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Chapter 1. OSCILLATIONS 

 

Oscillations are periodic changes of any quantity. Mechanical oscillations 

(vibrations) are the motions that repeat themselves over and over again. 

Oscillations are the periodic motions of the material point or material object. 

The types of oscillations: 

1. Free (characteristic, natural) oscillations take place in systems which begin 

to move after a kick or after upsetting a balance. There are undamped (continuous, 

persistent) oscillations and damped (convergent, decaying) oscillations which take 

place in systems without or with energy loss, correspondingly. 

2. Forced (constrained) oscillations occur in systems exposed to action of 

external periodic force. 

  

I. FREE UNDAMPED OSCILLATIONS   

 

1.  Simple harmonic motion and its characteristics 

 

The physical system making oscillations about an equilibrium position is an 

oscillator.  

The simple type of oscillations occurring under the law of cosine or sine is 

simple harmonic motion (SHM) and the system in this case is called a simple 

harmonic oscillator (SHO). 

The equation of free undamped simple harmonic motion is 

0cos( )x A t   , 

where x is the magnitude changing with time periodically (for mechanical 

oscillations it is the displacement of a point from a position of the equilibrium), A 

is the amplitude (the maximum distance from the equilibrium, or the maximum 

displacement of particle executing SHM), t is time, 0( )t  is a phase of 

oscillations, 0 is an own (natural) angular (circular) frequency,   is an initial 
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phase, or phase constant, or epoch (it 

gives information about the initial 

position). 

   

The time required for one complete 

vibration (complete to-and-fro 

movement) is called the period (T ). 

The frequency ( ) is the number of 

oscillations completed by particle 

executing SHM per second. 

During one period the phase of 

oscillation changes by 2  

   0 0 2t T t         . 

Therefore,  0 2T   and 
1 2

T


 
  . 

Differentiating the equation of SHM with respect to time t , we get  the velocity  

0 0 max 0 0 0sin( ) sin( ) cos( )
2

dx
v x A t v t A t

dt


                  . 

In addition, if 0cos( )x A t   , 0cos( )
x

t
A

    and 

 

2 2 2

0sin 1
x A x

t
A A


 

     
 

,  

then the velocity vof the particle at position x  is 

2 2

0 0 0sin( )v A t A x        . 

Differentiating the equation of SHM again with respect to time t , we get 

acceleration  

2
2

0 0 max 02

2 2

0 0 0

cos( ) cos( )

cos( ) ,

dv d x
a x A t a t

dt dt

A t x

    

    

         

    


  

2

0x a x   .  



 4 

This is a linear second order homogeneous differential equation which solution 

is the equation of free undamped oscillations. 

The force acting on the vibrating object is 

2 2

0 0 max 0 0cos( ) cos( )F ma mx mA t F t m x kx                 . 

This force is proportional to displacement (k is a coefficient of proportionality, 

in case of a spring pendulum, this is the spring constant) and is always directed to 

a position of an equilibrium. An example of such force is an elastic force. Any 

other force, inelastic by nature, but satisfying the relation F kx   is said to be 

quasi-elastic force. 

Two forms of energy are involved during vibrations. In standard example of a 

mass on a spring they are the potential energy stored in the spring and the kinetic 

energy of moving mass. 

 2 2 22
0 0cos

2 2
p

m A tkx
W

  
   

 2 2 22 2
0 0sin

2 2 2
k

m A tmv mx
W

  
  


 

The total energy of a simple harmonic oscillator  

2 2

0

2
total k p

m A
W W W


   . 

The total energy of the particle does not depend on time t  and displacement x . 

Thus total energy of a particle executing SHM remains constant. Besides, it is 

worthy of note that the energy of SHO is proportional to 2A . 

 

2. Pendulums 

 

1. A spring pendulum is a system consisting of a 

mass m on a spring which mass can be neglected in 

comparison with a mass m. The equation of motion 

of this system according to Newton’s 2nd law is mx kx  , or 2

0 0x x  , where 

angular frequency and period are:   
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2

0 k m  ,                   2
m

T
k

 , 

The solution of this differential equation is 

0cos( )x A t   . 

 

 2. A simple pendulum is a material point of mass m  attached 

to the end of long weightless inextensible string. Another end of it is 

attached to fixed point. If the mass is displaced slightly, it oscillates 

to-and -fro along the arc of a circle in a vertical plane. The equation 

of motion of this system according to the Newton’s 2nd law for 

rotation is I M  , or 2 sinml mgl    . For the case of small-

amplitude oscillations this equation is transformed into 

( ) 0g l   . A solution of it is the function 

max 0cos( )t     ,  

where max is amplitude of oscillations, i.e., the greatest angle through which the 

pendulum deviates, and angular frequency and the period of oscillations are: 

2

0 g l  ,      2
l

T
g

  . 

3. A physical (compound) pendulum is a rigid body 

oscillating around a horizontal axis passing through the point of 

suspension located above its center of mass. The equation of 

motion of this system is sinI mgx     (I is a moment of 

inertia of a pendulum about an axis passing through its center of 

suspension). For the case of small-amplitude oscillations the 

solution to the equation ( ) 0mgx I    is  

max 0cos( )t     , 

where angular frequency and period of oscillations are: 

2

0

mgx

I
  ,       2

I L
T

mgx g
  . 



 6 

I
L

mx
  is the length of an equivalent simple pendulum. 

 

3. Superposition of two SHMs of the same direction and frequency 

(unidirectional oscillations).  

 

Two vibrations of the same directions and frequency are determined as 

1 1 0 1cos( )x A t    and 2 2 0 2cos(x A t   ). 

Their analytical addition is complicated procedure; therefore, an elegant 

mathematical representation to describe harmonic 

motion may be suggested for its simplification.  

We have seen that the phase of the SHM 

increases linearly with time as the vibration is in 

progress. The displacement x at any time is 

proportional to the cosine of this phase. Therefore, this motion can be generated by 

letting a radius vector of length A  rotate anticlockwise uniformly, by projecting 

the end point onto x -axis.  The actual motion, 0cos( )x A t   , is the projection 

of the radius vector A onto this axis.  

 Let us use the vector diagram for adding two unidirectional oscillations of 

the same frequency:  

1 1 0 1cos( )x A t    
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2 2 0 2cos(x A t   ).   

As a result of their superposition, we obtain the resulting simple harmonic 

motion of the same angular frequency 0  

0cos( )x A t   , 

which amplitude A may be computed according to the cosine law 

   2 2 2 2 2

1 2 1 2 2 1 1 2 1 2 2 12 cos 2 cosA A A A A A A A A               , 

2 2

1 2 1 22 cosA A A A A     , 

and the  initial phase   is 

1 1 2 2

1 1 2 2

sin sin

cos cos

A A
tg

A A

 


 





. 

 

Special cases: 

1. 0  ,           cos 1  .          
1 2A A A   

2.     ,        cos 1   .       
1 2A A A  . 

3. 
2


   ,     cos 0  .         

2 2

1 2A A A  . 

 

 

4. Superposition of oscillations at right angle 

 

Two simple harmonic motions of same frequency 0 having displacements in 

two perpendicular directions act simultaneously on a particle   

0

0

cos

cos( ).

x A t

y B t



 




 
 

This system of equations determines the coordinates of the vibrating particle in 

the xy -plane. These expressions are the equation of ellipse in parametrical form. 

Let us exclude the parameter t and obtain the equation of the path in the classical 

canonical form. 
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From the first equation 0cos
x

t
A

  , and  
2

2

0 0 2
sin 1 cos 1

x
t t

A
       . 

Expand  0cos( )t   of the second equation and substitute  0cos t  and 

0sin t : 

2

0 0 0 2
cos( ) cos cos sin sin cos 1 sin

y x x
t t t

B A A
                . 

2

2
cos 1 sin

y x x

B A A
     . 

Square both parts of this equation and obtain 

2 2
2

2 2

2
cos sin

x y xy

A B AB
    .                                              

This expression represents the general equation 

of an ellipse.  

Thus, as a result of superposition of two simple harmonic oscillations in 

mutually perpendicular directions the trajectory of the particle motion is an ellipse 

whose axes are rotated relative to the coordinate axes.   

Special cases (in dependence on the initial phase difference ): 

1. 0; 2 ; 4 ... 2 k        ,   where 1, 2, 3,...k    cos 1  , sin 0  , and   

2 2

2 2

2
0

x y xy

A B AB
   ,   

2

0
x y

A B

 
  

 
,  or 

B
y x

A
 . 

The particle vibrates simple harmonically along 

the straight line 1 (see figure) with a frequency 0 and the amplitude equaled to 

2 2A B . 

2.  ; 3 ; 5 ... 2 1k           , where 0,1, 2, 3,...k    c o s 1   , 

sin 0  , and    
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2 2

2 2

2
0

x y xy

A B AB
   , 

2

0
x y

A B

 
  

 
, or 

B
y x

A
  . 

This equation represents a straight line with 

slope equaled to 
B

A

 
 
 

. The particle vibrates along the straight line 2 see figure) 

with frequency 0  and the 

amplitude 2 2A B .  

3.  
3 5

; ; ... 2 1
2 2 2 2

k
   

        , 

where 0,1, 2, 3,...k    c o s 0  , sin 1  , 

and   

2 2

2 2
1

x y

A B
  .   

The trajectory of the particle is an ellipse with semi major and semi minor axes 

A and B, coinciding with x- and y- axes, 

respectively, i.e., an ellipse reduced to the 

principal axes  

Semi-axes of this ellipse are equal to the 

amplitudes of oscillations A and B.  

If A B , we get the equation of the circle  

2 2 2x y B   with radius B . 

The direction of rotation (clockwise or anticlockwise) of the particle may be 

obtained from the x- and y- motions of the particle when t is increased gradually 
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II.   FREE DAMPED OSCILLATIONS 

 

The energy of vibration has been losing off a vibrating system for various 

reasons, for example, such as the conversion to heat via friction. If free oscillations 

take place in a system with friction,
frF rv  , where r is the coefficient of friction 

(resistance of medium), the equation of the motion is 

frma kx F   , 

mx kx rx    . 

Reduce this equation to the following 

form 

2

02 0x x x     ,  

where 2r m   is the damping 

coefficient, and 0 k m  is the natural 

frequency, i.e., the frequency of the system without friction. This motion equation 

may be solved in the form: t  

0 cos( )tx A e t    ,                                                               

This is the equation of free damped vibrations. The effect, called damping, will 

cause the vibrations to decay exponentially unless energy is pumped into the 

system to replace the loss. 

The amplitude of damped oscillations decreases exponentially as t advances 

according to  

  0

tA t A e  . 

An angular frequency of damped oscillations is 

2 2

0    . 

A conditional period of damped oscillations is 

2 2

0

2 2
T

 

  
 


. 

A damping decrement (or decrement of motion) is the ratio of two successive 
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amplitudes of the damped oscillation, corresponding to the instants of time 

distinguished by the period, i.e., 

0

( )

0

( )

( )

t
T

t T

A t A e
D e

A t T A e








 
  


. 

A logarithmic damping decrement (damping factor) is the logarithm of the ratio 

of two amplitudes which separated by one period 

ln D T   . 

A quality factor 

Q



 . 

A quality factor is defined as the number of cycles required for the energy to 

fall off by factor of 535. (The origin of this obscure numerical factor is 
2e 

, where 

e= 2,71828… is the base of natural logarithms). The terminology arises from the 

fact that friction is often considered a bad thing, so a mechanical device that can 

vibrate for many oscillations before it loses a significant fraction of its energy 

would be considered a high-quality device). 

The quality factor measures the rate at which the energy decays. Since decay of 

the amplitude is represented by
0

tA A e  , the decay of energy is proportional to  

2 2 2

0

tA A e  , 

and may written  

2

0

tW W e  ,  

where 0W  is the energy value at 0t  . 

If   20W
e

W

 (according the definition of the quality factor) and 

2 2 20 0

2

0

t NT N

t

W W
e e e

W W e

  


   


, 

2 2Ne e  . 

2 2N  . 

Q N



  . 
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Therefore, the quality factor is equal to the number of the cycles through which 

the damped system oscillates as its energy decays by factor
2e 

. 

A relaxation time (modulus of decay)     is the period of time taken for the 

amplitude to decay to 1 0.368e   of its original value 0A , i.e. it falls off by factor 

e . 

0 0

0

A A
e e

A A e








   ,          

1  ,   

1 2m

r



  .                                                                       

 

III. FORCED OSCILLATIONS 

 

If the damped oscillator is driven by external periodic force, the equation of 

motion is  

0 cosmx kx rx F t     . 

Put 2r m  , 0 k m   and obtain the equation 

2

0 02 ( )cosx x x F m t      ,                                                    

which solution is the equation of forced oscillations:  

0

2 22 2 2 2 2
00

2
cos( )

( ) 4

F m
x t arctg




    
 

 
, 

where  is the frequency of a driving force. 

Resonance is the tendency of a vibrating system to respond most strongly to a 

driving force whose frequency is close to its own (natural) frequency of vibration. 

Resonance is the dramatic increase in amplitude of a periodic system that occurs 

when the driving frequency equals to the natural frequency of the system. In an 

undamped system, the amplitude will be infinite. 

For calculation of a resonance frequency let us find the maximum of 

function  A  by differentiation of a function 
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  0

2 2 2 2 2

0( ) 4

F m
A 

   


 
, 

    
3

2 22 2 2 2 2 2 20
0 0

1
4 2 2 8 0

2

dA F

d m
        




                 

 

 2 2 2

04 2 0       . 

This cubic equation has three roots: 

1) 0   - the minimal amplitude; 

2) 
2 2

0 2     - physical nonsense; 

3) 
2 2

0 2    - this is resonance 

frequency. 

Substituting a resonance frequency in the 

expression for amplitude of forced vibrations 

we obtain resonance amplitude: 

0

2 2

02
res

F m
A

  



.  
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Chapter 2. WAVES 

 

I. TRAVELLING WAVES 

 

1. Classifications of wave motion  

 

Wave motion in a medium is a collective phenomenon that involves local 

interactions among the particles of the medium. Waves are characterized by:  1) 

disturbance in space and time; 2) a transfer of energy from one place to another; 3) 

a non-transfer of material of the medium. A mechanical wave is a disturbance in 

the equilibrium positions of matter, the magnitude of which is dependent on 

location and on time. 

Oscillations having arisen in one place of an elastic medium are transmitted to 

the next particles due to interaction and spread with the velocity v


. Therefore, a 

wave is a disturbance that propagates through the medium. Waves transfer energy, 

momentum and information, but not mass. So we can classify waves by medium 

where they spread: mechanical waves (matter is the medium), electromagnetic 

waves (electric and magnetic fields are the media), etc. 

The line indicating a direction of propagation of waves is a beam. 

Classification of waves by orientation:  

1. Transverse waves: displacements are perpendicular to the direction of 

propagation. All electromagnetic waves are transverse. This includes light. Crest: a 

point of maximal displacement in the positive direction (upward displacement). 

Trough: a point of maximal displacement in the negative direction. Transverse 

mechanical waves are spread only in solids.  

2. Longitudinal waves: displacements are parallel to the direction of 

propagation. Sound is a longitudinal wave. Compression is a region where the 

medium is under compression. Rarefaction is a region where the medium is under 

tension. Longitudinal waves are spread in solids, liquids and gases. 
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Distinction between transverse and longitudinal waves 

 

 

Transverse wave Longitudinal waves 

1. In a transverse wave, the motion of 

the particles of an elastic medium are 

perpendicular to the direction of the 

propagating wave. 

1. In a longitudinal wave, the motion of 

the particles of an elastic medium are 

parallel to the direction of the 

propagating wave. 

 

2. In a propagating transverse wave, 

crests and troughs are produced.  

2. In a propagating longitudinal wave, 

condensations and rarefactions are 

produced. 

3. The wavelength is equal to the 

distance between two consecutive crests 

or troughs. 

3. The wavelength is the distance 

between the centers of two consecutive 

compressions or rarefactions. 

4. Transverse waves cannot propagate 

through a gas and liquid. 

4. Longitudinal waves can propagate 

through any material medium. 

5. Transverse waves can be polarized. 5. Longitudinal waves cannot be 

polarized. 

 

If the source or origin of the wave oscillates at a frequency  , then each point 

in the medium concerned oscillates at the same frequency. The geometrical place 

of points which the wave has reached up to a certain time is a wave-front. It is 

unique for the given wave process. The geometrical place of the points that are in 

the same phase is a wave surface. There are a lot of such surfaces. 

Waves spread out in all directions from every point on the disturbance that 

created them. If the disturbance is small, we may consider it as a single point. Then 

depending on the form of medium where the waves are spread, they may be one-

dimensional (linear), two-dimensional (circular) and three-dimensional (spherical) 

waves. Classifying waves by duration we have to note episodic (or pulse) waves 
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when disturbance is momentary and sudden and periodic (or harmonic) waves 

when the disturbance repeats at regular intervals. 

Classifying waves by propagation we distinguish travelling (progressive) and 

standing waves. Travelling waves are the waves that propagate in medium. 

Standing waves don't go anywhere, but they have regions where the disturbance of 

the wave is quite small, almost zero. These locations are called nodes. There are 

also regions where the disturbance is quite intense, greater than anywhere else in 

the medium, called antinodes.  

 

 

2. Mathematical description of travelling wave 

 

Waves propagate at a finite speed v  (the 

wave speed) that depends upon the type of wave, the 

composition and the state of the medium. The wave 

profile moves along at speed of wave. If a snapshot 

is taken of a travelling wave, it is seen that it repeats 

at equal distances. The repeat distance is the 

wavelength . Wavelength is the distance between 

any point of a periodic wave and the next point 

corresponding to the same portion of the wave measured along the path of 

propagation. Wavelength is measured between adjacent points in phase. If one 

point is taken, and the profile is observed as it passes this point, then the profile is 

seen to repeat at equal interval of time. The repeat time is the period T . Otherwise, 

the period is the time between successive cycles of a repeating sequence of events. 

Frequency    is the number of cycles of a repeating sequence of events in a unit 

interval of time. Frequency and period are reciprocals (or inverses) of one another: 

1T  .  

The SI units: 
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  m  ,     sT  ,     -1Hertz = Hz = 1 s  = s  . 

Suppose that the wave moves from left to right and that a particle at the origin 0 

vibrates according to the equation 

 0, cos( )t A t    , 

where t  is the time and 2 2 T    . 

For a particle at the distance x  from 0 to the right, the phase of the vibration 

will be different from that at 0, as the time x v   is necessary for wave to get to 

the point ,x t . Hence the displacement of any particle at distance x   from the 

origin is given by 

     , cos cos cos
x

x t A t A t A t kx
v

        
 

            
 

, 

Equation of a plane-travelling (or plane-progressive) wave is  

 
2 2

, cosx t A t x
T

 
 



 
   

 
, 

where 
2 2

k
v vT

  


    is the wave number. 

Amplitude (A) is the maximum magnitude of a periodically varying quantity. 

Amplitude has the unit of the quantity that is changing (in this case – the 

displacement).  

Phase 
2 2

t x
T

 




 
  

 
 is the stage of development of a periodic process. 

Two points on a wave with the same phase have the same quantity of disturbance 

(displacement, etc.) and rate of change of disturbance (velocity, etc.). Phase is an 

angular quantity. Adjacent points in phase are separated by one complete cycle. 

Adjacent points out of phase are separated by half a cycle.  

The SI unit of phase is the radian. 

Generally for a wave propagating in three dimensions, the displacement at point 

given by position vector r


 at time t  is 

   , cosr t A t kr    
 

, 
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where k


is the wave vector. Its magnitude is equal to the wave number. 

The speed and acceleration of the vibrating particle we can obtain as the first 

and the second derivatives of  ,x t  with respect to time: 

 sinA t kx
t


   


     


 , 

 
2

2

2
cosA t kx

t


   


     


 . 

For two points on the beam of plane-travelling wave separated from each other 

by the distance x (path-length difference or path-length shift) the difference in 

phase (phase shift) is 

2
x





   . 

 

3. Wave equation 

 

The wave equation is the linear uniform partial differential equation of the 

second order describing the propagation of the wave in a medium. 

Let's receive this equation using the equation of a wave 

   , cosr t A t kr  
 

. 

Having twice differentiated this equation with respect to time we obtain 

 sinA t kr
t


 


   


, 

 
2

2 2

2
cosA t kr

t


   


      


. 

Therefore, 

2

2

2

1

t







 . 

Write the equation of a wave as 

   , , , cos x y zx y z t A t k x k y k z     , 

and find the second partial derivates of it with respect to x : 
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 sinx x y zAk t k x k y k z
x





   


, 

 
2

2 2

2
cosx x y z xAk t k x k y k z k

x


 


       


. 

We can obtain the second derivatives of the equation of a wave with respect to 

y and z in a similar way: 

 
2

2 2

2
cosy x y z yAk t k x k y k z k

y


 


       


, 

 
2

2 2

2
cosz x y z zAk t k x k y k z k

z


 


       


, 

 
2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 2 2

1 1
x y zk k k k k

x y z t v t

    
  



    
               

    
. 

We, therefore, obtain the wave equation (  is Laplacian) 

2

2 2

1

v t





  


. 

For a wave propagating in one-dimensional case, we have 

2 2

2 2 2

1

x v t

  
 

 
. 

 

 

4. Energy transferred by a wave. Umov’s vector 

 

Waves, propagating in a medium, transfer energy from one place to another. 

This energy consists of the kinetic energy of vibrating particles and the potential 

energy of the deformed areas of the medium. The energy that is transferred by a 

wave through some area per unit of time is called an energy flux through this 

surface  

dW
Ф

dt
 . 

  -1J s = WФ   . 
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Energy flux density or intensity  I  of a wave at a place is the energy per 

second flowing through one square meter held normally at that place in the 

direction along which the wave travels, i.e., the intensity of any wave is the time 

averaged rate at which it transmits energy per unit 

area through some region of space.  

dW
I

S dt



.    

  -2 -1 -2J m s  = W mI     . 

Suppose the displacement of wave-front area 

moving at a speed v for the time t  is l . If w is 

energy density (i.e. average energy of the particles in unit volume), then the energy 

transferred through some area per time t  is W w S v t     , and the intensity of 

a wave is 

w S v t
I w v

S t

   
  


.   

In the vector form  I w v 
 

. 

I


is Umov’s vector. It is perpendicular to a wave-front, and indicates the 

direction of wave propagation. Its magnitude is equal to intensity (energy flux 

density). 

If the energy of each particle is
2 2

2

m A
 and the number of particles in unit 

volume is n, then   
2 2 2 2

2 2

m A A
w n

 
   , and 

2 2

2

A
I v


  , 

where   is the density of the medium. 
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II. STANDING WAVES 

 

1. Superposition of waves. Interference 

 

The superposition principle: when two or more waves travel simultaneously 

through the same medium,   each wave proceeds independently as though no other 

waves were present, and   the resultant displacement of any particle is the vector 

sum of the displacements that the individual waves acting alone would give. 

If the oscillations stipulated by separate waves at each point of the medium 

have a constant phase difference, the waves are the coherent waves, i.e., waves 

whose parts are in phase with each other. When two or more coherent waves of the 

same frequency overlap, the phenomenon of interference occurs. 

Consider two waves travelling from two closely situated sources that excite 

oscillations at the point considerably distant from them. These oscillations are the 

composition of two unidirectional oscillations. Thus, the amplitude is 

2 2 2

1 2 1 22 cosA A A A A     . 

Intensity I of waves is proportional to 2A , therefore, 

1 2 1 22 cosI I I I I     . 

If 1 2A A , then 1 2I I , consequently, 

0 02 2 cosI I I    . 

Let's calculate the intensity at the points where the waves come with such path-

length differences for which the cosines of a phase difference are: 

1.   
0

cos 1; 2

42
2 ; 2

2

k

I I
k k k

  

 
  



     



          

  

Constructive    interference (I = Imax)                                         

2.  

 

   

cos 1; 2 1

02
2 1 ; 2 1

2

k

I
k k

  

 
 



       



          



;  

Destructive interference (I = Imin)                                   
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Interference is the phenomenon of redistribution of intensity at the 

superposition of coherent waves. 

 

2. Standing waves 

 

Sometimes when you vibrate a string, or cord, or chain, or cable it's possible to 

get it to vibrate in such a manner that you're generating a wave, but the wave 

doesn't propagate. It just sits there vibrating up and down in place. Such a wave is 

called a standing wave.  

Standing waves can be formed under a variety of 

conditions, but they are easily demonstrated in a 

medium which is finite or bounded. A phone cord 

begins at the base and ends at the handset. Other 

simple examples of finite media are a guitar string (it 

runs from fret to bridge), a drum head (it's bounded by 

the rim), the air in a room (it's bounded by the walls), the water in lake (it's 

bounded by the shores), or the surface of the Earth (although not bounded, the 

surface of the Earth is finite). In general, standing waves can be produced by any 

two identical waves travelling in opposite directions that have the equal 

wavelength. In a bounded medium, standing waves occur when a wave meets its 

reflection. The interference of these two waves produces a resultant wave that does 

not appear to move.   

The equations of two plane-travelling waves propagating along an axis x in 

opposite directions are: 

 1 1cosA t kx      и  2 2cosA t kx     . 

Their superposition is 

2 1 2 1
1 2 2 cos cos

2 2
A kx t

   
   

    
        

   
. 

Let's choose a reference point on axis x so that 2 1 0    and on an axis t so 

that 2 1 0   . 
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Then the equation of a standing wave is 

2 cos cosA kx t   . 

At each point of the standing wave the simple harmonic vibrations take place at 

the same frequency as the frequency of adding waves. The amplitude of the 

standing wave 2 cosA kx  depends on coordinate: 

1) At the positions which coordinates satisfy the condition 
2

kx x m





    the 

amplitude is  2 cos 2A kx A . Antinodes or loops are the positions 
2

antinodesx m


   

where amplitude reaches the maximum magnitude; 

2) At positions which coordinates satisfy the condition  
2

2 1
2

kx x m
 


     

the amplitude is   2 cos 0A kx  (this is minimum magnitude). These positions 

1

2 2
nodesx m

 
   

 
on a standing wave are nodes. 

There is no transfer of energy in the standing wave: the total energy of 

oscillations of each element of volume of the medium limited by the adjacent node 

and antinode does not depend on time. It only periodically transform from a kinetic 

energy concentrated basically close to antinode into a potential energy of 

elastically deformed medium (near the node). Lack of energy transfer is the result 

of the fact that two identical waves travelling in opposite directions transfer an 

equal energy.  

 

 

 

 

 

 

 

 



 24 

PROBLEMS 

 

Problem 1 

 

If a particle undergoes SHM 0.2sin2x t (m) , what is the total distance it 

travels in one period? Find the angular frequency and period of oscillation. 

 

Solution 

 

The particle would travel four times the amplitude: from 0x   to x A ; then to 

0x  , then to x A  , and to 0x  . So the total distance is equal to 

4 4 0.2 0.8A    m. 

The angular velocity is 0 2  , and  the period of oscillations is 

 
0

2 2
1

2
T

 

 
   s. 

 

 

Problem 2 

 

A body oscillates with the simple harmonic motion according to the equation 

6cos 3
3

x t



 

  
 

  (m). Calculate   the displacement,   the velocity,   the 

acceleration, and the phase at the time  t  = 2 s. Find also the angular velocity, 

frequency, and the period of motion. 

 

Solution 

 

The phase is  

19
3 3 2 19.9

23 3 3
t

t s

  
      


 rad. 
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The displacement is  

19
6cos 3 6cos 3 2 6cos 3

23 3 3
x t

t s

  
 

     
           

     
m. 

The velocity is 

19
6 3 sin 3 18 sin 49

23 3

dx
v t

t sdt

 
  

   
            

   
m/s. 

The acceleration is 

 
2 2 19

6 3 cos 3 54 cos 266.5
23 3

dv
a t

t sdt

 
  

   
            

   
 m/s² 

The angular velocity is 0 3  (rad/s). 

Since 0 02  , the frequency is 0
0

3
1.5

2 2

 


 
   Hz. 

The period 
0 0

2 1 2

3
T



 
   s. 

 

 

Problem 3 

 

For what part of the period the oscillating point displaces by the half of 

amplitude, if it started from the equilibrium position? 

 

Solution 

 

Let us choose the trigonometric function for the oscillations description taking 

into account the given data. The point starts from the equilibrium position, then its 

displacement on the time instant t = 0 is equal to x  = 0, therefore, the equation of 

oscillating motions is  

2
sinx A t

T


 . 
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If the displacement of a point from a position of the equilibrium is
2

A
x  , than 

substituting it in the equation of oscillations, we obtain 

2
sin

2

A
A t

T


 , 

2 1
sin

2
t

T


 . 

2 1
arcsin

2 6
t

T

 
  . 

Hence, the required time is  
12

T
t  . 

 

 

Problem 4 

 

A point oscillates according to the dependence 05cosx t (m), where      

0  2 s
-1

.  Find the acceleration of the point when its velocity is equal to 8 m/s. 

 

Solution 

 

The velocity and the accelerations of the vibrating point depends on time as 

 0 0sinv x A t    , 

2

0 0cosa x A t    . 

From the first equation 

0
0

sin
v

t
A




  .  

Since we are not to find an instant of time when the velocity is 8 m/s (we have 

to find nothing but the magnitude of acceleration at this time), we’ll calculate only 

the magnitude of 0cos t , because the equation for acceleration determination 
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comprises just this trigonometric function. According to the trigonometric 

identity
2 2sin cos 1t t   ,  

 
22

0 0 0cos 1 sin 1t t v A      . 

Consequently, 

 
22 2

0 0 0 0cos 1a A t A v A        , and 

 
225 2 1 8 5 2 12a        m/s

2
. 

 

 

Problem 5 

 

The maximum speed and acceleration of a particle executing simple harmonic 

motion are 10 cm/s and 50 cm/s. Find the positions of the particle when the speed 

is 8 cm/s, if  (  0 0x  . 

 

Solution 

 

The maximum speed and accelerations are equal to 

max 0

2

max 0

,

.

v A

a A









 

Divide the second equation by the first and obtain 

2

0max
0

max 0

50
5

10

Aa

v A





    rad/s. 

From the first equation the amplitude of the oscillations is 

max

0

0.1
0.02

5

v
A


   m. 

If  0 0x  , the equation of particle motion is  0sinx A t , and its speed 

depends on time as   

0 0cosv A t  . 
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Therefore,   

0

0

0.08
cos 0.8

0.02 5

v
t

A



  


, 

and 

2 2

0 0sin 1 cos 1 0.8 0.6t t         . 

Then the desired position is 

0sin 0.02 0.6 0.012x A t      m. 

 

 

Problem 6 

 

The maximum velocity of oscillating point is 10 cm/s, and its maximum 

acceleration is 100 m/s
2
. Find the angular frequency and the amplitude of 

oscillations. 

 

Solution 

 

The equations that describe the simple harmonic motion are 

0cos( )x A t   , 

0 max 0sin( ) sin( )v A t v t          , 

2

0 0 max 0cos( ) cos( )a A t a t         . 

 Then the maximum magnitudes of displacement, velocity and acceleration are 

max

max

2

max

,

,

.

x A

v A

a A









 

 

Dividing the third equation of system by the second equation we obtain 

2

max 0
0

max 0

a A

v A





  ,     and     0 10  s

-1
. 

The period and the amplitude of oscillations are, respectively, 
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0

2
0,2 0,628T





   s,                     max

0

0,1
0,01

10

v
A


   m. 

 

 

Problem 7 

 

The equation of motion of a particle started at 0t   is given by 

5sin 20
3

x t
 

  
 

(cm). When does the particle (a) first come to rest; (b) first have 

zero acceleration; and (c) first have maximum speed? 

 

Solution 

 

(a) If the speed of the particle is described by equation 

 5 20 cos 20
3

dx
v t

dt

 
     

 
, 

the at 0v   

cos 20 0
3

t
 

  
 

. 

It gives  

20
3 2

t
 

  . 

20
6

t


 . 

0.026
120

t


  . 

(b) The acceleration of the particle is  

25 20 sin 20
3

dv
a t

dt

 
      

 
. 

 sin 20 0
3

t
 

  
 

, 
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Firstly after the beginning of the oscillation process acceleration becomes zero 

when phase is equal to  : 

20
3

t


  , 

0.105
30

t


  s. 

(c)  5 20 cos 20
3

v t
 

    
 

 

Speed is maximum when cos 20 1
3

t
 

  
 

, i.e., 

20
3

t


  . 

0.105
30

t


  s. 

Note, that we obtained the same result as in (b). It means that when the particle 

passes the equilibrium position it moves at its maximum speed and has zero 

acceleration. 

   

 

Problem 8 

 

At t = 0, the displacement of the point x(0) in a linear oscillator is -8.6 cm, its 

velocity v(0)= -0.93 m/s and its acceleration a(0)= +48 m/s
2
. What are the angular 

frequency   and the frequency? What is the phase constant? What is the 

amplitude of the motion? 

 

Solution 

 

The displacement of the particle is given by 

  0cos( )x t A t   . 

Hence, 
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 0 cos 8.6x A     cm = - 0.086 m, 

  00 sin 0.93v A    m/s, 

  2

00 cos 48a A    m/s
2
. 

Thus, 

 
 

0 48
23.62

0 0.086

a

x
     rad/s, 

23.62
3.76

2 2




 
   Hz. 

 
 

0
0

0 sin
tan

0 cos

v A

x A

 
 




    , 

or, 

 
 

0 0.93
tan 0.458

0 23.62 0.086

v

x



     


. 

Hence  155.4    and 335.4º in the range 0 2   . We shall see below how 

to choose between the two values. 

 0 0.086

cos cos

x
A

 


  . 

The amplitude of the motion is a positive constant. So,   = 335.4
 
º cannot be 

correct phase, as cos334.5 0.909  . We must therefore have 155.4   , for 

whichcos155.4 0.909   :  

0.086
0.0946

0.909
A


 


m. 

 

 

Problem 9 

 

A point moves with simple harmonic motion whose period is 4 s. If it starts from 

rest at a distance 4.0 cm from the centre of its path, find the time that elapses 
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before it has described 2 cm and the velocity it has then acquired. How long will 

the point take to reach the centre of its path? 

 

Solution 

 

Amplitude of the oscillations is 4A cm and time period is 4T  s. An angular 

velocity is 2 2 4 2T      rad/s. The distance from the centre of the path  

is 4 2 2x    cm. Since cosx A t , we havecos 2 4 0.5t x A    , 3t  . 

The time is 
2 2

3 3 3
t

 

 


  


s.  

Velocity is  
2 2 2 24 2 3

2
v A x


       cm/s. 

At the centre of the path 0x   and 0 cosA t  , cos 0t  , 2t  , 

2
1

2 2
t

 

 


  

 
 s. 

 

 

Problem 10 

 

A particle executing SHM on a straight line has a velocity of 4 cm/s when at a 

distance of 3 m from the mean position, and 3 m/s, when at a distance of 4 m from 

it. Find the time it takes to travel 2 m from the positive extremity of its oscillation.  

 

Solution 

 

The velocity of the particle executing SHM is derivative of displacement x with 

respect to time t , consequently, if displacement is  0sinx A t a  , then 

     2 2 2 2

0 0 0 0 0 0cos 1 sin sin
dx

v A t A t A A t
dt

                 , 

2 2

0v A x  . 
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Substituting the given data in this expression gives 

 

 

2 2 2 2

0

2 2 2 2

0

4 3

3 4

A

A





  


 

 

On solving them, we get: 

5A m,  0 1  rad/s. 

For movement from positive extremity through a distance 2 m, the 

displacement (from the mean point) is 

5 2 3x     m. 

We use the equation 

0cosx A t ,  

because the oscillation process begins from the extremity point, i.e., at 0t  , 

x A . 

Using this expression, we obtain 

 0

3
cos 0.6

5

x
t

A
    , 

0

0 arccos0.6 53.1 0.3t     rad, 

0

0.3 0.3 3.14
0.94

1
t






   s. 

 

 

Problem 11 

 

A particle is simultaneously subjected to two simple harmonic motions in the 

same direction, each of frequency 5 Hz. If the amplitudes are 0.05 m and 0.02 m 

respectively, and phase difference between them is 45
0
, find the amplitude of the 

resultant displacement and its phase relative to the first component. Write down 

the expression for the resultant displacement as a function of time. 
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Solution 

 

Let the phase constant (an initial phase) 1 of the first component be zero, then 

the phase constant 2  of the second phase is 
4


; the amplitude of the first motion 

1 0.05A  m, the amplitude of the second motion 2 0.02A   m.  

The amplitude of the resultant motion is given by equation 

2 2

1 2 1 2 2 12 cos( )A A A A A       

Thus 

2 2 20.05 0.02 2 0.05 0.02cos( 4) 6.57 10A         m. 

The phase constant   of the resultant motion is given by equation 

1 1 2 2

1 1 2 2

sin sin
tan

cos cos

A A

A A

 


 





, 

 
 

0

0

0.05sin0 0.02sin 4
tan 0.22

0.05cos0 0.02cos 4







 


, 

12.4 0.07     rad. 

The frequency of each motion is 5  Hz, therefore, an angular frequency 

2 10     rad/s. 

With these values A ,   and  , the expression for the resultant displacement 

becomes 

 26.57 10 cos 10 0.07x t    m.   

 

The resultant amplitude A  and the initial phase   may be obtained by the 

method of vector addition of amplitudes.  The vector diagram is shown below.  
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The phase constant of the first component is zero, and of the second component 

is 
4


. Vector A  is the resultant of vectors 1 0.02A   m and 2 0.05A  m, 

respectively. The angle   is equal to the phase constant of the resultant motion. 

 

 

Problem 12 

 

The point is executing three SHM of the same direction simultaneously: 

 1 3cos 5x t , 2 3sin 5
6

x t



 

  
 

,     3 3sin 5
6

x t



 

  
 

, where displacements 

are in centimetres.  Find the equation of its resultant motion.  

 

Solution 

 

This problem may be solved by graphical and analytical methods. But any way 

the first thing to do is to obtain all equations in identical trigonometric form, for 

example, using cosine function, therefore,    1 3cos 5 3sin 5 2x t t     cm. 

The first method  
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Let us construct the diagram using the rule and the graduating arc with 

scrupulous attention to the scale. 

The length of resultant vector A, measured by the rule, is 6 cm. The initial 

phase, i.e., the angle   measured by the graduating arc is 30
0
 or 6  rad. 

Therefore, the equation of the resultant oscillations is  

6sin 5
6

x t



 

  
 

cm. 

The second method 

Lets find the sum of oscillations 1 3sin 5
2

x t



 

  
 

 and 2 3sin 5
6

x t



 

  
 

. 

The amplitude of the resultant oscillations is 

2 2
1 1 2 1 2 2 12 cos( ) 9 9 2 9 cos 3 3

3
resA A A A A


            cm, 

and the initial phase is  

1 1 2 2
1

1 1 2 2

3sin 3sin
sin sin 3 1 3 0.52 6tan 1.73
cos cos 3 0 3 0.866

3cos 3cos
2 6

res

A A

A A

 
 


  


   

   
   



, 

 1 arctan 1.73
3

res


   . 

Let us add the obtained result to 3 3sin 5
6

x t



 

  
 

. 

2 2
2 1 3 1 3 1 32 cos( )

27 9 2 3 3 cos 6 cm.
3 6

res res res resA A A A A A  

 

     

  
         

  

 

1 1 3 3
2

1 1 3 3

sin sin
tan

cos cos

3 3sin 3sin
3 3 0.866 3 0.53 6

0.577,
3 3 0.5 3 0.866

3 3 cos 3cos
3 6

res res
res

res res

A A

A A

 


 

 

 


 



 
        

    
  

 
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 arctan 0.577
6


   . 

The equation of the resultant oscillation is 6sin 5
6

x t



 

  
 

(cm). 

 

 

Problem  13 

 

A point mass is subjected to two simultaneous sinusoidal displacement in x -

direction 1 sinx A t  and 2

2
sin

3
x A t



 

  
 

. Adding a third sinusoidal 

displacement  3 sinx B t    brings the mass to a complete rest. Find the 

values of  B  and . 

 

Solution 

 

The resultant motion of the particle subjected by two simultaneous simple 

harmonic motions (SHM) is  

 1 2 0

2
sin sin sin

3
x x x A t A t A t


   

 
       

 
. 

2 2 2

0

2
2 cos 0

3
A A A A A

 
     

 
. 

 
 

sin 0 sin 2 3
tan 1.732

cos0 cos 2 3

A A

A A






 
 

 
 

arctan1.732
3


   . 

The amplitude of the resultant simple harmonic motion is A  and the initial 

phase is 3  . 

As the particle remains at rest on adding the third simple harmonic motion, 

 3 sinx B t    the amplitude ( B ) of the third SHM must be A  itself, but it 
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must be 0180 (or,  radian) out of phase. In other words, the initial phase   of the 

third SHM must be 
4

3 3

 
  . 

 

 

Problem 14 

 

Two vibrations, at right angle to each other, are described by the equations    

2cos
3

x t


 (cm) and sin
3

y t


  (cm). Construct the curve for the combined 

motion and determine the direction of motion. 

 

Solution   

 

Firstly we have to obtain both equations in identical trigonometric form. For 

this purpose we transform the second 

equation from sine function to cosine: 

2cos ,
3

1cos .
3 2

x t

y t



 





    

  

  

The phase difference between two 

oscillations is equal to 
2


,  therefore,  the equation of trajectory is 

2 2

2 2
1

x y

A B
  .  

Thus, the trajectory of the particle is an ellipse with semi major and semi minor 

axes A and B, coinciding with x- and y- axes, respectively, i.e., it is an ellipse 

reduced to the principal axes (see Figure). 

The direction of rotation (clockwise or anticlockwise) of the particle may be 

obtained from the x- and y- motions of the particle when t is increased gradually. 
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Let’s find the coordinates of the particle for two close instants of time 1t  and 2t . 

To estimate their closeness it is necessary to compare 1 2t t t    with the period of 

oscillations T  

0

2 2
6

3
T

 

 
   s. 

Than we may take 1t  s, and for  

1 0t  :     

1

1

2cos0 2

1cos 0
2

x

y


 

  

   
 

                    point 1    2;0 , 

2 1t  s:    

2

2

2cos 1
3

1cos 0,86
3 2

x

y



 


 


     

  

          point 2    1;0.86 . 

Hence, the particle moves anticlockwise. 

 

 

Problem 15 

 

Two oscillations, at right angle to each other, are described by the equations    

0.02sinx t  (m) and 0.01cos
2

y t



 

  
 

 (m). Construct the trajectory for the 

combined motion. 

 

Solution 

 

First it is necessary to transform the second equation  

0.01cos 0.01sin
2

y t t


 
 

    
 

. 

The combined motion of the object is described by 



 40 

0.02sin ,

0.01sin .

x t

y t








 
 

Dividing the second equation by the first 

equation we obtain 

1

2

y

x
  .    

The equation of the trajectory is 
1

2
y x  . The displacement x  is changing 

from   0.02 m to 0.02  m. 

 

 

Problem 16 

 

The motion of a 10 g-particle is given by 5sin
5 4

x t
  

  
 

 (cm).  Find the 

maximum force that acts on the particle, and its total energy. 

 

Solution 

 

Comparison of the general SHM equation  0sinx A t    with the equation 

of particle motion 0.05sin
5 4

x t
  

  
 

 (m) gives the amplitude А = 510
-2

 m, the 

angular frequency 0 5  , and the phase constant (the initial phase of 

oscillations) 4  . 

The acceleration of the particle is 

2

0 0sin( )a x A t      . 

Therefore, according to the Second Newton’s Law, the force that acts on the 

particle is 

2

0 0sin( )F ma m A t      . 

The maximum force    
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AmF 2

0max  . 

The total energy of the particle is sum of kinetic and potential energies 

k pW W W  , 

where 

2 2
20

0cos ( )
2

k

mA
W t


   , 

2 2
20

0sin ( )
2

p

mA
W t


   . 

The total energy is 

2 2 2 2
2 20 0

0 0cos ( ) sin ( )
2 2

mA mA
W t t

 
          . 

Substituting the values, we obtain 

 
22 2 2 4

max 0 10 /5 5 10 2 10F m A         N. 

 
2

2 2 22 2
60

10 5 10
4,9 10

2 2 25

mA
W


 


 

   


J. 

 

 

Problem 17 

 

A 4.5-kg object oscillates on a horizontal spring with amplitude of 3.8 cm. Its 

maximum acceleration is 26 m/s². Find the force constant  k , the frequency, and 

the period of the oscillations. 

 

Solution 

 

The spring constant is 
2k m  . On other side, the maximum acceleration is 

2

maxa A . Combining these two equations we obtain 

max 4.5 26
3079

0.038

ma
k

A


   N/m. 
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max1 1 26
4.16

2 2 2 0.038

a

A




  
    Hz. 

The period of oscillations is  

1 1
0.24

4.16
T


   s 

 

 

Problem 18 

 

Determine the ratio of the kinetic energy kW  of material point participating in 

SHM, to its potential energy 
pW  if the phase of oscillations is known. 

 

Solution 

 

The displacement of a point is 

0cos( )x A t   , 

and its  velocity is 

0 0sin( )
dx

v A t
dt

      . 

The kinetic and potential energies of the point are 

2 2 2
20

0sin ( )
2 2

k

mv mA
W t


    , 

2 2 2 2
2 20
0 0

0 0

cos ( )
2 2

x x

p

mA x mA
W Fdx m xdx t


          . 

The ratio is 

2
20

02

0

sin ( )
tan ( )

cos ( )

k

p

W t
t

W t

 
 

 


  


. 
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Problem 19 

 

A particle executes simple harmonic motion with amplitude of 10 cm.  At what 

distance from the mean position are the kinetic and potential energies equal? 

 

Solution 

 

Let  0sinx A t   be the distance from the mean position where kinetic and 

potential energies are equal.  The kinetic energy at this instant of time is 

 
2 2 2

20
0cos

2 2
k

mv mA
W t


    , 

2 2 2
20

0sin ( )
2 2

p

kx mA
W t


    . 

Given that  
k pW W , then 

 
2 2 2 2

2 20 0
0 0cos sin ( )

2 2

mA mA
t t

 
      , 

 2 2

0 0cos sin ( )t t      , 

 2

0tan 1t   , 

0
4

t


    , 

 0

0.1
sin 0.1 sin 0.071

4 2
x A t


        m. 

 

 

Problem 20 

 

A simple pendulum has time period T  = 4 s. How the length should be changed 

so the pendulum may complete 15 oscillations in 30 seconds? 
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Solution 

 

The initial period of the pendulum is  

2
l

T
g

 . 

Its length is 

2

2 2

16 9.8
4

4 4

T g
l

 


   m. 

New period according to the given data is to be 
1

30
2

15

t
T

N
   s, and new 

length is 

2

1
1 2 2

4 9.8
1

4 4

T g
l

 


   m. 

The length change is 1 4 1 3l l l       m. 

 

 

Problem 21 

 

A simple pendulum of length l is suspended through the ceiling of an elevator. 

Find the time period of oscillations if the elevator (a) is going up with acceleration 

0a ; (b) is going down with acceleration 0a ; and (c) is moving with uniform 

velocity. 

 

Solution 

 

The equation of the bob motion according to Newton’s 2 Law is 

0ma mg F 
 

,  

where mg


 is gravity, and F


 is tension.  

 0F m a g 
  

. 
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(a) For the upward motion the tension and period of oscillations are 

    0 0F m a g m a g ma      , 

0

2
l

T
g a




, 

(b) For downward motion 

 0F m a g ma   , 

0

2
l

T
g a




. 

(c) When elevator is moving at uniform velocity its 

acceleration is zero and 

2
l

T
g

 . 

 

 

Problem 22 

 

A simple pendulum fixed in a car has a time period of 4 seconds when the car is 

moving with a uniform velocity on a horizontal road. When the accelerator is pressed, 

the time period changes to 3.99 seconds. Find the acceleration of the car. 

 

Solution 

 

When car is moving with uniform velocity the period of oscillations of the 

pendulum is  

2
l

T
g

 . 

When car accelerates by 0a  the period is 

2 2

0

2 2
l g

T
ag a

   

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T a

T g



, 

2 2
4

9.8 9.85
3.99

T
a g

T

   
      

   
m/s², 

2 2 2

0a g a  , 

2 2 2 2

0 9.85 9.8 0.983a a g      m/s² 

 

 

 Problem 23 

 

A mass 8 g is attached to a horizontal spring that requires a force of 0.01 N to 

extend it to a length 5 cm greater than its natural length. What are the period, the 

frequency and the angular frequency of the simple harmonic motion of such a 

system? 

 

Solution 

 

The length that the spring stretches is directly proportional to applied force. The 

magnitude of this force is 

F kx , 

where k  is the force constant. The force constant is 

0.01
0.2

0.05

F
k

x
   N/m. 

Therefore, the period, the frequency, and the angular frequency are respectively 

0.008
2 2 1.26

0.2

m
T

k
    s, 

1 1
0.8

1.26T
    Hz, 

2 2 0.8 1.6 5.03        rad/s. 
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Problem 24 

 

A block suspended from a vertical spring is in equilibrium. Show that the 

extension of the spring equals the length of an equivalent simple pendulum, i.e., a 

pendulum having frequency same as that of the block. 

 

Solution 

 

If the mass of the block is m ,  extension of the spring is x , and the length of 

the pendulum is l , the angular velocity of the pendulum is 

k l

m g
   . 

At equilibrium position 

0ma mg  , 

mg ma F kx      , 

kx mg , 

mg
x l

k
  . 

 

 

Problem 25 

 

Find the periods of vertical oscillations of the block suspended with the help of 

two equal springs if the block is connected to springs 1) in series, or 2) in parallel. 

 

Solution 

 

In the equilibrium point, the force acted on the load is F kx , and according 

to the First Newton’s Law mg kx ,  the spring extension is 
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mg
x

k
 . 

1. When two springs are attached one at the end of the other, their extensions 

are equal, and the total extension is  
1

2
2

mg
x x

k
  . On the other side,  1

1

mg
x

k
 . 

Equating these two expressions, we obtain 

1

2mg mg

k k
 . 

1
2

k
k  . 

2. If the block is connected to the springs in 

parallel  kk 22  . 

The periods of oscillations for these two cases are 

1

1

2
m

T
k

         and               
2

2

2
m

T
k

 , 

and their ratio is 

1 2

2 1

4 2
T k

T k
   . 

 

 

Problem 26 

 

A tray of mass m = 12 kg is supported by two identical springs as shown in 

Figure. When the tray is pressed down slightly and then released, it executes SHM 

with a time period of 1.5 s. (a) What is the spring constant of each spring? (b) 

When the block of mass 0m  is placed on the tray, the period of SHM changes to 3 

s, what is the mass of the block? 
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Solution 

 

(a) Let 12m  kg be the mass of tray and k is the force constant of each spring. 

When the tray is pressed down slightly it begins to execute SHM. Let x be the 

downward displacement of the tray at any time t , then each spring exerts a 

restoring force kx  upward. 

Net restoring force on tray:  2F kx kx kx     . 

Clearly, the effective force constant of two springs is 0 2k k . Time period is 

0

2 2
2

m m
T

k k
   ,    

2

2

2 m
k

T


 . 

Given 12m  kg, 1.5T  s, 

2

2

2 12
105.2

1.5
k

 
   N/m. 

(b) When a block of mass 0m is placed on the tray, net mass is 0m m . New 

time period is    

0
1 2

2

m m
T

k



 , 

2 2 2

0 0
0 2 2 2

2 3 105.2
48

4 2 2

T k T k
m m

  

  
     kg, 

0 48 48 12 36m m      kg. 

 

 

Problem 27 

 

A rod of the length l = 1 m oscillates about the axis passing through its end.  

(a) Find the period of oscillations of the rod;(b) Determine the location of the pivot 

point that provides the maximum frequency of oscillations. 
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Solution 

 

(a) The rod is a physical (compound) pendulum, and its period of oscillations is 

determined by 2
I

T
mgx

 , where 2x l  is the distance between the centre of 

mass and pivot point, and I  is the moment of inertia respectively the axis passing 

through the pivot point. This moment of inertia according to Steiner theorem is 

22 2
2

0
12 2 3

ml l ml
I I mx m

 
     

 
. 

2 2
2 2 2 1,63

3 ( 2) 3

I ml l
T

mgx mg l g
     


 s. 

(b) The frequency of the compound pendulum is 

2 mgx

T I


   . 

The moment of inertia respectively new pivot point according to Steiner 

theorem is  

2
2

12
mx

ml
I  ,  

where x  is required value. 

After that 

1/ 2

2 2 2
2

12

12

12

mgx gx

ml l x
mx


 

   
 



. 

Examination the function  x  for 

maximum allows finding the required distance x  between the pivot point and 

centre of mass:   

   

 

1
2 2 2 2

2

22 2 2 2 32 2

12 12 12 12 2 3 ( 12 )1 12
0

2 12 ( 12 )12

g l x gx x g l xd gx

dx l x x l xl x


           
   
 

, 

2 212 0l x  , 
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1
0.29

12 2 3

l
x     m. 

 

 

Problem 28 

 

A mass of 2 kg oscillates on a spring with constant 50 N/m. By what factor does 

the frequency of oscillation decrease when a damping force with constant r  = 

12 (coefficient of resistance of medium) is introduced? 

 

Solution 

 

The original angular frequency of oscillation is given by 

 0

50
5

2

k

m
     rad/s.    

The damping coefficient  is 
12

3
2 2 2

r

m
   


s

-1
. 

The frequency of damped oscillation is given by: 

2 2 2 2

0 5 3 4       rad/s.  

Thus the frequency decreases by 1 rad/s, or by 20 percent of its original value. 

 

 

Problem 29 

 

Amplitude of damped oscillations of the simple pendulum decreased twice 

during 1t = 1 min. By what factor does the amplitude decreased during 2t = 3 min? 
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Solution 

 

Amplitude of the damped oscillations depends on the time according 

to
0

t

tA A e  , where 0A  is initial amplitude. Therefore,         

1

1

0 0

0

t

t

A A

A A e 
 


1te  = 2, 

1 ln 2t  . 

The damping coefficient is
1

ln 2

t
  . 

For the second time interval 

2

2

0 0

0

t

t

A A

A A e 
 



2

2 1

0.693 3ln 2
1

t

t te e e


   = 8 . 

Thus the amplitude of damped oscillations is decreased by factor of 8 during 3 

minutes. 

 

 

Problem 30 

 

Amplitude of simple pendulum oscillations of the length l = 1m during 10 min 

was decreased twice. Determine the damping coefficient , logarithmic decrement 

  and the number of oscillations during this time interval. Find the equation of 

oscillations if initially the pendulum was pulled sideways to a distance of 5 cm and 

released. 

 

Solution 

 

The amplitude of damped oscillations was decreased twice during 10t  min = 

600 s. Then the ratio of the initial amplitude 0A  and the amplitude after time  t  -

tA  is: 
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0 0

0

2t

t

t

A A
e

A A e




   , 

ln 2t  , 

3ln2 0.693
10

600t
    s

-1
. 

For finding the logarithmic decrement we have to know the period of damped 

oscillations T . Firstly, find the period and   angular frequency of simple harmonic 

motion (without damping): 

0

1
2 2T

g
   s,     0

2 2

2T

 
     rad/s. 

The angular frequency of damped oscillations is 

2 2 2 6

0 010         . 

Since the angular frequency   of damped oscillations is almost equals the own 

angular frequency 0 , the period of damped oscillations is 0 2T T   s. The 

logarithmic decrement is 

32 10T     . 

The number of oscillations N for time t  may be found from ln 2t NT   , as 

3

ln 2 0.693
346.6

2 10
N

T 
  


. 

Since on the initial instant of time the pendulum was displaced by a distance we 

consider this distance as its initial amplitude 2

0 5 10A   m, and write down the 

equation of oscillations using the cosine function assuming that the initial phase is 

equal to zero: 

2 0.0015 10 costx e t     (m). 
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Problem 31 

 

Harmonic oscillator of the mass 0.25m  kg moves attached to the spring with 

spring constant 85k  N/m in the medium with resistance coefficient 0.07r  kg/s. 

Calculate (a) the period of its oscillation; (b) the number of oscillations in which 

its amplitude will become half of its original value; (c) the number of oscillations 

in which its mechanical energy will drop to one-half of its initial value; and (d) the 

quality factor. 

  

Solution 

 

 (a) The damping coefficient   of this oscillating system is 

0.07
0.14

2 2 0.25

r

m
   


s

-1
. 

The natural angular velocity of this oscillator (without friction) is 

0

85
18.44

0.25

k

m
    rad/s. 

The angular velocity of this damped oscillator due to 0  is 

2 2 2 2

0 0 18.44 0.14 18.44        rad/s. 

Then the period of oscillation is 

2 2
0.34

18.44
T

 


   s. 

(b) The ratio of the initial amplitude and the amplitude after  N  oscillations is 

0 0

0

2t NT

t

t

A A
e e

A A e

 


   


. 

On taking natural logarithm of both sides and rearranging terms, we get 

ln2NT  , 

ln 2 0.693
14.56

0.14 0.34
N

T
  


. 

(c) The ratio of the initial energy and the energy after  1N  oscillations is 
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1220 0

2

0

2N Tt

t

W W
e e

W W e




   


, 

12 ln 2N T  . 

1

ln 2 0.693
7.28

2 2 0.14 0.34
N

T
  

 
 

(d) The quality factor is 

66
0.14 0.34

Q
T

  

 
   


. 

 

 

Problem 32 

 

A damped oscillator loses 3.5% of its energy during each cycle. What is its Q 

factor? How much cycles elapse before half of its original energy is dissipated? 

 

Solution 

 

The total energy of oscillator depends on the square of amplitude  

2 2

0

2

m A
W


 . 

Therefore, the energy of damped oscillator is 

2 2 2 2
2 20

0
2 2

t tm A m A
W e W e         . 

The damped oscillator loses 3.5% of its energy during one cycle. This implies 

that after the time t T  the energy of oscillator equals to100% 3.5% 96.5%  . 

Thus 

20 0

2

0

100
1.036

96.5

T

T

T

W W
e

W W e




   


, 

2 ln1.036 0.0356T   , 

20.0356
1.78 10

2
T     , 
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2
176

1.78 10
Q

 

 
  


. 

During time t  the oscillator losses the half of its energy   

20 0

2

0

2t

t

t

W W
e

W W e




  


, 

2 ln 2 0.693t   ,     or 
0.693

0.3465
2

t   .  

On the other hand,   t NT N    .  Then, 

0.3465N  , 

2

0.3465 0.3465
19.5 20

1.78 10
N

 
   


. 

 

 

Problem 33 

 

An oscillator with a period of 1 s has amplitude that decreases by 1% during 

each complete oscillation. (a) If the initial amplitude is 10.2 cm, what will be the 

amplitude after 35 oscillations? (b) At what time will the energy be reduced to 

46% of its initial value? 

 

Solution 

 

The ratio of initial amplitude and the amplitude after the period is 

0 0

0

100
1.01

99

T

T

T

A A
e

A A e




   


. 

It means that the logarithmic decrement is equal to 

ln1.01 0.01T    . 

The damping coefficient is 

0.01 0.01
0.01

1T
     s

-1
. 

If the time for amplitude decrease is t , the ratio of amplitudes is 
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0 0

0

t NT N

t

t

A A
e e e

A A e

  


   


, 

0

35 0.01

10.2
7.18t N

A
A

e e 
    cm. 

(b)  

2
2

20 0 0

2 2

0

W A A
e

W A A e

 

 
 

 

  

 
   

 
, 

0 0

0

1
2.17

0.46 0.46

W W

W W

  


, 

2 2.17e     , 

2 ln 2.17   

ln 2.17
38.74

2



  s. 

 

 

Problem 34 

 

A compound pendulum with equivalent length of 24.7 cm executes damped 

oscillations. In what time will the energy of the oscillation become 10% of the 

initial energy if the logarithmic decrement factor is 0.01. 

 

Solution 

 

The ratio of initial energy and energy after the time interval t  is 

20 0

2

0

t

t

t

W W
e

W W e




 


, 

on other hand, 

0 0

0

10
0.1t

W W

W W
 


. 

 
2 10te   . 
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2 ln10t  . 

ln10

2
t





. 

The natural angular velocity of compound pendulum is  

0

9.8
6.3

0.247

g

L
    rad/s. 

Since the logarithmic decrement is 0.01  the given oscillator is the system 

with weak damping. Therefore, we assume that the angular velocity of damping 

oscillations is equal to the natural angular velocity, i.e., 0  . Moreover, 

2
T


 


  , hence, 

2

 





   Accordingly to above mentioned,  

ln10 ln10 2 ln10 2.3
115

2 2 0.01 6.3
t

  

    

  
    

    
s. 

 

 

 Problem 35 

 

A 145-MHz radio signal propagates along a cable. Measurement shows that the 

wave crests are spaced 1.25 m apart. What is the speed of the waves on the cable? 

Compare with the speed of light in vacuum. 

 

Solution 

 

The distance between adjacent wave crests is one wavelength, so the wave 

speed in the cable is 

6 81.25 145 10 1.81 10v          

8

8

1.81 10
0.6

3 10

v

c


 


 

The desired speed is 0.6v c . 
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Problem 36 

 

Ultrasound used in a particular medical imager has frequency 4.8 MHz and 

wavelength 0.31 mm. Find the angular frequency, the wave number and the wave 

speed. 

 

Solution 

 

The angular frequency related to the frequency as 

6 72 2 4.8 10 3.02 10        rad/s. 

The wave number is 

4

3

2 2
2.03 10

0.31 10
k

 

 
   


m

-1
. 

The speed of the wave is 

3 6 30.31 10 4.8 10 1.49 10v          m/s. 

 

 

Problem 37 

 

Write the expression for a harmonic wave that has a wavelength of 2.8 m and 

propagates with a speed of 13.3 m/s. The amplitude of the wave is 0.12 m, initial 

phase is zero.  Estimate two cases: (a)  0,0 0  ;  (b)  0,0 A  . 

 

Solution 

 

The general expression describing the propagating wave depending on the 

initial conditions will be:  

 
2 2

, sinx t A t x
T

 




 
  

 
 for  0,0 0  , 
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 
2 2

, cosx t A t x
T

 




 
  

 
 for  0,0 A  . 

The period of oscillations is vT  , therefore,  
2.8

0.21
13.3

T
v


   s. 

Depending on the initial conditions the equations of the wave are 

(a)     
2 2

, 0.12sin
0.21 2.8

x t t x
 


 

  
 

, 

(b)     
2 2

, 0.12cos
0.21 2.8

x t t x
 


 

  
 

. 

 

 

Problem 38 

 

A transverse wave propagates along a stretched string with the velocity 15 m/s. 

A period of oscillations of the points of the string is 1.2 s, and amplitude is 2 m. 

Find the phase, displacement, velocity and acceleration of the point 45 m distant 

from the vibration source on the instant of time t  = 4 s. Determine the maximum 

velocity and the maximum acceleration of the point. The initial phase is zero. 

 

 Solution 

 

The wavelength is    15 1,2 18vT     m. 

The displacement of the point may be determined using the equation of the 

travelling wave where the initial phase equals zero ( =0) 

 
2 2

, cosx t A t x
T

 
 



 
   

 
, 

 
2 2

45,4 2cos 4 45 1
1.2 18

 


 
     

 
m. 

The phase in equation of the wave is 

2 2 5
4 45 300 5.23

1.2 18 3

  
        rad. 
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The velocity and acceleration of the point may be determined by time 

differentiating of  ( , )x t  and  ,x t , respectively: 

 
2 2 2 2 5

, sin 2 sin 9.07
1.2 3

x t A t x
t T T

     




  
          
  

 m/s. 

 
2 22

2

2 2 2 2 5
, cos 2 cos 27.4

1.2 3
x t A t x

t T T

     




      
              
      

  m/s
2
. 

The maximum velocity from the first equation is  

2 2
2 10.5

1.2
A

T

 
    m/s. 

The maximum acceleration from the second equation is 

2 2
2 2

2 54.8
1.2

A
T

    
      
   

m/s
2
. 

 

 

Problem 39 

 

Find the wavelength and the phase difference of two oscillating points distant 

by 10 and 16 m from the vibrating source, respectively. The period is 0.04 s, the 

velocity of the wave propagation is 300 m/s. 

 

Solution 

 

If the period of oscillation is 0.04T   s, and the wave velocity is 300v   m/s, 

the wavelength is 

300 0.04 12vT      m. 

The equations of the oscillations of the points with the coordinates 1 10x   m 

and 2 16x  m at the travelling wave propagation are 

   1 1 1, cosx t A t kx   , 

   
2 2 2, cosx t A t kx   . 
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The phase difference of the oscillations of these points is 

     1 2 1 2 2 1t kx t kx k x x             , 

where 
2 2

k
vT

 


   is the wave number. 

Finally, the phase difference is 

 2 1

2 2
(16 10)

300 0.04
x x

vT

 
      


. 

It means that the given oscillations are opposite in phase. 

 

 

Problem 40 

 

Find the frequency of the sound wave in the tube of the length L  =1 m, if its 

both ends are (a) open; (b) closed, (c) one end is opened and another end is 

closed. The speed of sound v= 340 m/s. 

 

Solution 

 

The standing waves are created in all cases of the tubes. The open and closed 

ends reflect waves differently. The closed end of the tube is an antinode, and the 

open end is the node. The longest standing wave in a tube of length L  with two 

open ends has displacement antinodes at the both ends and only one node betwee 

them. The frequency in this case is fundamental frequency. 

2L  , 1

340
170

2 2 1

v v

L



   


 Hz. 

The next standing wave in this tube is second harmonic/. It also has 

displacement antinodes at each end.  L  . The frequency is equal to 

2

340
340

1

v v

L



    Hz. 
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An integer number of half wavelength have to fit into the tube of length L  

2
L n


 , the wavelength will be 

2L

n
  , and the frequency 

2
n

v
n

L
  (natural 

frequencies, or harmonics) 

For a tube with two closed ends the longest 

standing wave is 2L   and fundamental 

frequency is 
1

340
170

2 2 1

v v

L



   


Hz. The 

second natural frequency (at  L  ) is 

2

340
340

1

v v

L



    Hz. 

 The longest standing wave in a tube of 

length  L  with one open end and one closed end 

has a displacement antinode at the open end and 

a displacement node at the closed end.  This is 

the fundamental. 4L   and 

340
85

4 4 1

v v

L



   


 Hz.  

The next frequency will be at 3 4L  , 

4 3L  , and 
3 3 340

255
4 4 1

v v

L





   


 Hz 

An odd-integer number of quarter wavelength have to fit into the tube of length 

L .  

4
L n


 ,    

4L

n
  ,       

4
n

v v
n

L



   

where n is odd number. 

For a tube with one open end and one closed end all frequencies 

1
4

n

v v
n n

L
 


   , with   n  equal to an odd integer are natural frequencies, i.e. 

only odd harmonics of the fundamental are natural frequencies.  

 


