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ELECTRICITY AND MAGNETISM 

 

Chapter 1. ELECTRIC FIELDS IN FREE SPACE 

 

I. ELECTRIC FIELD AND ELECTRIC CHARGES 

 

1. Electric charge 

 

Now it is known that four fundamental interactions underlie the basis of all the 

variety of natural phenomena: gravitational, strong and weak nuclear and 

electromagnetic interactions. Each type of interactions deals with a certain 

characteristic of a particle, for example, gravitational – with mass, and 

electromagnetic – with an electric charge. 

Electric charge is the technical term to indicate that an object has been prepared 

so as to participate in electric forces. Then, an electric charge is a numerical rating of 

how strongly an object participates in electric forces. 

The unit of charge is the Coulomb. 

  Coulomb = Cq  . 

Fundamental properties of an electric charge are the following. 

1. There are two types of electric charges: positive and negative. 

If a rod of ebonite is rubbed with fur, it gains the power to attract light bodies, such 

as pieces of paper. The discovery that rubbed amber could attract silk was mentioned 

by Thales (640-546 BC). «Electricity» comes from the Greek word for amber – 

electron (ηλεκτρον). In 1750 Benjamin Franklin (1706-1790), a pioneer of 

electrostatics, gave the name of “positive electricity” to the charge on a glass rod 

rubbed with silk, and “negative electricity” to that on an ebonite rod rubbed with fur. 

The experiment shows that two positive, or two negative charges repel each other, but 

a positive and negative charge attract each other. 
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2. Law of conservation of charge  

An even more fundamental reason for using positive and negative signs for electric 

charge is the experiments showing that charge is conserved according to this 

definition: in any closed system, the total amount of charge is a constant. This is why 

we observe that rubbing initially uncharged substances together always results in 

gaining one substance a certain amount of one type of charge, while the other one 

acquires an equal amount of the other type of charge. Conservation of charge seems 

natural in the model in which matter is made up of positive and negative particles. If 

the charge on each particle is a fixed property of that type of particle, and if the 

particles themselves can be neither created nor destroyed, then conservation of charge 

is inevitable. 

3.  A charge is a scalar quantity. A magnitude of a charge is independent on the 

choice of a frame of reference. 

4.  Charge is a quantized magnitude.  A tiny quantity of negative charge is carried 

by electron discovered by J.J.Thomson. Electrons are present in all atoms. As atoms 

are electrically neutral consequently the total negative charge on the electrons is equal 

to the positive charge on the nucleus. The nucleus contains tiny quantities of positive 

charge – protons. The magnitude of the charge of electron which is equal to the 

charge of proton is elementary charge 191.6 10e   C. 

 

2. Electric field. Coulomb's law. Electric field-strength  

 

Between 1785 and 1787, the French physicist 

Charles Augustine de Coulomb (1736-1806) (Fig. 

1.2, a) performed a series of experiments 

involving electric charges, and eventually 

established what is nowadays known as Coulomb's law. He used a torsion balance to 

perform his experiment (Fig. 1.2, b). Assuming that there are very small charged 

particles which can be treated as point, Coulomb’s law says: 

The force between two point charges (Fig. 1.1) is directly proportional to the 

product of the charges  1 2,q q  and inversely proportional to the square of the 
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separation between their centers   r  and acts along the line joining the centers of 

these particles. 

                                            1 2 1 2

2 2

0

1

4
r r

q q q q
F e k e

r r

 
   ,   (1.1) 

where 12 -1

0 8,85 10 F m     is the electric permittivity of free space, re  is the unit 

vector of r , 9 2 -2 9 -1

0

1
9 10 N m C 9 10 m F

4
k


         is an electrostatic constant  or 

the  force constant (for vacuum and for air we use the same value of  k). 

Opposite charges will produce an attractive force while similar charges will 

produce a repulsive force. 

 

If the interaction of charges takes place in a medium other than vacuum/air the 

proportionality coefficient 

 
0

1

4
k


  (1.2) 

where    is the relative permittivity of that medium (see Chapter 3). It is defined 

as the ratio of the force in vacuum to the force in any other medium between the 

same pair of charges separated by the same distance r. The relative permittivity   is 

greater than 1 for any medium other than vacuum/air. This relative permittivity enters 

into the denominator in Coulomb’s law defined by formula (1.1), therefore, the force 
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acting between the charges is always smaller in any medium other than vacuum or 

air. 

The term "field" used in physics means the space in which some quantity is 

defined for each point of this space. If this is a vector quantity, we have a vector field. 

If the quantity is a scalar, we have a scalar field. In the chapter concerning electricity 

we will be defining the electric field. Such a field exists in the vicinity of any electric 

charge or charges. Thus, an electric field can be defined as a region where electric 

force is experienced. If we consider electric charges 

which do not move (or, in other words, stationary 

charges) we can call it more precisely – an electrostatic 

field. 

The force exerted on a charged body in an electric 

field depends on the charge of the body and on the 

strength or intensity of the field. If we wish to explore 

the variation in strength of an electric field, we must 

place a test charge  testq  which is small enough not to 

upset the field by its introduction at the point concerned.  

 1 2
2 2

1 2

... test
r r

test test test

q qF F q
k e k e E

q q r q r


     .   (1.3) 

The electric field-strength (or electric field, or electric intensity) E  at any point is 

defined as the force per unit positive charge which it exerts at that point. Its direction 

is that of the force exerted on a positive charge (Fig. 1.3). 

  -1V mE   .    

Therefore, the electric field-strength due to a point charge is 

 
2

0

1

4
r

q
E e

r
    (1.4) 

From the definition of the field-strength it is possible to find the force exerted on 

any charge q  at any point of field 

 F q E   (1.5) 

The principle of superposition of fields: electric field-strength of a system of point 

motionless charges is equal to the vector sum of field-strengths of these charges 
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which are created by them independently, 

 
2

0

1

4 i

i
i r

i i i

q
E E e

r
    (1.6) 

The electric field can be represented graphically by field 

lines (Fig. 1.4). These lines are drawn in such a way that, at 

a given point, the tangent of the line has the direction of the 

electric field at that point. The density of lines is 

proportional to the magnitude of the electric field. Each 

field line starts on a positive point charge and ends on a 

negative point charge. Since the density of field lines is 

proportional to the strength of the electric field, the number 

of lines emerging from a positive charge must also be proportional to the charge. 

Fig. 1.5 shows the electric fields of  different charged objects. 

 

 

 3. Distribution of charges 

 

In most applications the charges are supposed to be non-discrete, i.e., distributed 

continuously over some region. The following three different distributions will be 

used in this case are 

line charge (line density of charge)   : the charge per unit length; 

surface charge (surface density of charge)  : the charge per unit area;  

volume charge (volume density of charge)  : the charge per unit volume  

   ;     ;     ,
dq dq dq

dl dS dV
      (1.7) 

where dq  is a charge at length dl , on a surface dS , and in a volume dV , 

respectively. 
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II. GAUSS’ LAW   

 

1. Electric flux  

 

We have already shown how electric fields can be described by means of electric 

field lines. Suppose that the magnitude of field-strength is equal (not only 

proportional) to the number of lines per unit area. In this case the number of lines per 

unit area is cosE dS   .  This scalar quantity is an elementary electric flux (flux of 

the vector E ) through the area 

  , cosdФ E dS E dS E dS       , (1.8) 

where dS dS n   is the infinitesimal area, whose normal 

n   makes an angle   with the direction of the electric field. 

E  is a vector quantity (Fig. 1.5).  Hence, it is useful to 

represent the area dS  by the vectordS  as well. The length of 

this vector is the size of the area, while its orientation is 

perpendicular to the area.  It is in the direction of the normal 

n . The normal to the surface can point into two different 

directions.  For a closed surface, by convention, the normal 

points outward. So, by our definition of dS we can write the flux as the dot product of 

E  and dS .  

The total electric flux through any surface S can be evaluated by integrating the 

differential flux over the surface S: 

 
S S

Ф dФ E dS    . (1.9) 

  V mФ   . 

The flux through a given surface can be positive or negative, since the cosine can 

be positive or negative. If the field lines are parallel to the normal vector n , the flux is 

positive.  If the field lines are anti-parallel to the normal vector n , the flux is negative. 
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2. Gauss’ law 

 

The relationship between the electric field flux 

through the closed surface and the charge in the volume 

that is surrounded by this surface was formulated by the 

German mathematician and astronomer Johann Carl 

Friedrich Gauss (1977-1855) in 1831 (Fig. 1.7). 

 

Gauss’ law (theorem). The total flux of the electric 

field (of the vector E ) through any closed surface 

whatever its shape depends only on the total charge 

enclosed by the surface 

 
0

inside

S

q
E dS


  . (1.10) 

In electrostatics, electric field lines start on a positive 

charge and end on a negative charge.  If there are no 

charges inside a closed surface, there are no sources or 

sinks of field lines inside the surface. All the field lines 

that enter through the surface into the volume enclosed 

by the surface must also emerge from the surface.  The 

net flux through the surface is zero.  

To prove the theorem we shall consider a field of 

one point charge. Enclose this charge by an arbitrary 

closed surface S  (the Gaussian surface) and calculate the flux of the field-strength 

vector E  through an elementary area dS . 

2 2

0 0 0

1 cos
cos cos

4 4 4

q q dS q
dФ E dS EdS dS d

r r


 

  


           , 

where d  is a solid angle subtended by an elementary surface dS  with the top at 

the point of the disposition of a charge (Fig. 1.8). 

Let's integrate over the surface S :  

0 0 0 0

4
4 4 4

S S S

q q q q
Ф dФ d d 

   
           . 
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We’ll get the similar result if a system of point charges is situated inside the 

enclosed surface. Then according to the principle of superposition we have 

 

 

1 2 1 2 1 2

1 21 1

0 0 0 0

... ... ...

...
... .

S S S S

EdS E E dS E dS E dS Ф Ф

q qq q q

   

         

 
    

   
 

 

3. Application of Gauss’ law 

  

Gauss’ law by itself can be used for finding the electric field of a point charge at 

rest, and the principle of superposition can be used for finding the electric field of an 

arbitrary charge distribution. 

 

1.  A field of uniform charged infinite sheet (charged plane) 

 

Consider a charged plane with surface 

charge density  (Fig. 1.9). The field-strength 

vector E  is perpendicular to the surface and at 

symmetric points is identical in magnitude and 

opposite in direction. As Gaussian surface we 

can choose a simple right circular cylinder with 

faces parallel to the plane of charge.  The field 

lines are parallel to the sides of the cylinder, so 

the sides do not contribute to the flux. The flux 

both through the top surface and through the 

bottom surface of cylinder is E S  , where S  is the area of the top (the bottom). 

The charge inside the cylinder is S  . Then according to Gauss’ theorem, 

0

2
S

E S





   and

02
E




 . The projection of the vector E  to a normal to the 

charged plane nE  is 

 
02

nE



 . (1.11) 
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The field of an infinite planar charge distribution is uniform.  It does not decrease 

with distance. 

If 0  , then 0nE  , and the vector E  is directed off the charged plane; if 0  , 

therefore, 0nE  , and the vector E  is directed to the charged plane. The fact that 

field-strength does not depend on distance from the plane means that the field is 

uniform E const . This result is valid for an infinite plane as the influence of its 

end was not taken into account. Moreover, it is approximately valid for the central 

part of the finite charged plane. 

 

2. A field of two parallel charged planes 

 

The most important application of the above result is the superposition of the fields 

from two planar charge distributions which are separated by some distance. 

Let two parallel planes be oppositely charged with surface charge densities   

and   (Fig. 1.10). Considering the field of two planes as the superposition of fields 

of every charged plane, we can estimate that the field between the planes is 

 
0

E



 . (1.12) 

The fields add to yield a uniform field 

between the planes, but they precisely cancel 

outside the planes to give zero net fields 

outside.  Between the planes the field points 

from the positive plane towards the negative 

one.  This is the common configuration of a 

parallel plate capacitor.  

 

 

3. A field of the infinite round cylinder  

 

Let a cylinder of radius a be charged with the linear charge density   (Fig. 1.11). 

The field in this case is of radial character: the vector E  at each point is 
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perpendicular to the axes of the cylinder and the 

magnitude of the vector E depends only on the distance 

from the axis of the cylinder. We choose the cylinder as 

Gaussian surface. Its axis coincides with the axis of the 

charged cylinder. The flux through its end faces is equal 

to zero and through its lateral surface is 2rE rh , where 

rE  is the projection of the vector E  to the position vector 

r whose direction coincides with the normal to the lateral 

surface of the cylinder of radius r  and height h . Then 

according to Gauss’ theorem, when r a , we obtain 

0

2r

h
E rh





   .   

Then  

 
02

rE
r




 . (1.13) 

If 0  , then 0rE  , i.e., the vector of 

field-strength is directed off the charged 

cylinder.  

When r a , there are no charges inside 

the enclosed surface, therefore, 0E   there . 

 

4. A field of a spherical surface  

 

The flux through a spherical surface of 

radius r , concentric with the spherical surface carrying a charge q  on its surface is 

 
2

0

1

4
r

q
E

r
  . (1.14) 

This is the same result as that for a point charge. This means that outside a charged 

sphere, the field behaves as if all the charges on the sphere were centrally 

concentrated (Fig. 1.12). 

There are no charges inside a closed surface  r a , therefore, 0E    there. 
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5. A field of a uniform charged sphere  

 

Imagine a sphere of radius a  with charge q  

uniformly distributed inside.  The symmetry of the 

charge distribution requires a spherically symmetric 

electric field.  The field must either point radially 

inward (toward the center) or outward (from the center 

of the sphere).   For a spherical symmetric charge 

distribution, the magnitude of E can therefore depend 

only on the radial coordinate r and on the charge q .  To 

determine E as a function of r, we use Gauss' law.  We draw a spherical Gaussian 

surface of radius r centered in the center of the spherical charge distribution.  The 

radius r of the surface can be larger  1r r or smaller  2r r than the radius a (Fig. 

1.13).  

Let r be greater than a, so Gaussian surface encloses the entire charge distribution. 

The electric field is radial, the vector E  is normal to any surface element dS.  Thus, 

from Gauss’ law 

2
0 04 insideФ EdS EdS E r q q         . 

Therefore, we have for r a  

 
2

0

1

4
r r

q
E e

r
  . (1.15) 

The field outside a spherically symmetric 

charge distribution looks like the field of a point 

charge.  If q is positive, the field points 

outward, and if q is negative, it points inward.    

The charge insideq  can be written as the 

charge density ( q V  ) times the volume of 

the charged sphere  ( 34 3V R ).  Therefore, 

we can write down 
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3

2

03
r

a
E e

r




 . (1.1) 

Let r be smaller than a, hence the Gaussian surface encloses only a part of the 

charge distribution. The charge inside the sphere enclosed by the Gaussian spherical 

surface of radius r   r a  is  
3

'q q r a , because the charges are proportional to 

volumes where they are, and the volumes are proportional to cubes of radii. Then 

according to Gauss’ theorem  

3

2

0

1
4r

r
E r q

a




 
     

 
 

and for r a  

 
3

0

1

4
r

q
E r

a
   . (1.17) 

The field inside the charge distribution increases linearly with r.  Its direction is 

outward for a positive distribution, and inward for a negative distribution (Fig. 1.14). 

 

III. CIRCULATION OF THE VECTOR E . POTENTIAL 

 

1. The circulation theorem for the vector E    

 

   The electrostatic field is a stationary field of the 

central forces, therefore, it is a conservative field, i.e., 

the work of the forces of this field does not depend on 

the path and depends only on a position of the initial 

and final points of motion. 

  If the unit positive charge is taken as a test 

charge, the elementary work of forces at the 

displacement dl is Edl , and the total work done on path 1-2 is 

2

1

Edl . If such a linear 

integral is taken around a closed path it is a circulation of the vector E . 

The Circulation Theorem states that the circulation of the vector E


 in any 

electrostatic field is equal to zero, i.e., 
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 0Edl  . (1.18) 

   To prove this theorem let us divide a closed path into two sections 1a2  and 2b1 

(Fig. 1.15). As the linear integral Edl does not depend on the form of the path, 

12 12

a b

Edl Edl  . But 
12 21

b b

Edl Edl   .   Therefore, 
21 12

b b

Edl Edl   . Hence, 

12 21 12 12

0 

a b a b

Edl Edl Edl Edl       .  

The field possessing the property 0Edl   is a potential field; therefore, an 

electrostatic field is a potential field. 

A conclusion of this theorem is the fact that electric field lines cannot close on 

themselves; they diverge from a positive charge and converge on a negative charge. 

Moreover, the number of electric-strength lines per any unit area has to be identical 

for any uniform field. 

 

2. Potential. Potential due to a point charge and a system of point charges 

 

Besides force description of electric fields (by means of electric field-strength) 

there is another type of description. Let us consider it. 

The fact that a linear integral 

2

1

Edl representing the work done in taking a unit 

positive charge from point 1 to point 2 does not depend on the path form allows to 

state that there is some scalar function of coordinates whose loss is 

 

2

1 2

1

Edl    . (1.19) 

Put a test charge testq  in the electric field of a charge q  and estimate the ratio of 

potential energy of a test charge to its magnitude. 

 1 2

1 2

... test

test test test

q qW W q
k k

q q r q r



    


. (1.20) 

This scalar quantity describing the given point of an electric field is a potential of 
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an electric field. Potential is an energy characteristic of an electric field and it is equal 

to the potential energy of a unit positive charge at the given point of this field.  

The potential due to a point charge is equal to 

 
0

1

4

q

r



  . (1.21) 

  Volt  V   . 

  As any definite integral, 

2

1

Edl is taken up to a constant whose value is defined 

arbitrarily. For example, for an electrostatic field it is accepted that the potential at 

infinity is equal to zero. 

According to the principle of superposition, a potential due to a system of point 

charges is 

 
0

1

4

i

i i

q

r



   (1.22) 

So if we wish to find the potential at any point, we merely calculate the potential 

due to each charge, and add the potential algebraically, since potentials are scalars. 

 

 

3. Potential gradient and field-strength. Work of an electric field 

 

From 

2

1 2

1

Edl    it follows that  d Edl  . And in the case of displacement 

of a charge along axis x, x

d
E

dx


  . Similarly, for displacements along other 

coordinate axes y

d
E

dy


   and z

d
E

dz


  . Then 

                          E i j k grad
x y z

  


   
      

   
.                                  (1.23) 

Graphical representation of the electric field in terms of potential uses the concept 

of equipotential surfaces, i.e., surfaces over which the potential is constant. 

Equipotential surfaces can be drawn throughout any space in which there is an electric 
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field. An equipotential surface has the property that, along any direction lying in the 

surface, there is no electric field; for there is no potential gradient. Equipotential 

surfaces are, therefore, always at the right angle to force lines (Fig. 1.16). 

 

When we have plotted the equipotentials, they turn out to be more useful than the 

lines of force. A line of force diagram appeals to the imagination, and helps us to see 

what would happen to a charge in the field. But it tells us little about the strength of 

the field, at the best, if it is more carefully drawn, we can only say that the field is 

strongest where the lines are closest. But equipotentials can be labeled with the value 

of potential they represented; and from their spacing we can find the actual value of 

the potential gradient, and hence the field-strength.  

If we know the potential difference between two points in the field it is possible to 

calculate the work done in taking the charge from one point to another. For a unit 

positive charge the work done is

2

1

Edl , therefore, the work for any charge is 

  
2

12 1 2

1

A q Edl q      (1.24) 

An easy way of calculating the work done is the essential advantage of a potential. 

One more advantage is in the fact that in many cases of calculating field-strength it is 

easier firstly to calculate potential and then its gradient rather than calculate the field-

strength directly. Really, to calculate the potential it is necessary to take one integral 

and to calculate the field-strength – three integrals (as it is a vector quantity). 
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4. Comparison between electrostatic and gravitational fields 

 

Comparing these electrostatic and gravitational forces, it is clear that the charge in 

electrostatics plays a similar role to that of the mass in gravity. A major difference is that 

while the gravitational force is always attractive, the electrostatic force can be either 

attractive or repulsive. 

 

 Electric field Gravitational field 

Force formula 

 

Force direction 

1 2

2 r

q q
F k e

r


  

attractive/repulsive 

1 2

2 r

m m
F e

r



    

attractive 

Field strength E F q  N/C  E F m  N/kg  

Strength outside 

the isolated sphere 
2

0

1

4
r

q
E e

r
    

2 r

m
g e

r
   

Potential outside 

the isolated sphere 0

1

4

q

r



    

m

r
   

 

IV. ELECTRIC DIPOLE 

 

1. A field of an electric dipole 

  

An electric  dipole is a system consisting of a positive charge and a negative 

charge having equal magnitudes (Fig. 1.17).  

 

Let's calculate a potential of a dipole field.  

 0 0

2 2

0 0

1 1

4 4

1 cos 1 cos
.

4 4

q q r r
q

r r r r

q p p

r r

  
 

 

 

 
 

   

   
           

   

  
   

 (1.25) 

Vector  

 p q l   (1.25) 
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is called a dipole moment (the vector l directed from a negative charge to a 

positive charge). 

 

The electric field strength of a dipole may be calculated taking into account its 

relationship with potential. Therefore, we’ll determine the projections of E  on two 

mutually perpendicular directions along the unit vectors re  and e . 

 
2 3

0 0

1 cos 1 2 cos

4 4
r

p p
E

r r r r

  

 

    
       

   
, (1.27) 

 
2 3

0 0

1 1 cos 1 sin

4 4

p p
E

r r r r


  

   

    
        

   
, (1.28) 

 2 2 2

3

0

1
1 3cos

4
r

p
E E E

r
 


      . (1.29) 

 

2. The electric dipole in an external electrostatic field 

 

In an external non-uniform electrostatic field ( E const ) dipole is subjected to the 

force  

 extE
F p

l





. (1.2) 

The analysis of this formula shows that 



 

 

 

19 

1) 
E

l




 – the directional derivative of the vector E  in a uniform field – is equal to 

zero, therefore, the net force acting on the dipole is 0F   since F F    (Fig. 1.18). 

2) When the angle   formed by p  and E  vectors is  090  , the dipole is 

involved into a field, and when 090  , the dipole is pushed out from a field. 

Moreover, the torque on a dipole placed into the external electrostatic field is  

 ,M p E     (1.31) 

  

This torque aspires to turn the dipole to establish a dipole moment along the vector 

of external electric field E . 

Thus, in a non-uniform external field E  the electric dipole behaves as follows: 

under the action of a torque the dipole aspires to be established along the field and 

under the action of net force – to move in the direction where the field-strength 

magnitude is greater. These movements take place simultaneously. 

In an external electrostatic field the dipole has the potential energy. If we assume 

that l  is very small and ~dl l , we obtain 

   W q q q q l q l E
l


        


          


, 

 W p E    (1.32) 
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Chapter 2. CONDUCTORS IN ELECTRIC FIELD 

 

I.    THE FIELD IN SUBSTANCE 

 

1. Conductors, isolators, semi-conductors 

 

All materials are divided into three categories depending on how easily they allow 

the charges (i.e., electrons) to flow along them. These are:  

 conductors (metals, for example), 

 semi-conductors (silicon is a good example), and 

 insulators (rubber, wood, plastic, for example). 

Most materials are either conductors or insulators. The difference between them is 

that in conductors, the outermost electrons in the atoms are so loosely bound to their 

atoms that they’re free to travel around. In insulators, on the other hand, the electrons 

are much more tightly bound to the atoms, and are not free to flow. Semi-conductors 

are a very useful intermediate class, not as conductive as metals but considerably 

more conductive than insulators. By adding certain impurities to semi-conductors in 

the appropriate concentrations the conductivity can be well-controlled.  

There are three ways that objects can be given a net charge. These are:  

1. Charging by friction – this is useful for charging insulators. If you rub one 

material with another (say, a plastic ruler with a piece of paper), electrons have a 

tendency to be transferred from one material to the other. For example, rubbing glass 

with silk or saran wrap generally leaves the glass with a positive charge; rubbing 

polyvinylchloride rod with fur generally gives the rod a negative charge.  

2. Charging by conduction – is useful for charging metals and other conductors. If 

a charged object touches a conductor, some charge will be transferred between the 

object and the conductor, charging the conductor with the same sign as the charge on 

the object.  

3. Charging by induction – is also useful for charging metals and other 

conductors. Again, a charged object is used, but this time it is only brought close to 

the conductor, and does not touch it. If the conductor is connected to ground (ground 

is basically anything neutral that can give up electrons to, or take electrons from, an 
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object), electrons will either flow to it or away from it. When the ground connection is 

removed, the conductor will have a charge opposite in sign to that of the charged 

object.  

An example of induction by means of a negatively charged object and an initially-

uncharged conductor (for example, a metal ball on a plastic handle):  

1.  Bring the negatively-charged object close to, but not touching, the conductor. 

Electrons on the conductor will be repelled from the area nearest the charged object.  

2.  Connect the conductor to ground. The electrons on the conductor want to get as 

far away from the negatively-charged object as possible, so some of them flow to 

ground.  

3.  Remove the ground connection. This leaves the conductor with a deficit of 

electrons.  

4.  Remove the charged object. The conductor is now positively charged. 

 

2.  Micro- and macro-field 

 

The true electric field in any substance (micro-field) varies rather sharply in space 

and in time. It is different in various points of atoms and in gaps between them. 

Detailed description of this field is solving incredibly complex problem. Moreover, it 

is absolutely unnecessary for solving macroscopic problems. For many purposes more  

simple and average description is suitable (macro-field). 

This averaging is carried out through so-called physically infinitesimal volume, i.e. 

the volume containing a great amount of atoms but having sizes many times smaller 

than the distances on which the macro-field varies noticeably. Thus, a field in 

substance is  

 macro microE E Е   (2.1) 

   

  

3.  Influence of substance on a field 

 

When any substance is carried into the electric field the displacement of positive 

and negative charges (nucleus and electrons) takes place that leads to partial division 
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of these charges.  Uncompensated charges of opposite signs appear in different places 

of the substance. This phenomenon is electric induction and these charges are 

induced charges. These induced charges create additional electric field which 

simultaneously with the initial (external) fields forms the total (net) field. 

Knowing an external field and the distribution of the induced charges it is possible 

to neglect the role of substance taken into account with help of induced charges. 

 

4.   A field inside and outside a conductor 

 

When placing a conductor into an electric field, the displacement of charges takes 

place immediately, and as a result the field inside the 

conductor becomes equal to zero (Fig. 2.1). Excessive 

charges are in a thin superficial layer. The absence of a 

field inside a conductor means that the potential in a 

conductor is the same in all points, i.e., any conductor in 

an electrostatic field represents the equipotential area and 

its surface is an equipotential surface. Hence, the vector 

of field-strength is directed along the normal to the 

surface as if the vector is directed along the tangent, the 

charges move on surfaces and their equilibrium is 

impossible. 

If a part of the substance is removed from the conductor the field in it is not 

changed. The excess charges are still on an external surface and the field inside the 

cavity is equal to zero. This property is the basis of electrostatic protection, i.e., 

screening, for example, of measuring instruments from the influence of external 

electric fields. 

 

II. CAPACITANCE. CAPACITORS 

 

1. Capacitance of an isolated conductor 

 

Consider a conductor removed from other charges. The potential of the conductor 
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is proportional to its charge. Hence, the ratio q   does not depend on the magnitude 

of the charge. For any isolated conductor this ratio has its specific magnitude which is 

called the capacitance of a solitary conductor 

 
q

C


 . (2.2) 

The capacitance depends on the sizes and the form of a conductor. 

 
C

 = Farad = F
V

C  . 

 

2. Capacitors. Capacitance. Energy of a charged capacitor 

 

A system of conductors which has capacitance much greater than the solitary 

conductor capacitance and is independent on surrounding bodies is called a capacitor. 

The simplest capacitor (parallel plate capacitor) consists of two plane conductors 

(plates) located at a small distance from each other. The main characteristic of the 

capacitor is capacitance. 

The capacitance of a capacitor is the ratio of the charge on either plate to the 

potential difference between the plates (voltage), 

 
q

C
U

 . (2.3) 

Now we can find out what factors influence the capacitance 

0 0 0 0

0

q
E

S q q S S
C

q d U q d d
U E d

S



   




     

  
   

 

.                                               (2.4) 

If a dielectric is used between the plates of the capacitor the capacitance is 

 0 S
C

d

  
 , (2.5) 

where   is a dielectric permittivity. 

A charged capacitor is a store of electric energy: 

2 2

2 2 2

qU CU q
W

C
   . 
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Chapter 3. ELECTRIC FIELD IN DIELECTRICS 

 

I. POLARIZATION OF DIELECTRICS 

 

1.   Dielectrics 

 

 

Dielectrics (insulators) are the substances which practically do not conduct 

electric current (1015-1025 times worse then conductors). It means that in dielectrics 

there are no charges capable to move by significant distances creating a current. 

Placing even neutral dielectric into external electric field essentially modifies both 

the field and the dielectric. 

To understand the causes it is necessary to consider the features of dielectrics 

Type of molecules Polar molecules Non-polar molecules 

Characteristic of the 

molecule 

The centers of positive and 

negative charges are 

displaced relatively each 

other 

The centers of positive and 

negative charges coincide 

Dipole moment Proper dipole moment is 

present 

Proper dipole moment is 

absent 

Examples HCl, H2O H2, N2, O2 

Influence of external  

field 

The field turns the dipole 

along the field-strength 

lines 

The field displaces  the 

centers of positive and 

negative charges in the 

opposite directions and 

molecule acquires an 

induced dipole moment 

Polarization 

 

Orientation polarization  Electronic polarization 

Type of dipole Rigid dipole Elastic dipole 
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structure. Dielectric consists either of neutral molecules (polar, non-polar) or of ions 

(ionic crystals). 

Ionic crystals (for example, NaCl) consist of two sublattices inserted into each 

other in sites of which the charged ions are located. In an external field the positive 

sublattice is displaced along the field and the negative sublattice is displaced in the 

opposite direction. It is so-called ionic polarization. 

Polarization of a dielectric is its transition into the state when its total dipole 

moment becomes nonzero. The mechanism of polarization is related to a certain 

structure of a dielectric. 

 

2. Volume and surface bound charges 

 

As a result of polarization uncompensated charges 

appear on the surface and, generally, in the volume of a 

dielectric. 

Consider a plate of a neutral inhomogeneous dielectric 

where the density increases with the growth of х (Fig. 

3.1). 

Without an external field the densities of positive and 

negative charges are equal to each other at any point of 

dielectric since the dielectric is neutral, but the volume 

densities of charge increase with growth of х because of 

heterogeneity of the dielectric. The distributions of 

positive and negative charges are similar. 

The external field displaces the positive charges inside 

the atoms or molecules along the field and negative 

charges - in the opposite direction. Uncompensated 

charges appear on the surface and in the volume of the dielectric. These 

uncompensated charges appeared as a result of polarization of the dielectric are called 

polarization charges (or bound charges). The last term underlines that the freedom of 

transition of such charges is limited: they can be displaced only inside electrically 

neutral molecules. 
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We’ll mark the bound charges with a prime (for example, q  or ). The charges 

which are not part of molecules of a dielectric are extraneous charges. These charges 

can be both inside and outside dielectric. 

During polarization of a dielectric the volume and surface bound charges may 

generally appear in it. Hence, the field in a dielectric is the sum of a field of 

extraneous charges and a field of bound charges 0E E E  . 

 

II. POLARIZATION P  AND ITS PROPERTIES 

 

1. Polarization P  

 

It is naturally to characterize the process of 

polarization of a dielectric by means of dipole 

moment of unit volume. If the external field is non-

uniform or the dielectric is inhomogeneous the 

degree of polarization appears to be non-uniform in 

different points of a dielectric. To describe the 

polarization at a given point we'll select a 

physically infinitesimal volume containing this point and find the vector sum of 

dipole moments of molecules in this volume. The vector P  that is equal to dipole 

moment of unit volume of a dielectric is polarization of a dielectric. 

 
1

i

i

P p
V



 . (3.1) 

If the volume V  contains N  molecules, then 

 
1 i

i
i

i

p
N N

P p n p
V N V N

 
     
   


 , (3.2) 

where n is the molecule concentration; p  is an average dipole moment of a 

molecule. 

  2C mP  . 
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2.  Relationship between the vectors P  and E  

 

For the majority of isotropic dielectrics the dependence of polarization on field-

strength is linear, i.e., 

 0P E , (3.3) 

where   is the unitless positive magnitude describing the properties of the 

dielectric called as dielectric susceptibility. The usual values of   for the large 

majority of dielectrics are several units or tens. 

But there is a whole class of dielectrics (ferroelectrics) with nonlinear dependence 

between these quantities. 

 

3. Ferroelectrics 

 

Dielectrics with nonlinear dependence  P E  

which is determined by the previous history of a 

dielectric, i.e., preceding magnitudes of the field-

strength, are ferroelectrics. The examples of these 

dielectrics are NaKC4H4O6·4H2O,  BaTiO3,  

KH2PO4. 

Their properties are: 

1. High magnitudes of dielectric susceptibility 

(~ several thousands); 

2. The dielectric susceptibility depends on field-

strength; 

3. Dependence  P E  looks like a loop called as a hysteresis loop. 

The explanation of the properties and the behavior of ferroelectrics is following. 

Owing to interaction of the particles in a ferroelectric crystal the dipole moments are 

spontaneously established in a parallel. Areas of spontaneous polarization 

(ferroelectric domains) appear. Without a field the total dipole moment of a crystal is 

equal to zero. In external field there is a growth of the domains oriented along the 

field and turning of dipole moments of domains. The dipole moment of a crystal 
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becomes nonzero. 

  Ferroelectrics have the temperature at which they lose their ferroelectric 

properties and become the usual dielectrics. This temperature is Curie’s temperature. 

For example, Seignette’s salt NaKC4H4O6·4H2O is ferroelectric in the temperature 

interval from 255К up to 297К. 

 

4. Piezoelectric effect 

 

The piezoelectric effect (from Greek piezo [πιεζω], which means ‘squeeze’ or 

‘press’) is the effect in which energy is converted between mechanical and electrical 

forms. It was discovered in the 1880 by French scientists Jacques and Pierre Curie. 

Specifically, when a pressure is applied to a polarized crystal, the resulting 

mechanical deformation results in an electric charge. Piezoelectric microphones serve 

as a good example of this phenomenon. Microphones turn an acoustical pressure into 

a voltage. On the contrary, when an electric field is applied to a piezoelectric crystal, 

the crystal undergoes a mechanical deformation which can in turn create an acoustical 

pressure (backward piezoelectric effect, 1881, Gabriel Lippmann). An example of 

this can be seen in piezoelectric speakers. (These are the cause of those annoying 

system beeps that are too common in today's computers). 

   

5. Properties of the vector P  field  

 

1.  For the vector P  field Gauss’ law is  

 'PdS q  , (3.4) 

i.e., the flux of the vector P  through any closed surface whatever its shape is equal 

to taken with the opposite sign the excess bound charge of a dielectric in the volume 

enclosed by the surface. 

2. The volume density of the excess bound charges inside a dielectric is equal to 

zero under simultaneous realization of two conditions: а) the dielectric should be 

homogeneous; b) there are no extraneous charges inside it. Therefore, if a 

homogeneous isotropic dielectric is placed into an electric field the bound charges 
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appear only on its surface. 

3.  The field of the vector P  depends on all charges (both bound and extraneous). 

The bound charges determine only the flux of the vector P through a closed surface 

but not the field of the vector P . 

 

 

III. THE VECTOR D   

 

1.  Gauss’ law for the vector D  field  

 

Gauss‘ law for the vector E  is  

 
0

inernal

S

q
E dS


  . (3.5) 

Since the sources of a field E are all charges (bound and extraneous), 

0 '
S S

E dS q q q P dS         ; 

 0

S

E P dS q   . 

Put  

 0D E P  , (3.6) 

then 

 
S

DdS q . (3.7) 

This is Gauss‘ law for the vector D : the flux of the vector D through any closed 

surface whatever its shape is equal to total extraneous charge in the volume enclosed 

by the surface. 

The vector D  (electric induction or electric displacement) is an auxiliary vector 

without any deep physical sense. 
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2. Relationship between the vectors D  and E . Dielectric permittivity 

 

For isotropic dielectrics polarization 0P E  , hence, 

  0 0 0 0 01D E P E E E E            . (3.8) 

The dimensionless quantity 

 (3.9) 

is dielectric permittivity of the substance. It is the basic characteristic of a 

dielectric. For all dielectrics 1  ; for vacuum 1  . Magnitude of dielectric 

permittivity depends on the nature of the dielectric: 1  (gases);   ~ several 

thousands units (ceramics); 81   (distilled water). 

Dielectric permittivity shows how a dielectric decreases the force of interaction 

between charges, in other words, permittivity is a measure of how an electric 

field affects, and is affected by, a dielectric medium. 
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Chapter 4. DIRECT ELECTRIC CURRENT 

 

I. OHM'S LAW 

 

1. Current. Current density 

 

Suppose a potential difference is established between two points, and some 

charges are released. These charges will be acted on by the electric force and start to 

move. If we measure the amount of charge that flows through a given point in a 

certain time interval, we can define the electric current (i.e., the charge flowing 

through that point per unit time) via  

 
dq

I
dt

  (4.1) 

The unit of current is  

 
Coulomb

 =  =  Ampere  = A
second

I . 

Physical currents in electric circuits consist of electrons in the wire moving from 

lower to higher electric potential. Since electrons by convention have negative charge, 

the net effect is equivalent to having a positive current flow from higher to lower 

electric potential. Conventional current direction is the direction which is opposite to 

electron direction. 

Electric current may consist not only of electrons, but of other types of charged 

particles, for example, ions. The word "ion" is ancient Greek for "going" and was 

introduced by Michael Faraday (1791-1867) to designate those electrically charged 

particles that migrate to one or another pole when an electric field is set up in a 

solution. The ions may be positive and negative.  

Without an electric field the carriers of current (electrons, ions) move chaotically. 

In electric fields the directed motion at a velocity u (drift velocity) is superimposed on 

a random motion of carriers. 

As an electric current can be distributed non-uniformly over the surface through 

which it flows we introduce the vector of a current density j . 
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The magnitude of the vector j  is equal to a ratio of current dI through the unit 

area dS located at the given point perpendicularly to the current direction  

  
dI

j
dS

 . (4.2) 

The direction of j  coincides with the direction of the velocity u  of the positive 

carriers (or it is opposite to the direction of the negative carriers). 

If there are negative and positive carriers, the current density is 

  j u u      , (4.3) 

 

where   and   are the electric densities of the 

positive and the negative carriers,   u  , u  are their 

velocities. 

 

Electrons ( 0, 0u   ) are the carriers in 

conductors, therefore, the current density in them is  

j u  . 

 

The current through the surface S  is 

  
S

I j dS  , (4.4) 

where dS dS n  , and n is the positive normal to the surface dS . 

Let’s find the relationship between a current density and a speed of directed 

motion of electrons.   

The speed of electrons can be written as u l t , where l is the distance for time t 

(Fig. 4.1). The time can be found by using the definition of current, 

dq
I

dt
          

0 0

eN t

dq I dt          N e I t             
N e

t
I


 ; 

Now the speed  

1l I l S I
u

N e N S e

 
   


.   
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Define the free electron density  
N

n
V

  and then obtain the speed of electrons 

(drift speed) 

  
j

u
ne

 . (4.5) 

 

2.  Ohm's law  

 

The relationship between the potential difference and 

current is given by the law that was discovered by German 

physicist and mathematician Georg Simon Ohm (1789-1854) 

in 1827 (Fig. 4.2). 

 

 

Ohm's law in integral form: the voltage 1 2U     and 

current I  are proportional 

  U I R  . (4.6) 

The constant of proportionality R is called the resistance. 

The unit of resistance is Volt/Ampère, or Ohm.  

  =V А= Ohm = ΩR . 

Voltage can be thought of as the pressure 

pushing charges along a conductor, while the 

electric resistance of a conductor is a measure 

of how difficult it is to push the charges along. 

Using the flow analogy, electric resistance is similar to friction. For water flowing 

through a pipe, a long narrow pipe provides more resistance to the flow than does a 

short fat pipe. The same applies for flowing currents: long thin wires provide more 

resistance than short thick wires do. 

The resistance of a conductor R  depends on its length, cross-sectional area, 

material and temperature, and also on the configuration of current in a conductor. For 

the uniform cylindrical conductor (a wire) resistance is 
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l

R
S

 , (4.7) 

where   is resistivity of  material (   is dependent on the microscopic properties 

of the conducting material), l  and S  are the length and the cross-sectional area of a 

wire, relatively. 

At the atomic level, currents are pictured as the flow of the outer electrons of 

atoms through the material. Resistance then results from collisions of electrons with 

other electrons and with atoms. From this we would expect that raising the 

temperature of a material would increase the resistance, as the added heat energy 

would cause the electrons move faster and hence collide more often. 

  0(1 )t     , (4.8) 

where 0  is the resistivity at 0˚С;   is a temperature coefficient of resistance, 

and t  is the temperature in Celcius degrees. 

The materials for which the relationship between the voltage and the resistance is 

in accordance with Ohm’s law are ohmic conductors (or linear conductors); the 

materials with more complicated relationship are non-ohmic conductors. 

Let’s find Ohm's law in the differential form. Taking into account that I j dS  ;              

U E dl  , and  
dl

R
dS

 , substitute these expressions into the formula 
U

I
R

 , and  

receive  

  
1

j E


  . (4.9) 

Then Ohm's law in differential form is 

  
1

j E E


  , (4.10) 

where 1   is an electric conductivity. 

  -1 -1 -1 -1 = Ω m  = Siemens m  = S m    . 
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3. Fundamental Ohm's law 

 

If all forces acting on carriers of current are reduced only to electrostatic force, the 

positive carriers move from higher to lower electric potential and negative carriers – 

in the opposite direction. This process would lead to the equalization of potential and 

as a result to the stoppage of a current. Hence, the forces of another origin (not 

electrostatic) have to act in a direct-current circuit. They can be stipulated by a 

chemical and physical heterogeneity of a conductor (for example, the forces 

originating from the junction of heterogeneous conductors – in galvanic cells, or 

conductors with different temperature – in thermocouples) and some other reasons. 

These are so-called extraneous forces. 

If *E is a field-strength of extraneous forces (the magnitude of *E  is equal to the 

extraneous force acting on a unit positive charge) then fundamental Ohm's law in the 

differential form is 

   *j E E  . (4.11) 

  

4.  Ohm's law for the open and closed circuits. Electromotive force (emf) 

 

Let’s consider an electric current in a wire. 

The current direction coincides with the axis of a 

wire and j const  at any point of the wire cross-

section S  (Fig. 4.4).  

Divide the expression  *j E E   by , 

make a dot product of it and infinitesimal length ld


 and then take an integral over the 

length of the wire from the point 1 up to the point 2.  

2 2 2

*

1 1 1

j
dl E dl E dl


      . 

The first component is the potential drop on the section 1-2 of the wire: 

  

2 2 2 2 2

12

1 1 1 1 1

l

j I dl
dl j dl j dl dl I IR

S S
   


                . (4.12) 
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The second component is the potential difference (p.d.) of the points 1 and 2: 

  

2

1 2

1

E dl     . (4.13) 

The third component is  

 

2

*

1

E dl  12, (4.14) 

where 12  is the electromotive force (emf) operating on the section 12. 

[] = Volt = V. 

Electromotive force is the physical value 

equal to the work of the extraneous forces 

produced in moving a positive unit charge 

around the closed circuit. 

If emf promotes the motion of positive carriers of a current in the chosen direction 

it  is positive, otherwise, it is negative. 

Ohm's law for the open circuit is 

  1 2IR    12. (4.15) 

 

For a complete circuit the points 1 and 2 

coincide, hence, 1 2  , The total resistance of the 

circuit consists of the external (load)   resistance R   

and source resistance r < totalR R r  . 

In this case, the Ohm's law for the complete 

(closed) circuit  takes on form 

  

                                                     totalIR .                 (4.16) 

  

 

 

 

 

II. COMPLICATED CIRCUITS.  KIRCHHOFF’S RULES 
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Ohm’s law is applicable only for simple circuits. For complicated circuits, 

Kirchhoff’s laws can be used to find current or voltage. There are two generalized 

laws:   Kirchhoff’s current law and Kirchhoff’s voltage law.  They were formulated 

by the German scientist Gustav Robert Kirchhoff (1824-1887) in 1845 (Fig. 4.7). 

 The first Kirchhoff’s rule (Current Law) refers to any junction (node) of 

complicated circuit. A junction is the point in the circuit where three or more 

conductors are joined together. Another name of the first rule is the junction theorem. 

This theorem is explained by the law of conservation of charge.  

The first Kirchhoff’s rule:  

The algebraic sum of the currents at any junction of circuit is zero:  

  0k

k

I  . (4.17) 

A current is reckoned to be positive if it flows towards the node and negative if it 

flows away from it. It should not really matter which you choose to be the positive or 

negative current, as long as you stay consistent. 

 

 

The first Kirchhoff’s rule gives a set of equations. If m is the number of junctions 

in a complicated circuit, the amount of the independent equations is equal to  1m  .  

The second Kirchhoff’s rule (Voltage Law) connects the emf and potential drops 

(or potential differences)  (p.d.) in a complete circuit. It refers to any closed loop. A 
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loop in a circuit is any closed conducting path. Another name of the second rule is the 

Loop Theorem. This theorem is explained by the law of conservation of energy and 

the fact that the electric force is conservative. 

The second Kirchhoff’s rule: The algebraic sum of the emf is equal to the 

algebraic sum of all p.d. in any closed loop of circuit or the total voltage around a 

closed loop must be zero. 

  i i

i k

I R   k. (4.18) 

 To write down the equations according to the second rule we have to choose the 

direction of moving around the loop. The p.d. is positive if it is in the same direction 

as the net emf. 

 The amount of the independent equations according to the second rule is 

 1p m    , where p  is the amount of branches in the network. The branch (the 

arm) of a network is the part of circuit between two junctions. 

 

III. THE ELECTRIC CURRENT EFFECTS  

 

1. Heating effect of a current. Joule - Lenz’s law 

 

The conduction of electricity in metals is due to free electrons as they move 

through the metal. On their way they collide frequently with atoms. At each collision 

they lose some of their kinetic energy, and give it to the atoms which they strike. 

Thus, as the current flows through the wire, it increases the kinetic energy of vibration 

of the metal atoms: it generates heat in the wire. The electric resistance of the metal is 

due, we say, to its atom obstructing the drift of the electrons past them: it is analogous 

to mechanical friction. As the current flows through the wire, the energy lost by 

electrons per second is the electric power supplied by the battery which maintains the 

current. That power comes from the chemical energy liberated by these actions within 

the battery.  

Joule-Lenz’s law (or Joule’s First Law) is a law that defines the amount of heat  

Q  liberated in the conductor when an electric current I passes through it. The heat is 
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proportional to the conductor’s resistance R, to the square of the current 2I  and the 

time t for which the current flows: 

  
2

2 U
Q I R t UIt t

R
     . (4.19) 

This law was established in 1841 by English physicist James Prescott Joule (1818-

1889) and independently discovered and confirmed in 1842 by experiment of Russian 

physicist of Baltic German ethnicity Heinrich Friedrich Emil Lenz (1804-1865) (Fig. 

4.8). The heating effect of conductors carrying currents is known as Joule heating. 

   

2. Chemical effect of a current. Faraday's laws of electrolysis 

 

The passage of an electric current through a conducting solution causes chemical 

reactions. This is known as the chemical effect of electric current. Some of the 

chemical effects of electric current are the following: formation of bubbles of a gas on 

the electrodes, deposition of metal on electrodes, and changes the colour of solution.  

The process of decomposition of a chemical compound in a solution when an electric 

current passes through it is called electrolysis. The solution that conducts electricity 

due to the presence of ions is called an electrolyte. 

Electrolysis takes place in so-called ion conductors (ionic solutions) where the 

electric current is due to the movement of ions and there are associated chemical 

changes. In a typical experiment of electrolysis, two metal rods are immersed in an 
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ionic solution and connected to the two ends of a battery. The dissociated ions appear 

at the two plates. The English scientist Michael Faraday (1791-1867) was the first to 

carry out quantitative investigations and summarize them in the now two famous laws 

of electrolysis (1832-1834) (Fig. 4.9, a). He introduced in the scientific terminology 

and popularized the words ‘anode’, ‘cathode’, ‘electrode’, and ‘ion’   

Faraday's laws of electrolysis 

I. The mass of an element deposited or liberated during electrolysis is proportional 

to the quantity of charge q that passes through the electrolyte. 

  m k q k I t     . (4.20) 

where k  is the electrochemical equivalent of an element ( k  is the mass of 

element deposited or liberated by 1 Coulomb of electric charge). 

II. Electrochemical equivalents of elements are proportional to their chemical 

equivalents 

  1 1

2 2

k x

k x
 , (4.21) 

where 
A

x
n

  is a chemical equivalent; A  is atomic mass of element; n  is its 

valence. 

  1 2

1 2

x x
F

k k
  . (4.22) 

96485.33 96500AF e N     C·mol-1 is Faraday’s constant for electrolysis (the 

electric charge carried by one mole of electrons (or singly-ionized ions). It is equal to 

the product of the Avogadro number (constant) 236.022 10AN    mol-1, and the 

absolute value of the charge on an electron 191.6 10e    C).  

Mole (mol) is the fundamental SI unit of substance, defined as the amount of 

substance that contains as many elementary units (atoms, molecules, ions, etc.) as 

there are atoms in 0.012 kg of Carbon 
12C . 

 . 
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Two Faraday’s laws may be incorporated into one general law of electrolysis.   

  
1 1A A

m k q q I t
F n F n

         . (4.23) 

 

3. Magnetic effect of a current. Oersted’s experiment 

 

Danish physicist Hans Christian Oersted (1777-1851) (Fig. 4.9, b) was a professor 

of science at Copenhagen University. In 1820 he arranged a science demonstration to 

friends and students in his home. He planned to demonstrate the heating of a wire by 

an electric current, and also to carry out demonstrations of 

magnetism, for which he provided a compass needle 

mounted on a wooden stand. While performing his electric 

demonstration, Oersted noted to his surprise that every time 

the electric current was switched on, the compass needle 

moved. In the months that followed he worked hard trying 

to make sense out of the new phenomenon. In the end he 

published his findings without any explanation. French 

scientist Andre-Marie Ampère (1775-1836) read Oersted’s 

report, and in the space of a week had repeated the observations and developed a 

mathematical theory describing how the magnetic fields depends on the current. 

We’ll consider the nature of this phenomenon in the next chapters.  


