the magnitude of the normal force N. 

If the y–axis is directed downwards, the projections of the equation are:  

 

(a) for the case of the convex bridge    

nma mg N   

 

 
2 2

3 410
5 10 9.8 4.4 10

100
n

v
F N m g a m g

R

   
            

   
N. 

 

(b) for the case of concave bridge 

nma mg N    

 
2 2

3 410
5 10 9.8 5.4 10

100
n

v
F N m g a m g

R

   
            

   
 N. 

 

Problem 28 

A steel ball of mass m=10 g moving at a speed v =100 m/s along the normal to 

the wall hits it and bounces at the same speed. Find the linear momentum obtained 

by the wall. 



 29 

 Solution 

 

According to the law of conservation of linear momentum for the “ball – wall” 

closed (isolated) system the magnitude of the linear momentum obtained by the 

wall  wp  is equal to the magnitude of ball’s linear momentum increment  bp :  

2 1 2 1w bp p p p mv mv     . 

The projection of this equation on x – axis is 

 2 1 2 1wp mv mv mv mv     . 

Since 
1 2v v v  , therefore, 

2 22 2 10 10 2wp mv      kg·m/s. 

 

 

Problem 29 

 

(a) What is the impulse of a force of 10 N acting on a ball for 2 seconds?  

(b) A 2 kg-ball is initially at rest. What is the velocity of the ball after the force 

has acted on it?  

 

Solution  

 

(a)  The definition of impulse is force over a time, so we have to do a simple 

calculation:  

10 2 20F t     N·s. 

(b)  Recall that an impulse causes a change in linear momentum. Because the 

particle starts with zero velocity, it initially has a zero momentum. Thus: 

 mvp v
F m

t t t

 
  
  

, 

2 1 2F t m v mv mv mv      , 

http://www.sparknotes.com/physics/linearmomentum/conservationofmomentum/problems_1.html#explanation1
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2

20
10

2

F t
v

m


   m/s.  

Thus the ball has a final velocity of 10 m/s. This problem is the simplest form of 

the impulse–momentum theorem. 

 

 

Problem 30 

 

A 3–kg particle has a velocity of   3 4i j  m/s. Find its x and y components of 

linear momentum and the magnitude of its total momentum. 

 

Solution 

 

Using the definition of momentum and the given values of mass m and velocity  

we have: 

   3 3 4 9 12p mv i j i j      kg·m/s. 

So the particle has momentum components 

xp + 9 kg·m/s,    and yp = 12 kg·m/s. 

The magnitude of its momentum is 

 
22 2 29 12 15x yp p p       kg·m/s. 

 

 

Problem 31 

 

A child bounces a superball on the sidewalk. The linear impulse delivered by 

the sidewalk is 2.00 N·s during the 1.25·10
–3

 s of contact. What is the magnitude of 

the average force exerted on the ball by the sidewalk. 
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Solution 

 

The magnitude of the change in momentum of the ball (or impulse delivered to 

the ball) is p = 2.00 N·s. The direction of the impulse is upward, since the initial 

momentum of the ball was downward and the final momentum is upward. 

Since the time over which the force was acting was 31.25 10t     s then from 

the definition of average force we get: 

3

3

2
1.6 1.25 10

1.25 10

p
F

t 


    
 

 N. 

 

 

Problem 32 

 

A 3.0 kg steel ball strikes a wall with a speed of 10 m/s at an angle of 60
0
 with 

the surface. It bounces off with the same speed and angle, as shown in Figure. If 

the ball is in contact with the wall for 0.20 s, what is the average force exerted on 

the wall by the ball. 

 

Solution 

 

The average force is defined as 

dp
F

dt
 , so firstly we find the change in 

momentum of the ball. Since the ball has 

the same speed before and after bouncing 

from the wall, it is clear that its x–

velocity (see the coordinate system in 

Figure) stays the same and so the x–

momentum stays the same. But the y–momentum does change. The initial y–

velocity is   
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0

1 10 sin60 8.7yv     m/s, 

and the final y–velocity is 

0

2 10 sin60 8.7yv      m/s. 

So the change in y–momentum is 

   2 1 2 1 3 8.7 8.7 52y y y y yp mv mv m v v           kg·m/s. 

The average y force on the ball is 

252
2.6 10

0.2

yp
F

t


   


N. 

Since F  has no x-component, the average force has magnitude 22.6 10 N and 

points in the y-direction (away from the wall). 

 

 

Problem 33 

 

A 2 kg-ball is thrown straight up into the air with an initial velocity of 10 m/s. 

Using the impulse-momentum theorem, calculate the time of flight of the ball 

( g =10 m/s²). 

 

Solution 

 

Once the ball is thrown up, it is acted on by a constant force mg . This force 

causes a change in momentum until the ball has reversed directions, and lands with 

the velocity of 10 m/s. Thus we can calculate the total change in momentum:  

   2 1 2 1 2 10 2 10 40p p p mv mv          kg·m/s. 

Now we turn to the impulse–momentum theorem to find the time of flight: 

F t mg t p    . 

Thus, taking 10g  m/s², 

http://www.sparknotes.com/physics/linearmomentum/conservationofmomentum/problems_1.html#explanation5
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40
2

2 10

p
t

mg


   


s. 

The ball has a time of flight of 2 seconds.  

The kinematics gives that the height of the ball is  

2

0 100
5

2 2 10

v
h

g
  


m. 

The velocity at the top point is 0v  , therefore, 
0v v gt   gives 

00 v gt   and 
0v gt . 

Then 
2 2 2

2

0
2 2 2

gt gt gt
h v t gt     . 

Finally 

2 2 5
1

10

h
t

g


   s. 

The time of upward motion is equal to the time of downward motion, then the 

time of flight is 2 s. 

We obtain same result. But the calculation using impulse-momentum theorem 

was much easier than the one using kinematic equations. 

 

 

Problem 34 

 

Machine gun fires 35.0 g bullets at a speed of 750 m/s. If the gun can fire 200 

bullets/min, what is the average force the shooter must exert to keep the gun from 

moving? 

 

Solution 

 

The gun interacts with the bullets; it exerts a brief, strong force on each of the 

bullets which in turn exerts an “equal and opposite” force on the gun. The gun’s 
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force changes the bullet’s momentum from zero (as they are initially at rest) to the 

final value of 

2 1 2 0.035 750 26.2p p p p       kg·m/s. 

So this is also the change in momentum for each bullet: p p  . 

Now, since 200 bullets are fired every minute (60 s), we should count the 

interaction time as the time to fire one bullet, 

60
0.3

200
t   s, 

because every 0.30 s, a firing occurs again, and the average force that we compute 

will be valid for a length of time for which many bullets are fired. So the average 

force of the gun on the bullets is 

26.2
87.5

0.3

p
F

t


  


N. 

From Newton’s Third Law, there must an average backwards force of the 

bullets on the gun of magnitude 87.5 N. If there were no other forces acting on the 

gun, it would accelerate backward. To keep the gun in place, the shooter (or the 

gun’s mechanical support) must exert a force of 87.5 N in the forward direction. 

We can also work with the numbers as follows. In one minute, 200 bullets were 

fired, and a total momentum of 

 3200 26.2 5.24 10totalp     kg·m/s 

was imparted to them. So during this time period (60 seconds) the average force 

on the whole set of bullets was 

35.24 10
87.5

60

totalp
F

t

 
  


N. 

As before, this is also the average backwards force of the bullets on the gun and 

the force required to keep the gun in place. 
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Problem 35 

 

A 2 kg ball  1m  with a velocity of 
1v =3 m/s collides head on in an elastic 

manner with an 8 kg ball  2m  with a velocity 
2v =1 m/s. What are the velocities 

after the collision? 

Solution 

 

If the head on (central) and elastic collision takes place the laws of conservation 

of linear momentum and energy are 

carried out: 

1 1 2 2 1 1 2 2

2 2 2 2

1 1 2 2 1 1 2 2

,

,
2 2 2 2

m v m v m u m u

m v m v m u m u

  



  


 

   
1 1 1 2 2 2

1 1 1 1 1 2 2 2 2 2

( ) ( ),

( ) ( ) ( ) ( )

m v u m u v

m v u v u m u v u v

  


    
 

Therefore, 

1 1 2 2v u u v   . 

After two mathematical operations: multiplication of  
1 1 2 2v u u v    by 

2m  

and subtraction of the product from 
1 1 1 2 2 2( ) ( )m v u m u v   ; and multiplication of 

1 1 2 2v u u v    by 
1m  and addition of the result to 

1 1 1 2 2 2( ) ( )m v u m u v   , we 

obtain velocities of the balls after collision: 

 

 

2 2 1 2 1

1

1 2

1 1 2 1 2

2

1 2

2
,

2
.

m v m m v
u

m m

m v m m v
u

m m

 




 




 

The projection of the velocities on x–axis and substitution of the data gives: 

 
1

2 8 1 2 8 3
0,2

2 8
u

    
  


 m/s, 

2

2 2 3 (8 2) 1
1,8

2 8
u

    
 


 m/s. 
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The sign “minus” in the first expression means that due to collision the first ball 

moves in opposite direction, meanwhile the second ball moves in its previous 

direction. 

 

Problem 36 

 

A 10.0 g bullet is stopped in a block of wood (m = 5.00 kg). The speed of the 

“bullet–wood” combination immediately after the collision is 0.600 m/s.  What  

was the original speed of the bullet? 

 

Solution 

 

A picture of the collision just before and after the bullet (quickly) embeds itself 

in the wood is given in Figure. The bullet has some initial speed v  (we don’t know 

what it is.) 

The collision (and embedding of the bullet) takes place very rapidly; for that 

brief time the bullet and block essentially form an isolated system because any 

external forces (say, friction) will be of no importance compared to the enormous 

forces between the bullet and the block. So the total momentum of the system will 

be conserved; it is the same before and after the collision. 

Just before the collision, only the bullet (with mass m) is in motion and its 

velocity is v . So the initial momentum is p mv . Just after the collision, the 

“bullet–block” combination, with its mass of  m M  has a velocity u . So the final 

momentum is  

 p m M u   .  
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In this problem there is only motion along the horizontal axis, so we only need 

the condition that the total momentum along this axis is conserved:  

p p .  

Consequently,  

 mv m M u  . 

The speed of the bullet was 

   2

2

10 5 0.6
301

10

m M u
v

m





 
   m/s. 

 

Problem 37 

 

The platform of mass 
1m =10 tonnes is on the rails. The gun of mass 

2m =5 

tonnes fixed on the platform shoot by the shell of mass 
3m =100 kg. The shot is 

directed along the rails. Find the velocity of the platform with the gun immediately 

after the shot if the velocity of the shell is 
0v  =500 m/s respectively the gun. Solve 

the problem if the platform with gun on it at the instant of firing   (a) was at rest;  

(b) moved at the velocity v = 18 km/h and the shot was made in the direction o f its 

motion; and (c) moved at the velocity v = 18 km/h and the shot was made in the 

opposite direction.  

  

Solution 

 

The solution of this problem is based on the law of conservation of linear 

momentum for the closed system consisting of the platform  1p , the gun 2p , and 

the shell  3p . The linear momentum of the system is vector sum of the linear 

momenta of the objects of the system. 

(a) The linear momentum of the system before the shot (the platform was at rest 

0v  ) is 

1 2 3 1 2 3 1 2 3( ) 0p p p p mv m v m v m m m v          . 
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The linear momentum of the system after the shot  

1 2 3 1 2 3 0 1 2 3 0( )p p p p mu m u m v m m u m v            . 

According the law of 

conservation of linear 

momentum p p , consequently, 

1 2 3 00 ( )m m u m v   . 

After projecting this equation 

on x–axis we obtain 

1 2 3 00 ( )m m u m v   . 

We believe that the motion of 

the platform with the gun (u ) after 

firing occurs in the opposite 

direction relatively the motion of 

the shell (
0v ) we have chosen the 

sign “minus” for this velocity. 

1 2 3 0( )m m u m v   

3 0

1 2

100 500
3,33

10000 5000

m v
u

m m


  

 
 m/s. 

In the cases when we are not sure as for direction of the motion after the change 

of the linear momentum, we can choose any sign of the velocity, but the result of 

calculation shows the correctness of our choice. 

 

(b) If the platform is moving at the speed 18v   km/h = 5 m/s, the linear 

momentum of the system before shooting is distinct from zero, and  the law of 

conservation  is  

   1 2 3 1 2 3 0( )m m m v m m u m v v      . 

Then the projection of the equation on x–axis is 

   1 2 3 1 2 3 0( )m m m v m m u m v v       . 

The speed of the platform with the gun is 
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 3 0 1 2 3

1 2

2 5 2

5

( )

10 (500 5) (10 5000 10 ) 5
1,67 m/s.

10 5000

m v v m m m v
u

m m

   
 



     
  



 

In our mathematical consideration we have supposed that the platform after 

shooting was moving in the opposite direction relatively its previous direction, but 

the negative result of calculation shows that it is moving in the same direction but 

at smaller speed. 

 

(c) The law of the conservation of linear momentum is the same as in the 

second case, but the projection on x–axis is 

   1 2 3 1 2 3 0( )m m m v m m u m v v       . 

The speed of the platform with the gun is 

 3 0 1 2 3

1 2

2 5 2

5

( )

10 ( 500 5) (10 5000 10 ) 5
8.33 m/s.

10 5000

m v v m m m v
u

m m

     
 



      
 



  

We see that the platform is moving in the same direction as before shooting. 

 

 

Problem 38 

 

The man of mass 
1m =60 kg running at the velocity 

1v =2 m/s jumps onto the 

carriage of mass 
2m =80 kg moving at the velocity 

2v =1 m/s. Find the velocity of 

the carriage with the man if (a) the man catches up the carriage; and (b) the man 

moves towards the carriage.  

 

Solution 

 

The law of the conservation of linear momentum is 
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 1 1 2 2 1 2m v m v m m u    

(a) If the man catches up the carriage, the velocities of both objects are of the 

same directions, therefore, the projection on x–axis is  

  1 1 2 2 1 2m v m v m m u   , 

and the velocity of the carriage with man is 

1 1 2 2

1 2

60 2 80 1
1.43

60 80

m v m v
u

m m

   
  

 
 m/s. 

 

(b) If the man moves towards the carriage, the velocities have the different 

signs. The projection of the equation of the law of conservation of linear 

momentum is  

 1 1 2 2 1 2m v m v m m u   , 

and the velocity of the carriage with man is 

1 1 2 2

1 2

60 2 80 1
0.29

60 80

m v m v
u

m m

   
  

 
 m/s. 

The carriage is moving in the direction of previous motion of the man. 

 

 

Problem 39 

 

The shell that has been shot upwards blew up at the highest point of its 

trajectory. The first fragment of mass 
1m = 1 kg has the horizontal velocity 

1v =400 

m/s. The second fragment of mass 
2m  =1.5 kg has the vertical velocity 

2v =200 

m/s. Find the velocity of the third fragment of mass 
3m =2 kg. 

 

Solution 

 

As the shell has been blew up in the highest point of trajectory, its velocity, and 

thus the linear momentum before the burst was zero. According to the law of 
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conservation of linear momentum the vector sum of the momenta after the burst 

has to be zero as well. Therefore,   

1 2 30 p p p   . 

 Let’s find the linear momenta of the first and the 

second fragments  

1 1 1 1 400 400p mv     kg·m/s, 

2 2 2 1,5 200 300p m v     kg·m/s 

and add them graphically (see Figure). 

The vector sum 
12 1 2p p p   has to be equal to 

the linear momentum of the third fragment in 

magnitude and opposite in direction, i.e., 
12 3p p . 

Since 

2 2 2 2

12 1 2 400 300 500p p p      kg·m/s,   

3 3 3 12p m v p  , 

and 

12
3

3

500
250

2

p
v

m
    kg·m/s. 

 

 

Problem 40 

 

A particle of mass 2 kg moves under the action of the constant force 

 5 2F i j  N.  If its displacement is 6 j m. What is the work done by this force? 

 

Solution 

 

The work done by force is  

    , 5 2 6 12A F s i j j      J. 
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Problem 41 

 

A 40 kg box initially at rest is pushed 5.0 m along a rough horizontal floor with 

a constant applied horizontal force of 130 N. If the coefficient of friction between 

the box and floor is 0.30, find  (a) the work done by the applied force, (b) the 

energy lost due to friction, (c) the change in kinetic energy of the box, and (d) the 

final speed of the box.  

 

Solution  

 

(a) The motion of the box and the forces which do work on it are shown in 

Figure. The (constant) applied force F  points in the same direction as the 

displacement s . Our formula for the work done by a constant force gives 

  0 2, cos 130 5 cos0 6.5 10A F s F s          J. 

The applied force does 26.5 10 J of work. 

(b) Figure shows all forces acting on the box. 

The vertical forces acting on the box are gravity 

(mg , downward) and the floor’s normal force ( N , 

upward). It follows that N mg  and so the magnitude of the friction force is  

20.3 40 9.8 1.2 10frF N mg        N. 

The friction force is directed opposite the direction of motion (  = 180
0
) and so 

the work that it does is 

   0 2 2, cos180 1.2 10 5 1 5.9 10fr fr frA F s F s          J. 

or we might say that 25.9 10 J is lost to friction. 

(c) Since the normal force and gravity do no work on the box as it moves, the 

net work done is 

net frA A A  = 26.5 10 – 25.9 10  = 62 J. 
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By the Work–Kinetic Energy Theorem, this is equal to the change in kinetic 

energy of the box: 

2 1 62k k k netW W W A     J. 

(d) Here, the initial kinetic energy 
1kW  was zero because the box was initially at 

rest. So we have 
2 62kW  J. From the definition of kinetic energy 

2

2
k

mv
W  , we 

get the final speed of the box: 
2 2 62

3.1 1.8
40

kW
v

m


    m/s. 

 

 

Problem 42 

 

A crate of mass 10 kg is pulled up a rough incline with an initial speed of 1.5 

m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 

=20
0 
with the horizontal. The coefficient of kinetic friction is 0.4, and the crate is 

pulled 5 m.  (a) How much work is done by gravity?(b) How much energy is lost 

due to friction?(c) How much work is done by the 100 N force? (d) What is the 

change in kinetic energy of the crate? (e) What is the speed of the crate after being 

pulled 5 m. 

 

Solution 

 

(a) Let calculate the work done by gravity using in the definition:  ,A mg d .   

The magnitude of the gravity force is 

10 9.8 98mg    N and the displacement has 

magnitude 5 m. We see from geometry (see 

Figure) that the angle between the force and 

displacement (along x–axis) vectors is 110
0
. 

Then the work done by gravity is   
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0cos 98 5cos110 168grA mgd      J. 

(b)  To find the work done by friction, we need to know the force of friction. 

The forces on the block are shown in Figure. As we have seen before, the normal 

force between the slope and the block is 0cos cos20N mg mg   so as to cancel 

the normal component of the force of gravity. Then the force of kinetic friction on 

the block points down the slope (opposite the motion) and has magnitude 

0cos20 0.4 10 9.8 0.94frF N mg          = 36.8 N. 

This force points exactly opposite the direction of the displacement d , so the 

work done by friction is  

 0cos180 36.8 5 1 184fr frA F d         J. 

(c) The 100 N applied force pulls in the direction up the slope, which is along 

the direction of the displacement d. So the work that is does is 

  0, cos0 100 5 1 500applA F d F d        J. 

(d) We have now found the work done by each of the forces acting on the crate 

as it moved: gravity, friction and the applied force. (We should note the normal 

force of the surface also acted on the crate, but being perpendicular to the motion, 

it did no work.) The net work done was: 

168 184 500 148net gr fr applA A A A        J. 

From the work–energy theorem, this is equal to the change in kinetic energy of 

the box: 148k netW A   J. 

(e)  The initial kinetic energy of the crate was 
2 2

1
1

10 1.5
11.2

2 2
k

mv
W


    J. 

If the final speed of the crate is 
2v , then the change in kinetic energy was: 

2

2
2 1 1

2
k k k k

mv
W W W W     . 

Using our answers from previous parts  148k netW A   J  and  
1 11.2kW  J, we 

get: 
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   1

2

2 2 148 11.2
5.64

10

k kW W
v

m

  
   m/s. 

The final speed of the crate is 5.64 m/s. 

 

Problem 43 

 

A particle is subject to a force 
xF  that varies with position. Find the work done 

by the force on the body as it moves (a) from x =0 to x =5 m,(b) from x = 5 m to x  

= 10 m and (c) from x = 10 m to x  = 14 m. (d) What is the total work done by the 

force over the distance  x  = 0 to  x = 14 m? 

 

Solution 

 

Since the force depends on time, the work done when a particle moves along a 

straight line 

2

1

x

x
x

W F dx  . 

Geometrically this is just the “area under the curve” of   xF x   from 
1x  to 

2x . 

(a) The figure (from x = 0 to x  = 5.0 m) is the triangle which “area” is equal to   

the half of a rectangle of base 5.0m and height 3.0 N. So the work done is  

1

3 5
7.5

2
W


  J. 
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It is important that when we evaluate the “area”, we just keep the units which 

go along with the base and the height; here they were meters and Newtons, the 

product of which is a Joule. 

So the work done by the force for this displacement is 7.5 J. 

(b) The region under the curve from x = 5 m to  x = 10 m is a full rectangle of 

base 5 m and height 3 N. The work done for this movement of the particle is 

2 3 5 15W     J. 

(c) For the movement from x = 10 m to x = 14 m the region under the curve is a 

half rectangle of  base 5 m and height 3  N. The work done is 

3

3 4
6

2
W


   J. 

(d) The total work done over the distance x = 0 to x = 14 m is the sum of the 

three separate “areas”, 

1 2 3 7.5 15 6 28.5W W W W       J. 

 

Problem 44 

 

What work is done by a force  2 3F xi j  N, with x in meters, that moves a 

particle from position  1 2 3r i j  m to position  2 4 3r i j   m? 

 

Solution 

 

According to the general definition of work (for a two-dimensional problem), 

   
2 2

1 1

x y

x y
x y

W F r dx F r dy   . 

If 2xF x  and 3yF  (we mean that the force is in Newtons when x is in 

meters, and the work will come out in Joules), we obtain 

4 3
2

2 3

4 3
2 3 3 (16 4) ( 9 9) 6

2 3
W xdx dy x x

   
            J. 
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Problem 45 

 

The sledge after motion down from the hill of height 
1h =10 m and slope angle  

  =30
0
, has covered 3 m of horizontal way, and begins to move upwards along the 

incline with angle   = 45
0
.
 
If the coefficient of friction

 
doesn’t vary along all 

sectors of motion and equals   = 0.1, find the height 
2h of the sledge ascent along 

the hill.  

 

Solution 

 

According to the law of conservation of energy the potential energy of the 

sledge  pW at its initial point is expended in kinetic energy  1kW and the work 

 1frA done by friction force.  

1 1p k frW W A  . 

Due to the kinetic energy  1kW the sledge has a possibility of motion along the 

horizontal way, at that, a part of this energy is expended in the work  2frA of 

friction force  

1 2 2k fr kW A W   . 

And finally, the kinetic energy 
2kW  allows the ascent of the sledge to the 

height
2h , with that, 
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32 2k fr pW A W  . 

Combining all previous equations, we obtain 

31 2 2p fr fr fr pW A A A W    . 

Friction force at the first segment of the distance is equal to 

1 1 cosfrF N mg       , at the second segment:  
2 2frF N mg     , and at 

the third segment: 
3 3 cosfrF N mg       . Accordingly, the works of friction 

forces are:  

1 1cosfrA mg s     , 
2 2frA mg s   , and 

3 3cosfrA mg s     .  

Taking into account that  

1
1

sin

h
s


 , 

2 3s  m, 2
3

sin

h
s


 ,  

we write down the equation 

1 1 2 2cos cosmgh mg s mg s mg mg h                , 

 1 1 2 3 2cos cosh s s s h        , 

1 1 2 1 2 2
2 2cos cos

sin sin tan tan

h h h h h h
s s 

     
         , 

1 1 2 2
2

tan tan

h h h h
s

   
    , 

 1 2

2

tan tan tan

tan tan

h s
h

    

  

   
 


= 

=
 10 0.577 0.1 0.1 3 0.577 1

7.24
1 0.1 0.577

   
 


m. 

 

Problem  46 

 

A particle has linear momentum of 10 kg·m/s, and a kinetic energy of 25 J. 

What is the mass of the particle? 
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Solution 

 

Recall that kinetic energy and momentum are related according to the following 

equations: 
2

2
k

mv
W   and p mv .  

Since   
p

v
m

 , then
2

2
k

p
W

m
 . Solving for m we see that   

2 100
2

2 2 25k

p
m

W
  


kg.  

From our knowledge of energy and momentum we can state the mass of the ball 

from these two quantities. This method of finding the mass of a particle is 

commonly used in particle physics, when particles decay too quickly to be massed, 

but when their momentum and energy can be measured. 

 

 

Problem 47 

 

A 2 kg bouncy ball is dropped from a height of 10 meters, hits the floor and 

returns to its original height. What was the change in momentum of the ball upon 

impact with the floor? What was the impulse provided by the floor? 

 

Solution 

 

To find the change in momentum of the ball we must find first the velocity of 

the ball just before it hits the ground. To do so, we must rely on the conservation of 

mechanical energy. The ball was dropped from a height h = 10 meters, and so had 

a potential energy of mgh. This energy is converted completely to kinetic energy 

by the time the ball hits the floor. Thus:  

2

2

mv
mgh , 
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2 2 9.8 10 14v gh     m/s. 

Thus the ball hits the ground with a velocity of 14 m/s. 

The same argument can be made to find the speed with which the ball bounced 

back up. When the ball is at ground level, all of the energy of the system is kinetic 

energy. As the ball bounces back up, this energy gets converted to gravitational 

potential energy. If the ball reaches the same height it was dropped from, then, we 

can deduce that the ball leaves the ground with the same speed with which it hit the 

ground, though in a different direction. Thus the change in momentum,  

   2 1 2 1 2 14 2 14 56p p p mv mv          kg·m/s. 

The ball's momentum changes by 56 kg·m/s. 

We are next asked to find the impulse provided by the floor. By the impulse–

momentum theorem, a given impulse causes a change in momentum. Since we 

have already calculated our change in momentum, we already know our impulse. It 

is simply 56 kg·m/s. 

 

 

Problem 48 

 

A bullet of mass m = 3 g, travelling at a velocity of  v  = 500 m/s, imbeds itself 

in the wooden block of a ballistic pendulum. If the wooden block has a mass of M  

= 0.3 kg, to what height does the “bullet–block” combination rise? 

 

Solution 

 

Since the bullet and the block “stick 

together” after the collision, this is an 

example of a perfectly inelastic collision. 

Momentum is conserved but kinetic 

energy is not.  

Conserve momentum: 
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 blockmv Mv m M u   . 

Since  
blockv =0, 

 mv m M u   

mv
u

m M



. 

After the collision energy is conserved as long as non–conservative forces do 

not act on the system, hence: 

k pW W , 

 
 

2

2

m M u
m M gh


  , 

 

 

 

 

22 32

2 2
3

3 10 500
1.25

2 2 2 9.8 3 10 0.3

mvu
h

g g m M





 
   

    
m. 

 

Problem 49 

 

The bullet moving horizontally hits the sphere suspended by weightless rigid 

rod. The bullet mass m is 1000 times less than the sphere mass M. The distance 

between the sphere centre and the pivot point is l =1 m. Find the velocity of the 

bullet if the rod makes an angle =10
0
 with vertical. 

 

 

Solution 

 

We’ll use the laws of conservation of energy 

and linear momentum for the closed system 

“sphere–bullet” taking into account that bullet 

hitting the sphere is the example of inelastic 

collision of two objects the result of which is 

the motion of two interacted objects as a whole: 
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 mv MV m M u   ,  

where v  and V  are the velocities of the bullet and the sphere before collision, 

and u  is the velocity of the sphere with the bullet inside it after the collision. 

As the sphere was at rest before collision, i.e. 0V  , the projection of this 

equation on horizontal x–axis is  

 mv m M u  ,  

mv
u

m M



. 

Using the law of conservation of energy  

 
 

2

2

m M u
m M gh


  . 

As  cos 1 cosh l l l     , then  2 1 cosu gl    and  

     2 1 cosm M glm M u
v

m m

 
  . 

Taking into account that 1000M m  we obtain 

   1001 2 1 cos 1001 2 9.8 1 1 cos10 546v gl          m/s. 

 

 

Problem 50 

 

 The skater of mass M = 70 kg standing on the ice throws a stone of m =3 kg in 

a horizontal direction with a speed v = 8 m/s. Find the distance of recoil if the 

coefficient of friction between the ice and the skates  = 0.02. 

 

Solution 

 

This problem may be solved by two methods based on dynamics and 

kinematics, and on conservation laws. Let’s consider the two. 
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(a) The net linear momentum of the isolated (closed) system “skater–stone” is 

conserved, hence. 

  0M m v Mu mv   .  

Firstly, the skater and the stone were at rest; consequently, the linear 

momentum of the system was equal to zero. After the fling of the stone, the skater 

begins to move in the opposite side respectively to the direction of stone motion, so 

the equation in projections on x–axis: 

0 Mu mv   , 

and the skater speed is  

mv
u

M
 . 

According to the Second Law the equation of the skater motion is 

frMa Mg N F   ,  

and x  and y projections: 

,

0 .

frMa F

N Mg




 
   

Solving this system we can find 

a g  . 

The decelerated skater motion before his stop 

may be described by kinematic equations 

2

0 ,

.
2

v u at

at
s ut

  



 


 

Travelled distance is 

2 2 2 2

2

9 64
0.3

2 2 2 2 0.02 4900 9.8

u u m v
s

a g M g 


    

  
. 

(b) Using the law of conservation of linear momentum the skater speed is  

mv
u

M
 (see above). 
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According the law of conservation of energy, the kinetic energy of the skater is 

wasted on the work against the friction force 

fr kA W  , 

 , cosfr fr fr frA F s F s F s       , 

where cos 1   , as the friction force is directed opposite to the skater 

displacement. 

 The increment of kinetic energy is 

2 2

0
2 2

k

Mu Mu
W     . 

Then 

 
2

2
fr

Mu
F s    . 

The distance until the stop is  

2 2 2 2 2

2

9 64
0.3

2 2 2 2 2 0.02 4900 9.8fr

Mu Mu u m v
s

F Mg g M g  


     

    
. 

We obtained the same result as by the first method.  

 

Problem 51 

 

The tangential force F =100 N is applied to the rim of the homogeneous disc of 

R = 0.2 m. At the rotation the frictional torque   frM =5N·m acts on disc. Find the 

disc mass if its acceleration is  100 rad/s
2
. 

 

Solution 

 

The disc motion is described by the Second Law for rotation 

I M  , 

where I – is a moment of inertia of disc,   – its angular acceleration, M – net 

torque of the forces applied to disc. 
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Moment of inertia of disc respectively the axis passing through its center of 

mass is 

2

2

mR
I  . 

Since vectors of the angular acceleration and driving torque are directed along 

the axis of rotation, and the frictional torque in opposite direction, the net torque is 

F fr frM M M F R M     . 

 The Second Law for rotation is 

2

2
fr

mR
F R M


   . 

Thus the disc mass is 

 
2

2( ) 2 100 0.2 5
7.5

0.04 100

frF R M
m

R 

   
  


kg. 

 

Problem 52 

 

If a wheel has moment of inertia of 5 kg·m
2
, (a) what angular speed does the 

wheel attain if 10
5
 Joule of work is done in producing rotational kinetic energy? 

(b) What torque is required to bring the wheel to rest in 25 seconds? 

 

Solution 

 

(a)  The work was done for change in rotational kinetic energy, consequently, 

2

2 1 2
2

k k k k

I
A W W W W


      , 

as 
1 0kW  . 

An angular velocity of the disc is  

52 2 10
200

5

A

I



    rad/s. 

(b) The decelerated motion of the disc is described by kinematic equation 
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final initial t    .  

where 0final  ,  
initial  . 

Hence, 

0 t   , 

or 

t


  . 

The braking torque is 

5 200
40

25

I
M I

t





     N·m. 

 

Problem 53 

 

A rope is wrapped around a solid cylindrical drum. The 

drum has a fixed frictionless axle. The mass of the drum is 100 

kg and it has a radius of R  = 50.0 cm. The other end of the 

rope is tied to a block, M = 10.0 kg. What is the angular 

acceleration of the drum? What is the linear acceleration of 

the block? What is the tension in the rope? Assume that the 

rope does not slip. 

 

Solution 

 

The forces acting directing on the block are gravity Mg and tensionT . 

Presumably the block will accelerate downwards. The only force directly acting on 

the drum which creates a torque is tension. Note that ropes, and therefore tensions, 

are always tangential to the object and thus normal to the radius. The other forces 

acting on the drum, the normal from the axle and the weight, both act through the 

centre of mass and thus do not create torque. The drum accelerates counter 

clockwise as the block moves down.  
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Since the rope is wrapped around the drum, we also have the kinematic 

relationship a R . 

Since the problem wants accelerations and forces, and one object rotates, that 

suggests we must use both the linear and rotational versions of Newton's Second 

Law. 

,

.

Ma Mg T

I M

  



 

Let’s find the projections of the first equation on y -axis, and rewrite the second 

equation substituting the moment of inertia of cylinder 
2

2

mR
I  . 

2

,

.
2

Ma Mg T

mR a
T R

R

 



  


 

The second equation after simplifying gives 
2

ma
T  . Putting this result into the 

first equation yields  

10 9.8
1.63

0.5 10 50

Mg
a

M m


  

 
m/s

2
. 

Thus an angular acceleration is  

1.63
3.27

0.5

a

R
    rad/s

2
. 

As well, tension is 

10 1.63
81.5

2 2

ma
T


   N. 

 

Problem 54 

 

Two blocks (
1m = 2 kg and 

2m = 1 kg) are connected by rope over a frictionless 

pulley as shown in the Figure. The pulley is a cylinder of mass m=1 kg. What is 

the acceleration of the blocks and the tension in the rope on either side of the 

pulley?  
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Solution 

 

In this problem we must use both the linear and rotational versions of Newton's 

Second Law, because there are two objects that take part in 

translational motion, and one object rotates. We have to 

write down three equations. It is need to remember that the 

tension must be different on either side of the pulley or the 

pulley would not rotate. 

1 1 1

2 2 2

,

,

.

m a m g T

m a m g T

I M

  


 




 

Taking into account that the moment of inertia of solid 

disc is 
2

2

mR
I  , and since the rope is strung over the pulley, 

the linear acceleration of the rope and the angular acceleration of the disc relate as 

a R , we can write 

 

1 1 1

2 2 2

2

1 2

,

,

.
2

m a m g T

m a m g T

mR a
T T R

R


  


  

   


 

or 

1 1 1

2 2 2

1 2

,

,

.
2

m a m g T

m a m g T

ma
T T


  

  

  


 

Solution of this system gives 

 1 2

1 2

(2 1) 9.8
2.8

2 2 1 0.5

m m g
a

m m m

  
  

   
m/s

2
, 
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 1 2

1

1 2

2 2
14

2

m g m m
T

m m m


 

 
N, 

 2 1

2

1 2

2 2
12.6

2

m g m m
T

m m m


 

 
 N. 

 

 

Problem 55 

 

Cylinder of mass m = 20 kg and radius R  = 0.5 m rotates about the axis 

passing through its center according the dependence 2 3A Bt Ct    , where B = 

2 rad/s
2
, C = 2 rad/s

3
. Find the dependence for torque changing, and the 

magnitude of the torque on instant of time t =5 s. 

 

Solution 

 

According to the Second Law for rotation the torque depends on the moment of 

inertia and the angular acceleration of cylinder  

M I . 

The moment of inertia equals  
2

2

mR
I  , and if we differentiate the given 

dependence for the angle, we obtain 

22 3
d

Bt Ct
dt


    , 

2 6
d

B Ct
dt


    . 

Then  

   
2

5

20 0.25
2 6 2 2 6 2 10 30 140

2 2 t

mR
M I B Ct t t




          N·m. 
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Problem 56 

 

A circular hoop of mass 50 kg and radius 50 cm is rotating at an angular speed 

of 120 rotations per minute. Calculate its kinetic energy. 

 

Solution 

 

For kinetic energy calculation we have to know and the angular speed 

120  rot/min=2 rot/s and the moment of inertia of the hoop 

2 50 0.25 12.5I mR    kg·m
2
, 

Then the kinetic energy of rotating hoop is 

2 12.5 0.04
0.25

2 2
k

I
W

 
   J. 

 

Problem 57  

 

A sphere of mass 100 kg and radius 50 cm rolls without slipping with the speed 

of 5 cm/s. Calculate its kinetic energy. 

 

Solution 

 

Since the sphere is moving, it has kinetic energy. The sphere takes part in two 

motions simultaneously, i.e., the translational motion with kinetic 

energy 
2

2
k trans

mv
W  , and rotational motion with kinetic energy  

2

2
k rot

I
W


 , 

where m and 
22

5

mR
I   are the mass and the moment of inertia of sphere, 

respectively; v   and 
v

R
  are its linear and angular velocities.  The total energy is 

the sum of these two energies: 
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2 2 2 2 2
2

2

2
0.7

2 2 2 5 2
k

mv I mv mR v
W mv

R


    

 
. 

 

 

Problem 58 

 

(a) Calculate the kinetic energy of rotation of a disc of mass 1 kg and radius 0.2 

m rotating at 30 rad/min.  

(b) Find the kinetic energy of this disc if it rolls without slipping, and the points 

on the disc surface have the angular velocity 30 rad/min. 

 

 

Solution 

 

(a) Kinetic energy of rotating disc may be determined according to the 

expression 

2

2
k

I
W


 , 

where 
2 1 0.04

0.02
2 2

mR
I


    kg·m

2
   is moment of inertia of the disc, and    

=30 rad/min = 0.5 rad/s is its angular velocity. 

Then the kinetic energy of rotation is 

2
30.02 0.25

2.5 10
2 2

k

I
W

 
    J. 

(b) When disc rolls without slipping its kinetic energy is sum of kinetic energies 

of translational and rotational motions. Taking into account that the moment of 

inertia of disc is 
2

2

mR
I   and liner velocity of the point of the disc surface 

correlates with angular velocity according tov R , we obtain 

2 2 2 2 2 2

2 2 2 2 2
k

mv I m R mR
W

  
    


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2 2 30.75 0.75 1 0.04 0.25 7.5 10mR         J. 

 

Problem 59 

 

The 25-kg disc of radius 0.3 m is at rest when the constant 15 N·m 

counterclockwise couple is applied. Determine the disc’s angular velocity when it 

has rotated through 5 revolutions (a) by applying the Newton’s 2 Law for rotation, 

and  (b) by applying the principle of work and energy. 

 

Solution   

 

(a) Newton’s 2 Law M I  gives   the angular acceleration of the disc as 

.
M

I
   

The moment of inertia of the disc is 
2

2

mR
I  , therefore, the angular 

acceleration is 

2

2M M

I mR
   .  

From the kinematics of rotational motion for accelerated motion from the rest 

we have 

 

2

2 ,
2

.

t
N

t




 





 

 

Then 
2 2 2

2 4 4 15 5
4 4 20.5

25 0.3

M M N
N N

mR mR

 
   

   
     


 rad/s. 

(b) Applying the law of conservation of energy, the work is 

2

0
2

N

A Md M N


    .  

On the other hand, the work is equal to the change of rotational kinetic energy  
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2 2 2

2 1 0
2 4

k k k

I mR
A E E E

 
      . 

Equating the right  hand side of the equations for the work, we obtain 

2 2

2
4

mR
M N


  , 

2 2

4 4 15 5
20.5

25 0.3

M N

mR

 


   
  


 rad/s. 

 

Problem 60 

 

A bowling ball encounters a 0.8 m vertical rise on the way back to the ball rack, 

as the drawing illustrates. Ignore frictional losses and assume that the mass of the 

ball is distributed uniformly. The translational speed of the ball is 4 m/s at the rise. 

Find the translational speed at the top. 

 

Solution 

The bowling ball is rolling without slipping, therefore, its energy consists of the 

kinetic energy of translational motion (
ktE ) and kinetic energy of rotational motion 

(
krE ): 

1 1

2 2

1 1
1 1 1 1 1

2 2
p k p kt kr p

mv I
E E E E E E E


        .  

The potential energy is at the bottom 

of the rock is zero.  The moment of 

inertial of the solid sphere of the mass 

mand radius R  is 
22

5

mR
I  , and the 

angular velocity () relates to the linear 

velocity of the ball’s center of mass ( v )  

as v R . Then 
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2 2 2 2

1 1 1
1 2

2 7

2 5 2 10
k

mv m R v mv
E

R

 
  

 
. 

At the top of the rack the ball’s energy is given by  

 
2 2 2

2 2 2
2 2 2 2 2 2

7

2 2 10
p k p kt kr

mv I mv
E E E E E E mgh mgh


          . 

At the absence of friction, 
1 2E E , therefore, 

2 2

1 27 7

10 10

mv mv
mgh  . 

The translational velocity of the ball at the top is  

2 2

2 1

10 10 9.8 0.8
4 2.2

7 7

gh
v v

 
      m/s. 

 

Problem  61 

 

A uniform spherical shell of mass M = 21 kg and radius R = 1.5 m rotates 

about a vertical axis on frictionless bearings. A massless cord passes around the 

equator of the shell, over a pulley of rotational inertia I = 1kg· m² and radius r = 

0.6 m, and is attached to a small object of mass m = 7 kg. There is no friction on 

the pulley's axle; the cord does not slip on the pulley. What is the speed of the 

object after it falls a distance h = 5 m from rest? Use energy considerations. 

 

Solution 

 

According to the law of conservation 

of energy, the potential energy of 

descending load transforms into the 

kinetic energy of rotating motion of the 

pulley and   spherical shell, and 

translational motion of the load. 
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2 2 2
1 1 2 2

2 2 2

mv I I
mgh

 
   , 

where m and v  are the mass and velocity of the load; 2
1

2

3
I MR  and 1  are 

the moment of inertia and the angular velocity of the spherical shell;  2I and 2  are 

the moment of inertia and the angular velocity of the pulley. 

The linear velocity of the load is equal to the linear velocity of the cord, which 

is connected to the angular velocities of the pulley and the shell 

1 2v R r   .  

2 22 2 2 2
2 2

2 2

1 2 1

2 2 3 2 2 3 2

mv v v mv Mv I v
mgh MR I

R r r

   
          

   
. 

The speed of the load may be found from 

2 2
22 3 2

m M I
mgh v

r

 
   

 
, 

as following 

     2
22 3 2

mgh
v

m M I r


 
   

     2

7 9.8 5 
5.37

7 2 21 3 1 2 0.6
v

 
 

  
 m/s. 

 

 

Problem 62 

 

From what height above the bottom of the loop must the cyclist in the figure 

start in order to just make it around the loop of radius R  =3 m. The mass of the 

cyclist with the bicycle is m=75 kg, the mass of each wheel is 
0m = 1.5 kg. Assume 

that the wheels are hoops with the moment of inertia 2

0I m r , and there is no 

friction.  
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Solution 

 

For the cyclist to just make him around the loop, his speed at the highest point 

of the loop must be such that force of gravity on him is sufficient to provide the 

force needed to keep him in a circular path. For this to be the case, 

2

n

mv
ma mg

R
  , 

or the velocity at point C must be given by 

v gR      

According the law of conservation of energy for this isolated system potential 

energy of the cyclist at his initial point A of motion (
pW mgh ) is equal to 

1 2 12p k k pW W W W   ,  

where 
2

1
2

k

mv
W   is the kinetic energy of the cyclist with the cycle at point B, 

The kinetic energy of rotating wheel is  

2 2 2 2

0 0
2 22 2 2

k

I m r v m v
W

r


  


,  

and the potential energy of the cyclist at point C is  

2pW mgR . 

Hence, 
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2 2

02 2
2 2

mv m v
mgh mRg    . 

Taking into account that the velocity is v gR  , let’s write the conservation 

law: 

02 2
2 2

mgR m gR
mgh mgR    . 

The cyclist has to start from the height 

0 3 1.5 3
2 2 3 7.56

2 2 75

R m
h gR R

m


        m. 

  

Problem 63 

 

The wheel is a solid disc of mass M =3 kg and radius 40 cm. The suspended 

block has mass m=0.6 kg. If suspended block starts from rest and descends to a 

position 1 m lower, what is its speed when it is at this position? 

 

Solution 

 

The work done on the system of the block and the wheel is due to the 

gravitational force mg  acting on the hanging block. From the law of conservation 

of energy, the change in potential energy of the block  

1 2p p pE E E mg h        

must be equal to the change in kinetic energy of the system 

   2 1 2 1 2 1k k k kt kr kt kt kr krE E E E E E E E E          , 

where tE  is the change in translational kinetic energy of 

the block, and rE  is the change in rotational kinetic energy 

of the wheel. 

The system begins from rest ( 1 1 0kt krE E  ), so we can 

write 
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2 2

2 2
2 2

kt kr

mv I
mg h E E


     ,  

where v  is the speed of the block in its final position. It is also the speed of the 

string at this instant as well as the speed of a point on the rim of the wheel at this 

instant. Therefore, v R  . In addition, because the wheel is a solid disc, its 

moment of inertia is 
2

2

MR
I  . Consequently, 

 22 2 2 2 2

2

2

2 2 2 2 4 4

v m Mmv MR v mv Mv
mg h

R


     

 
, 

Solving for v , we find that 

4 4 0.6 9.8 1
2.37

2 2 0.6 3

mg h
v

m M

    
  

  
 m/s. 

 

Problem 64 

 

Energy of 500 J is spent in increasing the speed of fly–wheel from 60 rev/min to 

360 rev/min. Find the moment of inertia of the wheel. 

 

Solution 

The speed of rotation was changed from 
1 30n   rev/min = 0.5 rev/s to 

2 360n   

rev/min = 6 rev/s, consequently, the kinetic energy of the wheel was changed.  

According to the Work–Energy Theorem, the work is a quantitative measure of 

changes in energy. Hence the work is equal to the increment of the kinetic energy 

of the wheel: 

2 1k k kA W W W   . 

Taking into account that 2 n   

 
2 2 2

2 22 1
2 1 2 1

4

2 2 2
k k k

I I I
A W W W n n

   
        . 

Substituting given data, we obtain 
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   22 2 2

2 1

500
4.4

2 36 0.252

A
I

n n 
  

  
kg·m

2
. 

 

Problem 65 

 

Find the linear velocities and accelerations of centers of sphere, disc and hoop 

that roll down an inclined plane without slipping. The incline of height h =1 m 

makes an angle of 30
0
 to the horizontal. The initial velocity of all objects 

0v 0. 

Compare calculated velocities and accelerations with the velocity and acceleration 

of the box, which slides from this incline without friction. 

 

Solution 

 

Apply the conservation of   
p kW W . 

Initially, the each object possesses only gravitational potential energy. When it 

reaches the bottom of the ramp, this potential energy has been converted to the 

translational and rotational kinetic energy according to the law of conservation of 

mechanical energy. Taking into account that the moments of inertia of the objects 

mentioned above are 22

5
spI mR , 21

2
discI mR , 

2

hoopI mR , and the angular speed  

of rolling objects is related to the liner speed according to 
v

R
  , we obtain 

2 2

2
k
sp

p k

mv
W

W W

 

 

2m R 2

5 2

v

 2R

2

2 2

0,7 3,74m/s,
0,7

2
k
disc

gh
mv v

mv m R
W

   

 
2

22 2

v

R 

2

2 2

0,75 3,61m/s,
0,75

2
k
hoop

gh
mv v

mv m R
W

   

 
2

22

v

R

2

2

3,13m/s,

2 4,43m/s.
2

k
box

mv v gh

mv
W v gh










   



   

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Decelerated motion of all objects is described by the following kinematic 

equations  

2

0

0

,
2

,

at
s v t

v v at


 


  

 

Then the acceleration of the 

objects is  

2 2

0

2

v v
a

s


 . 

The initial velocities
0 0v  , the 

final velocities we have found above, the travelled distance is sins h  , where h  

is the height of incline. The accelerations of the objects are 

2

2

2

2

sin 9,8 0,5
3,5m/s ,

0,7 2 1,4

sin 9,8 0,5
3,27m/s ,

0,75 2 1,5sin

sin 9,8 0,52
2,45m/s ,

2 2

2

sp

disc

hoop

box

g
a

g
a

v
a

gh
a

a









 
  



 
  


 

 
  


sin

2

g   29,8 0,5 4,9m/s .










   


 

 

 

Problem 66 

 

The wheel during the time t = 60 s of decelerated motion diminish the 

frequency of rotation from 
1n =5 rev/s to 

2n =3 rev/s. Find the amount of 

revolutions N , that were made for this time period, an angular acceleration  of 

the wheel, braking torque M and the work of braking force A . The wheel is the 

hoop of mass m= 1 kg and radius R = 0.2 m. 
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Solution 

 

Decelerated motion of the wheel is described by the following kinematic 

equations  

2

1

2 1

2 2 ,
2

2 2 .

t
N n t

n n t


 

  


 


  

 

An angular acceleration is 

   1 22 2 5 3
0.21

60

n n

t

 


 
    rad/s

2
. 

The amount of revolutions is 

2 2

1

0.21 60
5 60 240

4 4

t
N n t



 


      . 

The moment of inertia of the hoop respectively the centre of mass is  

2 21 0.2 0.04I mR     kg·m
2
. 

Using the Second Newton’s Law for rotation, the braking torque may be found 

as  

30,04 0,21 8,4 10M I      N·m. 

The work of braking force is determined by the increment of the kinetic energy 

of the rotating wheel 

 
2 2 2

2 22 1
2 1 2 1

4

2 2 2
k k

I I I
A W W n n

  
        

   2 2 2 2 2 2

2 12 2 0.04 3 5 12.63I n n          J. 

 

Problem 67 

 

An ice skater begins a spin by rotating at an angular velocity of 2.2 rad/s with 

both arms and one leg outstretched. At that time her moment of inertia is 0.52 

kg·m². She then brings her arms up over her head and her legs together, reducing 

her moment of inertia by 0.21 kg·m². At what angular velocity will she then spin? 
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Solution 

 

Because there are no acting external torques (any friction is ignored here), 

angular momentum is conserved and we can write that 

1 1 2 2I I  . 

In this case the skater’s moment of inertia has decreased and so her angular 

velocity will increase. 

We find 

1 1
2

2

0.52 2.2

0.21

I

I





  5.4 rad/s. 

 

Problem 68 

 

A 50 kg student is spinning on the merry-go-round that has a mass of 100 kg 

and a radius of 2 m. She walks from the edge of merry-go-round towards the 

center. If the angular speed of the merry-go-round is initially 2 rad/s
2
, what is its 

angular speed when the student reaches a point 0.5 m from center? 

 

Solution 

 

Because there is no external torques, the angular momentum of the system 

(merry-go-round plus student) is conserved. 

L L , 

m s m sL L L L    . 

Determine the moments of inertia. Treat the merry-go-round as a solid disc, and 

treat the student as a point mass. 

2

2
m m

MR
I I   ,   2

sI mR ,  2

sI mr  . 

1 1 2 2m s m sI I I I       . 
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2 2
2 2

1 2
2 2

MR MR
mR mr 

   
     

   
 

 Substitute the values into the equations and solve 

2 2

2 1 1 2 22 2

2 2 100 2 50
2 3.76

2 0.5
2 100 2 50

2

MR mR M m

MR mr r
M m

R

  
   

    
    

     
   

rad/s. 

 

Problem 69 

 

A merry-go-round of radius R = 6 m with nearly frictionless bearings and a 

moment of inertia I =3000 kg·m² is turning at 
1n = 3 rpm when the motor is turned 

off. If there were 10 children of m= 25 kg average mass initially out at the edge of 

the carousel and they all move into the center and huddle r = 1 m from the axis of 

rotation, find the angular velocity of the carousel. If then the brakes are applied, 

find the torque required to stop the carousel in 15 s. 

 

Solution 

 

Before the brakes are applied there are no external torques acting on the 

carousel (friction is absent in the bearings) so that we know angular momentum is 

conserved. Therefore, we can first write expressions for the initial and final angular 

momentum and then equate them to solve for the final rotational velocity. We have 

1 1 1L I  

Initial moment of inertia 
1I consists of the moment of inertia of the carrousel I  

and   the moments of inertia of the children at the edge: 

2 2

1 0 3000 10 25 6 12000I I N I I N mR            kg·m², 

treating the children as point masses at the edge of the carousel.  

The angular velocity  

1 1

2 3
2 0.314

60 10
n

 
 


    rad/s. 
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The initial angular moment is 

1 1 1 12000 0.314 3768L I      kg·m²/s. 

Final moment of inertia 
2I consists of the moment of inertia of the carrousel I  

and   the moments of inertia of the children at the distance r  from the axis of 

rotation: 

2 2

2 0 3000 10 25 1 3250I I N I I N mr            kg·m². 

Using conservation of angular momentum, we then can write  

1 2 2 2L L I   . 

So that the final angular velocity is 

1
2

2

3768
1.16

3250

L

I
     rad/s. 

From kinematics the angular velocity for decelerated motion depends on time  

0 t    , 

where 
0  and   are  the initial and final angular speeds, respectively. For this 

problem, the braking begins at the speed 
0 2  and ends when 0  . Hence 

20 t   , 

2 1.16
0.077

15t


    rad/s². 

Using Newton’s 2 Law for rotation  and substituting the values we obtain 

2 3250 0.077 250.25M I      N·m. 

 

 

Problem 70 

 

A fly-wheel begins to rotate with an angular acceleration   = 0.4 rad/s
2
 and 

after 
1t =10 s has the kinetic energy 

kW =80 J. Find the angular momentum of the 

fly–wheel after 
2t =30 s since the beginning of the rotation. 
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Solution 

 

After 
1t =10 seconds of rotation (

0 0  ) an angular velocity of the fly–wheel is  

1 0 1 1 0.4 10 4t t         rad/s. 

Since kinetic energy for rotating body is  

2

1

2
k

I
W


 , and moment of inertia of the fly–wheel is 

2

1

2 2 80
10

16

kW
I




   kg·m

2
. 

After 
2t =20 seconds of rotation an angular velocity is 

2 2 0.4 30 12t      rad/s. 

The angular momentum on this instant of time is equal to 

2 10 12 120L I    kg·m
2
·s

–1
. 

 

 

Problem 71 

 

The hoop of radius R  = 1 m is hooked and may oscillate in vertical plane. Find 

the period of hoop’s oscillations. 

 

Solution 

 

The hoop in this problem is the compound pendulum, hence its period of 

oscillations is 

2
I

T
mgx

 , 

where mis  the hoop mass, I  is the moment of inertia respectively the pivot 

point, and x  is the distance between the pivot point and the centre of mass. 
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The moment of inertia may be determined using the parallel axes theorem 

(Huygens–Steiner theorem): Moment of inertia of a rigid body about any axis  is 

sum of the body’s moment of inertia about the parallel axis passing through the 

object’s centre of mass and the product of the mass and the perpendicular distance 

between the two axes. Hence, 

2 2 2 2

0 2I I mx mR mR mR     . 

The distance x R .The period of oscillations is  

2
2

m
T 

2R

m g R

2 2 0,5
0,32

9,8

R

g


   s.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


