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I. NEWTON’S LAWS OF MOTION 

 

1. The basic quantities of dynamics 

 

The mathematical description of motion that includes the quantities that affect 

motion – mass and force – is called dynamics. Dynamics is the study of why things 

move as they do. 

Mass is the quantitative measure of inertia of a body.  Objects   change their 

motion in response to actions from external objects, and mass is the amount of 

opposition to changes in motion that an object possesses.  

Inertia of a body is its reluctance to start moving, and its reluctance to stop once 

it has begun moving. Thus an object at rest begins to move only when it is pushed 

or pulled, i.e., when force acts on it. In general, inertia is resistance to changing. In 

mechanics, inertia is the resistance to changing in velocity or, if you prefer, the 

resistance to acceleration.  

Mass is a scalar quantity associated with matter. When a system is composed of 

several objects it is the total mass that matters.  

  kilogram = kgm  . 

Force is a physical quantity that can affect the motion of an object. In 

mechanics, a force is an interaction that causes a change in velocity or an 

interaction that causes acceleration.  Force is a vector quantity associated with an 

interaction.  Since force is a vector quantity we use geometry instead of arithmetic 

when combining forces. When several forces act on a system it is the net (total) 

external force that matters. 

  2Newton = N = kg m/sF   . 

Many forces are contact forces; hey act only while two objects are physically 

touching. Other forces are action–at–a–distance forces for which no physical 

contact is necessary. Examples are gravitational, electrical, and magnetic forces. 

Linear momentum (or momentum) of material objects, i.e., piece of matter, is a 

vector quantity defined as 



p m v  . 

It is the product of the object’s mass and its velocity vector.   

  -1kg m sp    . 

and there is unfortunately no abbreviation for this clumsy combination of units. 

 

2. Inertial frames of reference. Galileo’s principle of relativity 

 

Among a lot of reference frames used to describe the motion there are such 

reference frames the motion respectively which is described most simply, i.e., it is 

uniform and rectilinear motion. They are inertial frames of reference. An example 

of an inertial frame of reference is heliocentric one in which the origin of 

coordinates is the Sun and the axes are directed towards the distant stars. 

Galileo’s principle of relativity:  absolute linear motion at a constant velocity 

cannot be detected, nor can the absolute rest. All motion is relative to a frame of 

reference. It is impossible to distinguish motion with a constant velocity from rest. 

All constant velocity frames of reference are equivalent (including frames of 

reference that appear to be at rest –after all, a prolonged state of rest is motion with 

a constant speed of zero). 

 

3. Newton’s laws of motion 

 

The First Law: An object at rest tends to remain at rest and an object in motion 

tends to continue moving with constant velocity unless compelled by a net external 

force to act otherwise. 

The Second Law:  The change of momentum per second is proportional to the 

applied force and the momentum change takes place in the direction of the force. 

dp
F

dt
 , 

( )dp d mv dv
F m ma

dt dt dt
    . 



The Third Law: Action and reaction are always equal and opposite. 

12 21F F  . 

It is necessary to note that these forces do not counterbalance each other since 

they are applied to different objects. 

All Newton’s laws of are valid only in inertial frames of reference. 

 

II.   FORCES IN DYNAMICS 

 

All the forces can be explained in terms of the following four fundamental 

interactions.  

1.   Gravity – the interaction between objects due to their masses. 

2.   Electromagnetism – the interaction between objects due to their charges.  

3.  Strong nuclear interaction – the interaction between subatomic particles 

with "color" (an abstract quantity that has nothing to do with human vision). This 

is the force that holds protons and neutrons together in the nucleus and holds 

quarks together in the protons and neutrons. It cannot be found outside of the 

nucleus.  

4.   Weak nuclear interaction – the interaction between subatomic particles with 

"flavor" (an abstract quantity that has nothing to do with human taste). This force, 

which is many times weaker than the strong nuclear interaction, is involved in 

certain forms of radioactive decay. It also cannot be found outside of the nucleus.  

 

1. Gravitational interaction. Gravity. Weight 

 

Every object in the universe attracts every other object in the universe with the 

gravitational force. The magnitude of the gravitational force between two objects is 

directly proportional to the product of their masses and inversely proportional to 

the square of the distance between their centers. 

Gravitational force of attraction between objects of mass 
1m  and 

2m  separated 

by the distance r  is given by Universal Law of Gravitation or Newton’s Law of 



Gravity 

1 2

2 r

m m
F e

r



  ,  

where  = 6,67·10
–11

 m
3
s

-2
kg

-1
 is the gravitational  constant, 

re  is a unit vector 

directed along a vector r . 

Free fall occurs whenever an object is acted upon by gravity only.  

2 R

m M
ma e mg

R



   , 

where M and R  are the mass and the radius of the Earth, respectively.  

An object in free fall experiences the acceleration due to gravity g .  

2

earth
R

earth

M
a g e

R
   . 

The acceleration due to gravity is independent on mass. 

The acceleration due to gravity varies with location. On the Earth this value 

varies with latitude and altitude. The acceleration due to gravity is greater at the 

poles than at the equator and greater at sea level than atop Mount Everest. There 

are also local variations that depend upon geology. The value of 9,8 m/s
2
 is thus 

merely a convenient average over the entire surface of the Earth.  

If a body is suspended (1) or put on a base (2) the gravity mg   is 

counterbalanced by force R (reaction force).   

1). Tension T :  this reaction force is the force of a string or rope 

on an object to which the string or rope is attached. The direction of 

the tension is always along the rope or string and away from the 

surface of the object to which the rope or string is attached. Tension 

forces can only pull the objects they act on. It is important to remember that we 

always assume a non–stretching string or rope (unless explicitly told otherwise) so 

that the magnitude of the tension is constant along the string or rope. This 

enormously simplifies the mathematics of using the tension by adding important 

constraints to the solution of the problem. One of the most important constraints is 

that the length of the string or rope is constant. 



2). Normal force N : these are the reaction forces that result 

from contact between two objects. Normal forces are always 

directed perpendicularly away from the surface which exerts the 

normal force. Their magnitude depends on some external agent which maintains 

the contact between objects. To determine their direction for any situation, note 

that a normal force can only push the object it acts on.  

The weight G of an object is defined as the force acting on it due to 

gravitational pull, or gravity. So the weight of an object can be measured by 

attaching it to a spring–balance. In a motionless state G mg . The motion breaks 

this equation. 

ma mg N  .  ( )N m a g  .  

G N , hence, ( )G m a g  . 

Then,  

1) if vectors g  and a  are oppositely directed, ( ( )) ( )G m g a m g a      

overload; 

2) if these vectors are identically directed,  ( )G m g a    apparent 

weightlessness. 

 

2.    Spring forces. Hooke's law 

 

Deformation is a change of the form and the size of an object. The force arising 

in an object under deformation (typically extension or compression) and returning 

it to its original shape when released (like a spring or elastic band), is the spring 

force. The deformation in this case is an elastic deformation.  

An elongation of the object is proportional to the magnitude of the external 

force. 

1
extx F

k
 .        

As 
extF F  , then  



1
x F

k
  , 

where F is the spring force, k  is the spring constant, x is the amount by which 

the spring is stretched  ( 0x   ) or compressed ( 0x  ).  

Hooke’s law is 

F kx  , 

i.e., extension is directly proportional to force. The 

minus sign indicates that the direction of the force is 

opposite  to the direction of pull or push on the spring. 

E  . 

The stress F S   applied to any solid is proportional to the strain 

 x x    it produces within the elastic limit for that solid. The constant of that 

proportionality  E  is the Young modulus for that substance. 

 

3.    Friction 

 

Friction is the force between two surfaces in contact that resists their sliding 

along each other. These forces always resist the motion occurring or the motion 

that would occur if friction were not present.  Friction is directed opposite to the 

direction of the relative motion or the intended direction of motion of either of the 

surfaces. 

There are two types of friction: external (contact) and internal (viscosity). 

External friction arises at the interface of two adjoining surfaces (sliding friction 

and rolling friction) – kinetic friction or during attempts to cause such transition 

(friction of rest or starting friction) – static friction. External friction depends on 

the nature of the materials in contact and the smoothness of their surfaces and is 

independent on the area of contact. Starting friction is usually greater than sliding 

friction. Friction may be dry and with greasing. 

It was Guillaume Amontons who first established a proportional relationship 

between friction force and the mutual pressure (or normal force) between the 



bodies in contact. The relationship when we divide friction force by normal force 

can identify the quotient (the coefficient of friction). 

Amontons–Coulomb’s law for friction is 

frF N , 

where   is the coefficient of sliding friction, N is the normal force pressing the 

surfaces together. 

The friction force we have discussed so far acts when two surfaces are in 

contact. The force that tends to reduce the velocity of objects moving through air is 

very similar to the friction force; this force is drag force. The drag force acting on 

an object moving through air is given by 

2

2

C S
D v

 
  , 

where S is the effective cross–sectional area of the object,   is the density of 

air, v is the speed of the object, C is a dimensionless drag coefficient that depends 

on the shape of the object; its value generally is in the range between 0,5 and 1,0. 

The direction of the drag force is opposite to the direction of the velocity. 

Internal friction arises between stratums of liquid or stratums of gas and 

depends on a velocity: for rather small velocities
frF v , and for big 

velocities
2

frF v . 

 

III. THE CONSERVATION OF LINEAR MOMENTUM 

 

1. Basic definitions 

 

Mechanical system is the material objects chosen for analyzing. The objects 

may interact with each other (internal forces) and with the objects outside the 

system (external forces). 

Closed (isolated) system is the system on which no external forces act. 

 



2. The law of conservation of linear momentum 

 

Let the system consist of N particles. 
ikF  is the internal force with which k–

particle acts on  i– particle, iF  is the net external force acting on i– particle. 

The equations of motion for all particles of the system are: 

1 12 13 14 1 1... Np F F F F F       

2 21 23 24 2 2... Np F F F F F       

…………………………………… 

1 2 3 , 1...N N N N N N Np F F F F F       

1 2( ... )Ndp d p p p

dt dt

  
  12 21 13 31 1 1

1

( ) ( ) ... ( )
N

N N i

i

F F F F F F F


       . 

All sums in the brackets are equal to zero (according to Newton’s third law). 

Hence, p (the total momentum of the system) depends on the net external force.  

The rate of change of linear momentum of a particle is equal to the net force 

acting on the object, and is pointed in the direction of the force. 

1

N

i

i

dp
F

dt 

 . 

If the net force acting on an object is zero (the closed system), its linear 

momentum is constant.  

1

0
N

i

i

F


           p const  

This is the mathematical expression for the law of conservation of linear 

momentum: in any closed system, the vector sum of all momenta remains constant. 

 

3.    Center of mass of mechanical system and the theorem of its motion 

 

Assume a system of N discrete masses each of mass is 
im , and its location is 

determined by positional vector 
ir .  The position of the center of mass is defined 



by vector 
cr : 

1 1 2 2

11 2

... 1

...

N
N N

C i i

iN

m r m r m r
r m r

m m m m 

  
 

  
 , 

where  m  is the total mass of the system. 

Differentiating this equation with respect to time shows 

1 1 1

1 1 1N N N

C i i i i i

i i i

p
r m r m v p

m m m m  

      . 

Momentum of the system is equal to the product of the system total mass and 

the velocity of its center of mass 

Cp mv . 

Once again differentiating this expression with respect to time we can obtain 

1

( ) N
C C

C i

i

dp d mv dv
m ma F

dt dt dt 

    . 

This equation shows that the motion of the center of mass is only determined by 

the external forces. The forces exerted by one part of the system on other parts of 

the system are called internal forces. According to Newton's third law, the sum of 

all internal forces cancels out (for each interaction there are two forces acting on 

two parts: they are equal in magnitude but pointing in opposite direction and cancel 

if we take the vector sum of all internal forces). 

The theorem of center of mass motion: the center of mass of a system of 

particles acts like a particle of mass m, and reacts like a particle when the system is 

exposed to external forces: 

1

N

C i

i

ma F


 . 

This equation shows that when the net external force acting on the system is 

zero:  

1

0
N

i

i

F


        0Cma  , 

i.e., the velocity of the center of mass is constant. Consequently, the center of 

mass of a closed system moves uniformly in straight line or stays at rest. 



Therefore, it is convenient to choose it as the origin of inertial frame of reference.  

 

IV. THE CONSERVATION OF ENERGY 

 

1. Work.  Power 

 

Let’s assume that the constant force F acts on the object during its motion. Both 

the force and displacement are vectors that are not necessarily pointing in the same 

direction. The work done by the force F as it undergoes a displacement ds is 

defined as  

( , ) cos sdA F ds F ds F ds     . 

where ds  is a magnitude of displacement.  

The work done by the force F is zero if the 

displacement is equal to zero or if 090  , i.e., the 

force is perpendicular to the displacement. 

According to definition, the work is a scalar. The work done by the force can be 

positive or negative depending on  . If 090  , the work is positive; if 090  , 

the work is negative. 

When a system does work on its environment, 0A  ; that is, the total energy of 

the system decreases. Work is done by the system.  

When the environment does work on a system, 0A ; that is, the total energy 

of the system increases. Work is done on the system.  

When a variable force  sF


 is acting on an object, the work is 

2 2 2

1 1 1

( , ) sA dA F ds F ds     . 

where  F F s . 

If several forces act on the object and F


 is the net force is 

1 2 1 2

1

( , ) ( , ) ( , ) ( , ) ... ( , ) ...
N

i N N

i

A F ds F ds F ds F ds F ds A A A


         . 



  2 -2Joule = J = kg m sA     

According to definition, the power is the rate at which work is done. But it is 

also the dot product of force and velocity. 

( , )
( , ) ( , )

dA F ds ds
P F F v

dt dt dt
    . 

  2 -3Watt = W = J s  = kg m sP    . 

 

2. Energy. Kinetic energy 

 

The work is closely related to energy. The work causes a change in energy and 

energy characterizes the ability to do the work, i.e., work is a quantitative measure 

of changes in energy (the Work–Energy Theorem). 

In mechanics, it is possible to define energy as an ability to do work and to 

consider it as the maximum work which any object can do under the given 

conditions. But generally it is not so. For example, thermal energy cannot be 

transformed completely into the work. 

A system possesses energy if it has the ability to do work. Energy is a scalar 

quantity which is given meaning through calculation.  

The  energy is the uniform quantitative measure of various forms of substance 

motion; it is a measure of transition of substance motion from one form into 

another. Energy can exist in different forms.  

If the force F acts on mass m changing its velocity from  
1v  to 

2v , the work 

done by this force is 

s

dv
dA F ds m ds m v dv

dt
       . 

According to work–energy theorem, the work causes a change in energy, 

therefore, 

2 2

1 1

2 2 2 2
2 2 1

2 1

11
2 2 2

v v

k k k

v v

vmv mv mv
A dA mvdv m vdv W W W

v
            . 



We obtained the expression for energy associated with motion and called the 

kinetic energy: 

2

2
k

mv
W  . 

 

3. Potential energy 

 

1. Let us find the work of gravity during the material point motion along a 

curvilinear path (acceleration due to gravity is nearly constant and height change is 

small compared with the distance between centers of the Earth and the particle). 

cosk kA mg s mg h      

According to work–energy theorem, that work causes a change in energy 

 

1 2 1 2 1 2( )k k p p p

k k

A A mg h mgh mg h h mgh mgh W W W              . 

We obtained the expression for energy associated with position and called the 

potential energy. 

The potential energy due to gravitational force is  

pW mgh . 

We see that in evaluating the work done by the force during the motion, no 

mention is made of the actual path taken by the particle.  

 

A force is conservative if the work 

done by it on a particle that moves 

between two points is the same for all 

paths connecting these points; otherwise, 

it is non–conservative. 

If a force is conservative, the work it 

does on a particle that moves through a 

round trip is zero.  



 Let’s assume that the work done for the round 

trip from M to N and back to M is zero. This means 

that  

1 2 0MN NMA A   or   1 2

MN NMA A  .    

 

The work done by the force on each segment 

reverses sign if we reverse the direction 

2 2

MN NMA A  . 

This relation than can be used to show that  

1 2

MN MNA A . 

This is exactly what definition of conservative force states (the work done by 

the force acting on the object depends only on the initial and final positions of the 

object and not on the path taken). 

   

2. The potential energy is closely connected to existence of field of forces 

(gravitational, electric). The field, in 

which a particle moves under the 

influence of a force that acts on the 

particle in such a way that it is always 

directed towards a single point (the center 

of force), is so–call central–force field. 

The magnitude of any force depends on 

the distance from this center. The force is directed either to the force center or from 

the center. An example of such a field is gravitational field of the Earth. 

Let us find the work in central–force stationary (independent on time) field. 

( ) ( ) cos ( )dA F r ds F r ds F r dr    . 

1 2

2

1 2

2

( )

( )

m m
F r

r

q q
F r k

r


 

 


 


    Put 
1 2

1 2

m m

k q q




 
 

 
, then  

2
( )F r

r


  and 

2
dA dr

r


 .  



Integrating along the path 1–2, we’ll find the work done by force 

2 2
2

1 22

1 1 21 1

p p

r
A dA dr W W

rr r r r

   
         . 

 

The potential energy of interaction (mutual potential energy) is inversely 

proportional to the distance between the objects.  

For gravitational field:  

p

m
W

r
 ; 

for electric field: 

p

q
W k

r
 . 

The potential energy is defined with the accuracy to constant of integrating as 

any integral. But the nature of potential energy is that the zero point is arbitrary; it 

can be set like the origin of a coordinate system. That is not to say that it is 

insignificant; once the zero of potential energy is set, then every value of potential 

energy is measured with respect to that zero. Another way of saying it is that it is 

the change in potential energy which has physical significance. 

When we use the gravitational potential energy
pW mgh , the assumption is 

usually made is that the zero of gravitational potential energy is on the surface of 

the earth and that the potential energy is proportional to the height above the earth's 

surface. This is an approximation which is only valid near the surface of the earth, 

but it is suitable for the common applications of gravitational potential energy. If 

you are in a room, it is logical to just call the floor the zero of gravitational 

potential energy, and measure the energy of an elevated object with respect to the 

floor.  

When you use the more general form of the gravitational potential energy, 

including the fact that it drops off with distance from the earth, 1 2

2
( )

m m
F r

r



 , 

then the logic of the choice of zero potential is different. In this case, we generally 



choose the zero of gravitational potential energy at infinity, since the gravitational 

force approaches zero at infinity. This is a logical way to define the zero since the 

potential energy with respect to a point at infinity tells us the energy with which an 

object is bound to the earth. (This more general case is similar to what is done with 

the zero of electrical potential, since it is logical to define the zero of voltage far 

away from any charges). 

 

3. Let us calculate the potential energy due to elastic forces (for example, for 

the spring). 

The force exerted by a spring on a mass m can be calculated using Hooke’s law 

F kx  . 

( || cos 1)dA F dx F dx F dx kxdx         , 

2

1

2 2 2 2
2 1 2

1 2

11
2 2 2

x

p p

x

xkx kx kx
A dA kxdx W W

x
          . 

Potential energy due to elastic forces is 

2

2
p

kx
W  . 

The potential energy of the spring in its relaxed position is defined as zero. 

 

4. The law of conservation of energy 

 

The total mechanical energy is the sum of the energy associated with motion 

and the energy associated with position, i.e., the sum of kinetic and potential 

energies: 

total k pW W W  . 

Let us consider the system consisting of particles exerting forces on each other 

and estimate the work done at the displacement from one position to another, 

accompanied by the modification of configuration of the system. 

The work of external conservative forces is 



' ' '

12 1 2p pA W W  . 

The work of internal conservative forces is  

" " "

12 1 2p pA W W  . 

The work of non–conservative forces is
12A . 

The total work of all forces is expended on an increment in kinetic energy of a 

system: 

' ' "

1 2 1 12 2 1( ) ( )p p p p k kW W W W A W W      , 

   2 2 2 1 1 1 12k p p k p pW W W W W W A         , 

2 1 12total totalW W A  . 

In the absence of nonconservative forces
12 0A  , hence, 

totalW const .   

The total mechanical energy of the system where the conservative forces acts 

remains constant. 

The law of conservation of energy is: energy may be transformed from one type 

into another type in an isolated system but it can not be created or destroyed; the 

total energy of a closed system always remains the same. 

In the presence of non–conservative forces, mechanical energy is converted into 

internal energy or thermal energy. 

  

V. CONSERVATION OF ANGULAR MOMENTUM 

 

1. Torque. Couple of forces 

 

Torque (moment of a force) is a measure of how 

much a force F  acting on an object causes that object 

to rotate. The object rotates about a point, which we will 

call the pivot point (or fulcrum), and will label O. The 

distance from the pivot point to the point where the 

force acts is called the moment arm, and is denoted by 



r . Note that this distance, r , is also a vector, and points from the axis of rotation 

to the point where the force acts. Torque is defined as 

,M r F    , 

The magnitude of torque is 

sinM r F F l     . 

The arm of force l is the length of the perpendicular dropped from a point O to 

a straight line along which the force acts. 

Vector M  is a pseudo vector since its direction gets out conditionally using the 

right hand rule: if we put our fingers in the direction of r , and turn them to the 

direction of F , the thumb points the direction of the torque.  

  2 -2N m = kg m sM     . 

The SI unit of torque is the Newton∙meter, which is also a way of expressing a 

Joule (the unit for energy). However, torque is not energy. So, to avoid confusion, 

we will use the units N∙m, and not J. The distinction arises because energy is a 

scalar quantity, whereas torque is a vector.  

The projection of torque vector to an arbitrary axis z containing the point O is 

the torque about the axis: 

,Z
Z

M r F    . 

 A force couple (coupled forces) 

is two forces of equal magnitudes 

acting in opposite directions in the 

same plane but not same point.  

These two forces always have a 

turning effect, or moment, called a 

torque.  

Perpendicular distance l  between forces is an arm of couple. 

Let's find the torque of the coupled forces about a point O. 

      1 1 2 2 1 2 1 1 2 1 1 2 1 12 1, , , , , ,M r F r F F F r F r F r r F r F                            ; 



 12 1,M r F ; 

12 sinM r F F l     . 

The torque of the coupled forces does not depend on a choice of the point O. 

Rotational equilibrium is analogous to translational equilibrium, where the sum 

of the forces is equal to zero. In rotational equilibrium, the sum of the torques is 

equal to zero. In other words, there is no net torque on the object. 

  For any system of particles the sum of the moments of all internal forces is 

equal to zero since they are force couples with “zero” arms. 

  0inernal

i i

M  .   

2. Angular momentum 

 

An angular momentum of a particle with respect to origin O is defined as 

 ,L r p , 

where r  is a position vector of the particle having linear momentum p mv . 

Its magnitude is 

sin sinL r p r m v mvl         . 

This definition implies that if the particle is moving directly away from the 

origin, or directly towards it, the angular momentum associated with this motion is 

zero. A particle will have a different angular momentum if the origin is chosen at a 

different location. 

  The projection of the vector L on any axis z 

containing the point O is the angular momentum about 

the axis  z : 

 ,
Z

L r p . 

  2 -1kg m sL    . 

The change in the angular momentum of the particle 

can be obtained by differentiating of the expression for L : 



   , , , , , ,
dL d dr dv dr

r mv mv r m mv r F v mv
dt dt dt dt dt

     
             

      0
,r F M   

dL
M

dt
 . 

The rate of change of the angular momentum depends on the total torque (net 

moment of forces applied to the object). 

 

3. The law of conservation of angular momentum 

 

Let’s consider a system, consisting of k particles, where both internal and 

external forces are applied. An angular momentum of this system with respect to 

the point O is the vector sum of the angular momenta of all particles of a system: 

 ,k k k

k k

L L r p   . 

The derivative of this expression with respect to time is 

k

k

dL dL

dt dt
 . 

For each of particles to which 
1N  internal and 

2N external forces are applied, it 

is possible to write the equation 

   
1 2

1 1

N N

k
i j

inernal external
i j

dL
M M M

dt  

    , 

where    
1 2

1 1

,
N N

i j
inrnal external

i j

M M
 

  are the total torques of internal and external 

forces applied to the particle.  

Therefore, the total angular momentum of the system is 

   
1 1

1 1

N N

k
i i external

inernal external
k k i k i

dL dL
M M M

dt dt  

       

Thus the rate of change of the angular momentum of a system depends on the 

total external torque. 

In closed system 0externalM  , so, 0
dL

dt
  and L const .  



If no external forces act on a system of particles or if the external torque is 

equal to zero, the total angular momentum of the system is conserved. The net 

angular momentum of closed system remains constant, no matter what changes 

take place within the system. It is the law of conservation of angular momentum. 

 

VI. MOMENT OF INERTIA. NEWTON’S 2ND LAW FOR ROTATION 

 

1. Newton’s 2nd law for rotation. Moment of inertia of a point mass 

 

 Let the point m move with acceleration a  along a curvilinear path under the 

action of force F . Using Newton’s 2nd law F ma  and relationship between 

linear and angular accelerations  ,a r , we can write the torque  

         , , , , , , , ,M r F r ma r m r m r r m r r r r                    2

0
mr I  

M I . 

This expression is said to be Newton’s 2nd law for rotation.  

The quantity  

2I mr  

tells us how the mass of the rotating body is located relatively the axis of 

rotation. This quantity is called the moment of inertia (or rotational inertia) of a 

point mass. It is the rotational analog of mass. 

  2kg mI   . 

 

3. Moment of inertia of a material body. The parallel axis theorem 

 

For a set of point masses the moment of inertia is the sum of their momenta of 

inertia. 

Moment of inertia of a composite object can be obtained by superposition of the 

moments of its constituents: 



2

i i

i

I m r    

Since the moment of inertia of a point mass is defined by 2I mr , the moment 

of inertia contribution of an infinitesimal mass element dm has the same form. This 

mass element is called differential element of mass and its moment of inertia is 

given by 

2dI r dm . 

Note that the differential element of the moment of inertia dI  must always be 

defined with respect to a specific rotation axis.  

The sum over all these mass elements (an integral over all 

differential elements of mass) is a moment of inertia of a 

solid  

2I r dm  . 

Usually, the mass element dm will be expressed in terms 

of the geometry of the object, so that the integration can be 

carried out over the object as a whole (for example, over a 

long uniform rod or uniform disc) 

Having called this a general form, it is probably appropriate to point out that it 

is a general form only for axes which may be called "principal axes", a term which 

includes all axes of symmetry of objects. A principal axis may be simply defined 

as one about which no net torque is needed to maintain rotation at a constant 

angular velocity. The concept of moment of inertia for general objects about 

arbitrary axes is a much more complicated subject. 

 

The calculation of moments of inertia   

 

1. Solid uniform cylinder about its axis of 

symmetry going through its center of mass 

Distribution of mass throughout the rigid body is 

characterized by density which is generally 



determined as 

0
lim
V

m dm

V dV


 


 


. 

The mass element dm can be expressed in terms of an infinitesimal radial 

thickness dr  by 2dm dV rh dr      . 

Substitution gives an integral 

4 4 2
2 2 3

0 0

2 2 2
04 2 2

R R Rr hR mR
I r dm r rh dr h r dr h


              . 

For the cylinder (disk) of mass m and radius R:         
2

2

mR
I  . 

2. Moment of inertia of uniform rod with negligible thickness about its center of 

mass.   

 The moment of inertia calculation for a uniform rod involves expressing any 

mass element in terms of a distance element dr along the rod. Since the total length 

l has mass m, then m/l is the proportion of mass to length and the mass element can 

be expressed as  

m
dm dr

l
 .   

Integrating from –l/2 to +l/2 from 

the center includes the entire rod. The 

integral is  

                                 
3 3 3 22

22

2

2

3 3 8 8 12

l

l

l
l

m m r m l l ml
I r dr

l l l


 
      

  
 . 

For the uniform rod of mass m and length l:   

2

12

ml
I  . 

3. For the thin hoop and hollow (thin-walled) cylinder of mass m 

and radius R   

2I mR . 



 

4. For the sphere of mass m and radius R:            

22

5
I mR . 

5. For the thin-walled hallow sphere of mass m and radius R:            

                                           22

3
I mR    

 

6. Rectangular plate, axis through center 

                                           
2 2( )

12

m a b
I


    

7. Rectangular plate, axis along edge 

                                              
2

3

ma
I   

 

The parallel axis theorem (Steiner’s theorem) 

states that the moment of inertia of an object about a specified axis of rotation 

equals the moment of inertia about a parallel axis through the centre of mass plus 

the mass of the object times the square of the distance between the axes, 

2

xI I mx  . 

The perpendicular axis theorem for planar objects states that the moment of 

inertia about axis perpendicular to the plane is the sum of the moments of inertia of 

two perpendicular axes trough the same point in the plane of the object.  

Z X YI I I   

The utility of this theorem goes beyond that of calculating momenta of strictly 

planar objects. It is a valuable tool in building up of the momenta of inertia of three 

dimensional objects such as cylinders by breaking them up into planar disks and 

summing the momenta of inertia of the composite disks. 

 

 



4.  Rotational kinetic energy. Work done by torque 

 

  Let’s consider the kinetic energy of a rotating object. If the 

angular velocity of a mass 
im  is   and its distance from the axis 

of rotation is r , the velocity of this mass is 
i iv r  . Therefore, 

the rotational kinetic energy of the elementary mass is 

 
2 2 2

2 2

i i i
k i

m v m r
W

    
   . 

The rotational kinetic energy of the object about point O is 

sum of kinetic energy of all elementary masses: 5 

 
2 2 2 2

2

2 2 2

i i
k k i i

i ii

m r I
W W m r

    
        .  

The rotational kinetic energy is     

2

2
k

I
W


 . 

Note that some moving objects may take part both 

in linear and rotational motions. The wheel of moving automobile turns around its 

axis, and the axis moves along parallel to the road. The kinetic energy of such an 

object is the sum of the kinetic energy due to linear motion and the kinetic energy 

due to rotational motion. 

2 2

2 2
k

mv I
W


  . 

 If the external force F  is applied to the body at the point at distance r  from 

the axis of rotation and turns this body through an angle d , the work done by the 

torque is  

S S ZdA F ds F r d M d M d       , 

dA M d  . 

 

 

 



5. Rotational–linear parallels 

 

Transitional motion Rotational motions 

Distance                                         s Angular position                   

Linear velocity                          

ds
v

dt
  

Angular velocity          
d

dt


                      

Linear acceleration                    

dv
a

dt
  

Angular acceleration     
d

dt


   

Mass                                                

m 
Moment of inertia          2I mr  

Linear momentum                      
p mv  

Angular momentum       L I  

Force                                             

F  

Torque    M  

Newton’s 2nd law   
dp

F ma
dt

      
Newton’s 2nd law for rotation 

dL
M I

dt
     

Kinetic energy     
2

2

mv
W   Kinetic energy  

2

2

I
W


            

Work                     
S vdA F ds F ds                        Work                  dA M d   

Power            P Fv  Power                 P M  

 

 

 

 

 

 

 


