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BASIC FORMULAS

Biot-Savart Law

0 0
3 2
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where dl


is an infinitesimal  length of the conductor 

carrying electric current I , r


is the vector distance from the 

current to the field point, re


is unit vector to specify the vector 

r


, 7
0 4 10      (H/m) is the magnetic permeability of free 

space.

The magnitude of magnetic field vector is 

0
2

sin

4

I dl
dB

r

 


 
  .

Magnetic field (magnetic induction) due to a long straight wire is

0 02

4 2

I I
B

b b

 
 

    .   

The  direction is given by a right-hand rule: point the thumb of 

your right hand in the direction of the current, and your fingers 

indicate the direction of the circular magnetic field lines around the 

wire.

Magnetic field (magnetic induction) in the center of a 

circular loop:

0
0

2

4

I
B

R

 


  .   

A right-hand rule for circular loop: curl the fingers of 

your right hand in the direction of the current flow, and your 

thumb points in the direction of the magnetic field inside the loop.

Magnetic field (magnetic induction) at a distance b from a 

straight wire of finite length

 
2

1

0 0
2 1cos sin sin

4 4

I I
B d

b b





    
 

        

Magnetic field on the axis of a solenoid of 
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where N is the number of turns over the axial 

length l .

Ampere’s Law: Magnetic force (Ampere’s force) on a current-carrying wire 

 dl


in magnetic field B


is   

,dF I dl B   
 

.

The magnitude of Ampere’s force is 

sindF Idl 

The direction of the force F


may be visualized by 

the left hand rule: lines of magnetic field go into 

palm, fingers direction is direction of the current, 

and then the thumb points the direction of the force.

The force (per unit length) between two parallel current-

carrying conductors ( 1I and 2I ) separated by distance d

1 2
0 2l

I I
F

d





Magnetic dipole moment 

mp I S n  
 

,

where I is the current in the loop and S is its area n


is a normal to a loop. The 

direction of the magnetic moment is perpendicular to the current loop according to 

the right-hand rule.

The torque M


on a loop of the area S with current I in the magnetic field B


and its magnitude

,mM p B   
 

,    

sin sinmM p B ISB   .

The Lorentz force is acting on a particle of a charge q moving at the velocity v


:

,F q v B   
 

,

and its magnitude is

sinF qvB  .
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The equation for magnetic flux:  is the magnetic flux, B


is the magnetic field 

strength,  is the angle between B


and a normal to the plane of the loop n


; S is 

the area of the loop; S S n 
 

.

 , cosB S BS   


.

The elementary work done for displacement of the current-carrying conductor 

in the magnetic field

dA I d  
This is the equation for induced emf.   is the induced emf, d is the change 

in magnetic flux, and dt   is the change in time.

d

dt
 
 

The equation for the induced emf   in a loop (or conductor) of width l that is 

moving into or out of a magnetic field B


at a velocity v


.

Blv  .

A self-induced emf   is proportional to the time rate of change of the current 

s

dI
L

dt
   ,

where L is the inductance (depends on the geometry of the coil and other 

physical characteristics.

The inductance of a uniformly wound solenoid having N turns, the length

l and the cross-section area S is
2

2
0 02

N
L Sl n V

l
   ,

where n N l is the number of turns per unit length, V is the interior volume 

of the solenoid.
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Properties of substances

Substance Density, kg/m3 Resistivity, 
n ·m

Aluminum 32,6 10 25

Iron 37,9 10 87

Copper 38,6 10 17

Constants

Speed of light (EM waves) in vacuum or air  83 10c   m/s

Electric constant (vacuum permittivity) 12
0 8.85 10   F/m

01 4k  99 10   N·m2·C-2H/m

Magnetic constant (vacuum permeability) 7 6
0 4 10 1.2566 10      

0

4




710 H/m

Elementary charge  (proton, electron) 191.6 10e   C

 -particle charge 192 3.2 10q e
   C

Mass of electron 319.1 10em   kg

Mass of proton 271.66 10pm   kg

Mass of  -particle 274 6.64 10pm m
 � kg

Electron-Volt 1eV= 191.6 10 J
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Problem 1

Two long parallel wires carry the currents 1I = 20 A and 2I =30 A separated by 

a distance d = AB =10 cm. Find the magnetic field in the points:

1).  М1  (М1А = 2 cm); 2).  М2 (АМ2 = 4 cm); 3).  М3 (ВМ3 = 3 cm); 4).  М4  

(АМ4= 6 cm, ВМ4 = 8 cm); 5).  М5 (АМ5 = ВМ5 = 10 cm); 6). Find the point М6 on 

АВ line, where the magnetic field is zero.

Solution

According to the superposition principle, the magnetic field intensity at point 

M1 is the vector sum of the magnetic fields at this point created by both currents 

independently:

1 2B B B 
  

.

The magnetic fields 1B


and 2B


we’ll find using Biot-Savart Law. The 

magnitude of field  B


generated by a long, thin current is

0

2

I
B

b




 .

Plugging in 1I , we have 0 1
1

12

I
B

AM







, and plugging 2I , we obtain 

 
0 2 0 2

2
1 12 2

I I
B

BM AM AB

 
 

 
  

.

According to Bio-Savart Law 

0
3

,
4

I
dB dl r

r




   
 

,

the field due to a wire is perpendicular to a radial vector from the wire r


and to 

the infinitesimal wire segment dl


. Since both vectors ( r


and dl


) are in the figure 

plane, the magnetic field 1B


and 2B


are directed perpendicularly to the line AB. 

The directions of each vector are given by the right hand rule: 1B


is directed 

downwards and 2B


  - upwards. The magnitude of the magnetic field 1 2B B B 
  

   

at the point M1 is
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 
0 1 0 2

1 2
1 1

2 2

4 4

I I
B B B

AM AM AB

 
 

      


 7 40
2 2

20 30
2 10 2 1000 250 1.5 10

4 2 10 12 10




 
 

             
T.

2)  The similar reasoning for the point М2 leads to 

the result that the magnitude of the magnetic field

1 2B B B 
  

  is

 
0 1 0 2

1 2
2 2

2 2

4 4

I I
B B B

AM AB AM

 
 

      


 7 40
2 2

20 30
2 10 2 500 500 2 10

4 4 10 6 10




 
 

             
T.

3) For the point М3 the magnitude of the 

magnetic field 1 2B B B 
  

is

 
0 2 0 1

2 1
3 3

2 2

4 4

I I
B B B

BM AB BM

 
 

      


 7 40
2 2

30 20
2 10 2 1000 154 2,3 10

4 3 10 13 10




 
 

             
T.

4) If the separation between the currents AB 

= 10 cm, the distances АМ4 = 6 cm and ВМ4 = 

8 cm, then their ratio is АВ: ВМ4: АМ4 = 

10:8:6 = 5:4:3, therefore, the triangle ABM4 is 

so called Egyptian right triangle with an 

angle 0
4 90AM B  . In this case

0 1
1

4

2

4

I
B

AM




  , 0 2
2

4

2

4

I
B

BM




  .

The magnitude of the magnetic field 1 2B B B 
  

   at the point M4 is

2 2

2 2 0 1 0 2
1 2

4 4

2 2

4 4

I I
B B B

AM BM

 
 

   
        

   
= 

2 2 2 2
7 40 1 2

2 2
4 4

2 20 30
2 10 1 10

4 6 10 8 10

I I

AM BM




 
 

                           
T.
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5) If the point М5 is at a distance 10 cm from each current we obtain equilateral 

triangle, and the magnitude of the magnetic field 1 2B B B 
  

  at the point М5 is

2 2
1 2 1 22 cosB B B B B    

2 2

0 1 0 2 0 1 0 2

4 4 4 4

2 2 2 2
2 cos

4 4 4 4

I I I I

AM BM AM BM

    
   

   
          

   
2 2

0 1 2 1 2

4 4 4 4

2
2 cos

4

I I I I

AM BM AM BM

 


   
      

   
2 2

7 5
2 2 2 2

20 30 20 30 1
2 10 2 5,3 10

10 10 10 10 10 10 10 10 2
 

   
                  

T.

6.  Basing on the examined 1-3 cases we can make a conclusion that the point, 

where the magnetic field is zero, can’t be between the points A and B as the 

vectors 1B


and 2B


  are directed in the same direction. The “zero-point” may be to 

the left from the current 1I or to the right from the current 2I . But taking into 

account the magnitudes of the currents 1 2I I , the point M6 has to be to the left 

from the point A.

Let АМ6 = x .   Since 1 2B B B 
  

  and 1 2B B , then

0 1 0 2

6 6

2 2

4 4

I I

AM BM

 
 
  

and   1 2I I

x d x



.

2
1

2 1

20 10 10
0,2

30 20

I d
x

I I

 
  

 
m.
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Problem 2

Two infinitely long rectilinear conductors are arranged perpendicular to each 

other in one plane as shown in Figure. Calculate the magnetic field at points M 

and N if 1I = 3A and 2I = 4 A. The distances AM = AN = 2 cm and BM = CN = 4 

cm.

Solution

Magnetic inductions at each of the points according 

to the Principle of Superposition are

1 2M M MB B B 
  

,

1 2N N NB B B 
  

.

The magnetic fields 1B


and 2B


created by the 

currents 1I and 2I at points M and N can be found by means of Bio-Savart Law: the 

directions of vectors are determined by  0
3

,

4

I dl r
dB

r




   

 


, and the magnitudes 

of magnetic fields are determined by 0 2

4

I
B

r




  . For finding B


directions use the 

following rule: a wire with electric current going through it produces a magnetic 

field going in circles around it. To find the direction of the magnetic field, point 

your thumb in the direction of the current. Then, curl your fingers around the wire. 

The direction your fingers curl tells you the direction that the magnetic field is 

pointing

Depending on the direction of the vectors 1B


and 2B


(see the figure) the 

resultant field at the points M and N are:

1). At the point M:

70 1 2
1 2 2 2

2 2 2 3 2 4
10 8

4 2 10 4 10M M M

I I
B B B

AM BM


  

                 
A/m  

2). At the point N:

70 1 2
1 2 2 2

2 2 2 3 2 4
10 39.8

4 2 10 4 10N N N

I I
B B B

AN BN


  

                
A/m.
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Problem 3

The mutually perpendicular conductors carrying the currents 1I and 2I are 

shown in Figure. Assuming the conductors to be infinitely long, find the locus of 

points at which the magnetic field is zero.

Solution

Let y be the distance from a certain point on the conductor carrying current 1I

to a point P where the net field is zero and x is the distance from the point P to a 

certain point on the conductor carrying current 2I . Since the net field at the point P 

is zero, 1 2 0B B B  
  

, and each magnetic field induction is equal to 0 2

4

I
B

b




  , 

1 2B B . Hence, 

0 2 0 12 2

4 4

I I

x y

 
 



or   1

2

I
y x

I
 .

This is the equation of a straight line passing 

through the origin. Therefore, the locus of points where the net field is zero is a 

straight line passing through the origin, with gradient equal to 1 2I I . 

Problem 4

Two current-carrying wires are perpendicular to each other. The current 

1 20I  A in the first wire flows vertically upward and the current 2I =40 A in the 

other flows horizontally into the page. The horizontal wire is one meter to the right 

of the vertical wire. Find the magnetic fields at points M and N if OM = ON = 0.5 

m? 

Solution

From Biot-Savart law, the magnetic field generated by a long, thin current-

carrying wire is
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0

2

I
B

b





,

where b the distance is separated the wire and the point where the magnetic 

field is determined.

Therefore, the magnetic fields created by the first and the second wires at the 

point M and M are
7

60 1
1

4 10 20
8 10

2 2 0.5M

I
B

OM

 
 


 

   
 

T;

7
60 1

2

4 10 40
16 10

2 2 0.5M

I
B

PM

 
 


 

   
 

T;

7
60 1

1

4 10 20
8 10

2 2 0.5N

I
B

ON

 
 


 

   
 

T;    

7
60 2

2

4 10 40
5.33 10

2 2 1.5N

I
B

PN

 
 


 

   
 

T.

According to the principle of superposition

1 2M M MB B B 
  

,

1 2N N NB B B 
  

.

Determination of the directions of the magnetic fields with the help of the 

Right-hand rule gives that at point M: 1MB


- into the page, 2MB


- upwards; 1NB


-

out of page, 2NB


- upwards. Then the magnitudes of magnetic at the points M and 

N are

   2 22 2 6 6 6
1 2 8 10 16 10 17.9 10M M MB B B           T,

   2 22 2 6 6 6
1 2 8 10 5.33 10 9.6 10N N NB B B           T..
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Problem 5

Two concentric circles of radius 2 cm and 4 cm respectively carry currents of 

2A and 4A in a clockwise direction. What is the net magnetic field at the center? If 

the direction of current in the inner circle is reversed, what is net magnetic field at 

the center?

Solution

According to Bio-Savart Law the magnetic field due to the circular loop is 

directed normal to the plane of the loop and its magnitude is equal to 0

2

I
B

R


 . 

Then the magnitudes of the magnetic fields of  the 

currents 1I and 2I are

7
50 1

1
1

4 10 2
6.28 10

2 2 0.02

I
B

R

  
 

   


T,

7
50 2

2
2

4 10 4
6.28 10

2 2 0.04

I
B

R

  
 

   


T.

Both vectors 1B


and 2B


are in the same direction, the resultant field B is also 

the same:
5 5 4

1 2 6.28 10 6.28 10 1.256 10B B B           T.

If the direction of the current in the inner circle is reversed, the direction of 1B


reverses. Now 1B


and 2B


are equal in magnitude and opposite in direction. Hence 

the net magnetic field is zero.

Problem 6

A current I =50 A flows through a straight wire AB of finite length. Find the 

magnetic field B at distance r =0.2 m from the wire, the ends of the wire making 

inner angles 1 =300 and 2 =450 with P. 
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Solution

Each element of AB creates at P the magnetic field dB which may be found 

from Biot–Savart law and is given by

0 cos

4

I d
dB

b

  


 
  .

Since the direction of the contribution dB at point  P  for all such elements is 

identical, i.e. at right angles to the plane of paper, the resultant field is obtained by 

integrating dB from A to B  

2 2

1 1

0 cos
4

I
B dB d

b

 

 

  


     .

The given angles 1 =300  and 2 =450 give us 0
1 60

3

   and 0
2 45

4

   . 

Then 

4
0 0 04

3
3

7
40

2 3
cos sin

4 4 4 2 2

4 10 50 1.57
1.57 1.57 10 T.

4 0.2

I I I
B d

b b b

I

b







    
  












  
              

  
     



Problem 7

A conductor consists of a circular loop of radius R and two straight long 

sections, as shown in Figure. The wire lies in the plane of the paper and carries a 

current I. Determine the magnitude and direction of the magnetic field at the 

center of the loop.
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Solution

The magnetic field is the superposition of the fields created by long wire and a 

circular current loop. It is necessary to pay attention that the conductor consists of 

two straight semi-infinite sections.  Hence, the field at point O is equal to

12 23 0B B B B  
   

.

According to Bio-Savart Law  and right hand rule the magnetic inductions 12B


and 23B


point in the same direction, into the page. As for circular loop, depending 

on the direction of the current in it, the magnetic field induction 0B


may be into or 

out of page. 

The magnitudes of the magnetic fields of semi-infinite sections we can find 

using the following expression:

2 2

1 1

0 cos
4

I
B dB d

b

 

 

  


     .

0 2
0 0

13 12 23
0

2

2
0 0

2

cos cos
4 4

2
cos .

4 4

I I
B B B d d

R R

I I
d

R R









    
 

  
 





        

    

 



    

So, two semi-infinite sectors of wire create the magnetic field the same as the 

infinitely long straight wire.
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The field at the point O is

0 0 0
13 0

1
1

2 2 2

I I I
B B B

R R R

  
 

       
 

.

Problem 8

A wire is formed into the shape showed in the Figure. A current I = 20 A flows 

in the circuit, and R = 0.2 m. Determine the magnitude and direction of the 

magnetic field at the center O.

Solution

The Superposition Principle states that 

net magnetic field produced at any point 

by a system of sources is equal to 

the vector sum of all individual fields, 

produced by each source at this point. Therefore, the magnetic field at the point O 

is

12 23 34 45 56B B B B B B    
     

.

Let us determine the magnitudes of magnetic fields of all curve and linear 

segments of circuit.

A linear segment 1-2 is a semi-infinite segment which magnetic field may be 

determines as
0

0 0 0
12

2

cos sin 0 sin
4 2 4 2 2 4 2

I I I
B d

R R R

    
  



               .

A curvilinear segment 2-3 is a quarter of the circular loop which magnetic field 

with provision for the radius of the arc is 2R may be presented as

 23 0 0

1

4 2 2 16

I I
B

R R
   .

A producing the line 3-4 passes through the point O, therefore, 

34B


= 0. 

A curvilinear segment 4-5 is three fourth of the circular loop of radius R , then 

the magnetic field created by this segment is
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45 0 0

3 3

4 2 8

I I
B

R R
    .

Finally, the rectilinear semi-infinite segment 5-6 gives  
0

0 0 0
56

2

cos sin 0 sin
4 4 2 4

I I I
B d

R R R

    
  



               .

The directions of the all vectors B


may be determined according to Biot-Savart 

Law (they all normal to the paper) using the right hand rule. As a result, 12B


, 23B


and 45B


are directed  into the paper, and 56B


-  out of the paper.

12 23 34 45 56.B B B B B B

  

    
�

     

The magnitude of the magnetic field at the point O is

50
0 0 0 0

3 1 1 3 1
5 10

4 2 16 8 4 4 2 4 2

II I I I
B

R R R R R


   

   
             

�

T.

Problem 9

A wire of 0.2 m long carrying a current of 10 A is at right angles to a magnetic 

field. The force on the wire is 0.1 N. 1). What is the strength of the magnetic field? 

2). What would its strength be if the wire is at an angle of 300 to the field?

Solution

The magnetic force acting on the current-carrying wire in the magnetic field B


is

,F I l B   
 

,

where l


is a length vector with magnitude  l and directed along the direction of 

the electric current.

The magnitude of this force is 

sinF IlB  .

Magnetic field strength H


is related with the magnetic field induction B


by  

0B H
 

,
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where  is the magnetic permeability of substance (for vacuum 1  ), 
7

0 4 10    H/m is the magnetic constant ( or magnetic permeability of free 

space). 

1). The magnetic field strength when the wire is at right angle to a magnetic 

field is 

4
7

0 0

0.1
3.98 10

sin 4 10 10 0.2

B F
H

Il        
  

A/m.

2). If the wire is at an angle of 300 to the field the magnetic field strength is

4
7

0 0

0.1
7.96 10

sin 4 10 10 0.2 sin30

B F
H

Il        
    

A/m.

Problem 10

A conductor of the length l=0.2 m suspended by two flexible wires as in the 

figure below has a mass per unit length 0m = 0.05 kg/m. The magnetic field is B = 

2.1 T and is directed into the page.  1). What current must exist in the conductor

for the tension in the supporting wires to be zero? 2). What will be the tension in 

each wire if the direction of the current is reversed, keeping the magnetic field 

same as before and neglecting the mass of the wires?

Solution

1). In order that the tension in the wires be zero, the 

magnetic force ,F I l B   
 

acting on the conductor must 

exactly cancel the downward gravitational force mg


, i.e., 

0mg F 


.

The magnitude of magnetic force is sinF IlB  . 

Taking into account that sin =1 and 0 gmg m l , we get

0m lg IlB .

Finally, from 0m g IB , the current in the wire is

0 0.05 9.8
0.23

2.1

m g
I

B


   A.

The direction of the current may be determined using 
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the left hand rule: if you orient your left hand so that the outstretched fingers point 

in the direction of the current and the magnetic field lines enter into your palm, the 

extended thumb points in the direction of the magnetic force on the conductor. 

Placing the hand in such a way, we can find that the current flows to the right. 

2). Keeping the magnetic field same as in the first  part,  if the direction of 

current is reversed, then the force due to the magnetic field and gravity act 

downwards. Then from

2 0Amg T F  
 

we obtain

     00.5 0.5 0.5 0.2 0.05 9.8 0.23 2.1 0.1AT mg F l m g IB          N.

Problem 11

An aluminum conductor having a length of 20 cm and cross-section area 0S = 

70 mm2 is suspended on two thin conductors. If the conductor carries a current of 

11.7 A it deflects from the vertical in homogenous magnetic field B= 5 mT by an 

angle . Find this angle.

Solution

First of all we have to realize which forces are acting 

on the current-carrying conductor. Since the conductor

is placed in a magnetic field it is a magnetic force 

(Ampere’s force) AF


. Its direction given by the left-hand 

rule points to the right. Next, there is the gravity mg


acting on the conductor

downwards. The sum of these forces gives the final force acting on the conductor

(see picture) which compensates the forces of the two thin wires (2T


) on which the 

conductor is hanged. 

2 0Amg T F  
 

.

The projections of this equation on x- and y-axes are

2 sin 0,

2 cos 0.
AT F

T mg




  
  
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Ampere’s force is sinAF IlB IlB  (as 0sin sin90 1   ),  and mass of the 

conductor is 

0Al Alm V S l   .

Dividing the first equation of the system by the second equation, we obtain

2 sin

2 cos
AT F

T mg



 ,

3

3 6
0 0

11.7 5 10
tan 0.032

2.7 10 70 10 9.8
A

Al Al

F IlB IB

mg S lg S g


 





 
    

   
,

0arctan 0.032 1.8   .

Problem 12

A copper rod is mounted on two parallel rails separated by a distance l =15 

cm, which are located in the magnetic field directed into the page (see the Figure).

The rod is at a right angle to the rails. The coefficient of friction between the rod 

and the rail is k = 0.2. To move the rod uniformly it is necessary to apply the 

voltage U = 4.55·10-4V across the rod. Find the induction of the magnetic field.

Solution

The rod with the current I moves in magnetic field B


due to the action of the 

Ampere’s force  ,F I l B   
 

. 

The equation of its uniform motion is 

0frmg F N F   
  

,

and the projections of this equation on x and y – axes are

: 0,

: 0,
frx F F

y N mg

 
  

In these equations the friction force is
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frF kN ,

where k is the coefficient of friction and N is the normal force: N mg . 

The magnitude of  Ampere’s force is F Ilb as sin 1  . 

According to Ohm’s Law, the current is  I U R , where the resistance is 

0

l
R

S
 and  is the resistivity of copper; l is its length and 0S is a cross-

section area.

The mass of the rod is 0m DV DS l  , where D is the density of the rod 

substance.

Combining all expressions in 0frF F  , we obtain

0kN IlB  ,

0
0 0

US
kDS lg lB

l
  .

The induction of the magnetic field is 

0

0

kDS lg
B

US


 .

Substituting the given and reference data (for copper: the density 38.93 10D  

kg/m3 and the resistivity 81.7 10   ), we obtain
3 8

2
4

0.2 8.93 10 0.15 9.8 1.7 10
9.81 10

4.55·10

kDlg
B

U

 




     
    T.

Problem 13

Two long parallel rectilinear conductors are 10 cm apart. The currents 1I = 20 

A and 2I =40 A flow through the conductors in the same direction. What is the 

magnitude of the magnetic field 1B created by 1I at the location of 2I ? What is the 

force per unit length exerted by 1I on 2I ? What is the magnitude of the magnetic 

field 2B created by 2I at the location of 1I ?  What is the force per unit length 

exerted by 2I on 1I ? What work is required (per unit length of the conductors) to 

move them apart a distance of 30 cm.
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Solution

The magnetic induction B of the field, generated by a long, thin current flowing 

in the wire at the distance x x from the wire, is

0 2

4

I
B

x




  .

Plugging in 1I , we have the induction magnetic field 

created by 1I at the location of 2I

0 1
1

2

4

I
B

x




  .

This magnetic field depends on the distance from 1I , 

but because the wires are parallel, the B field from 1I is constant along 2I . We can 

use the right hand rule to determine that 1B


is perpendicular to both 1I and   x .

The similar result for 

0 2
2

2

4

I
B

x




  .

The force F


on a current carrying wire of the length l in a uniform magnetic 

field B


is

,F I l B   
 

.

Taking into account that the angle between  l


and B


is 900, and sin 1  , the 

force per unit length is

1 1 2 0 1 2
1 1 2

sin 2

4l

F I l B I I
F I B

l l x

 


  
      ,

1 2 1 0 1 2
2 2 1

sin 2

4l

F I l B I I
F I B

l l x

 


  
      .

7
40 1 2

1 2

2 10 2 20 40
1.6 10

4 0.1l l l

I I
F F F

x





   

       N/m.

Work done is

  0 1 22
, cos

4l l l l

I I
dA F dx F dx F dx dx

x





         

 
.
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2 2

1 1

0 0 2
1 2 1 2

1

7 4

2 2 ln
4 4

30
10 2 20 40 ln 1.758 10 J/m.

10

x x

l l

x x

dx x
A F dx I I I I

x x

 
 

 

       

      

 

Problem 14

In Figure, the current in the long, straight infinite wire is 1I = 5  A and the wire 

lies in the plane of the rectangular loop, which carries 2I =10 A. The dimensions 

are a = 0.15 m, b = 0.1 m, and  c = 0.5 m. Find the magnitude and direction of 

the net force exerted on the loop by the magnetic field created by the wire.

Solution

Even though there are forces in opposite directions on the loop, we must 

remember that the magnetic field is stronger near the wire 1B


than it is farther away 

2B


:

0 1
1 2

I
B

a




 and 
 

0 1
2 2

I
B

a b







By symmetry the forces exerted on sides 

23 and 14 (the horizontal segments of length 

b ) are equal and opposite, and therefore 

cancel. The magnetic field in the plane of the 

loop is directed into the page to the right of 

1I . By the right-hand rule, 12 2 12 1,F I l B   
 

is 

directed toward the left for side 12 of the 

loop and a smaller force 34 2 34 2,F I l B   
 

is 

directed toward the right for side 34. Therefore, we should expect the net force to 

be to the left. The magnitudes of these forces allow for the fact that magnetic field 

and the conductor are mutually perpendicular to each other ( 0sin sin90 1   ), are 

0 1 2
12 2 12 1 sin

2

I I c
F I l B

a




  ,
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 
0 1 2

34 2 34 2 sin
2

I I c
F I l B

a b




 


.

The net force is 12 34F F F 
  

, and its magnitude directed to the left is

   
0 1 2 0 1 2 0 1 2 0 1 2

12 34

1 1

2 2 2 2

I I c I I c I I c I I cb
F F F

a a b a a b a a b

   
   

           
.

Substituting the given data, we obtain

 
7

54 10 5 10 0.5 0.1
1.33 10

2 0.15 0.15 0.1
F





    

  
  

N.

Problem 15

A coil of the turn area S = 200 cm2 is mounted in a uniform magnetic field B = 

8·10-4 T. There is a current of 20 A in the coil, which has 25 turns. When the plane 

of the coil makes an angle of 600 with direction of the field, what is the torque 

tending to rotate the coil?

Solution

The torque on the circuit in the field of the magnetic induction B


is

,mM p B   
 

,

where mp


is the magnetic moment of the circuit directed along the normal n


to 

the turn plane. The magnitude of the magnetic moment is

mp ISN , 

where N is the number of the turns in the circuit, I is the current in the circuit, 

and S is the area it encloses.

The direction of  mp


is given by the right 

hand rule: wrap the fingers of your right hand 

around the circuit in the direction of the current, 

and the direction in which your thumb points 

then be the direction of mp


. 

The magnitude of the torque is   

sin sinmM p B ISNB   ,
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where  is the angle between the normal to the plane of turn and the direction 

of the magnetic field B


. The given angle is the angle that the plane of the coil 

makes with direction of the field. Then the angle that we need is 
0 0 0 090 90 60 30      .

Inserting all given data, we find
4 0 3sin 20 0.02 25 8 10 sin30 4 10M ISNB            N·m.

Problem 16

Find the ratio of the magnetic moment and orbital angular momentum for the 

electron orbiting in the atom about the nucleus.

Solution

In the classical model we assume that an electron moves with constant speed v

in a circular orbit of radius r about the nucleus. Because the electron travels a 

distance of  2 r (the circumference of the circle) in a time interval T, its orbital 

speed is 2v r T . The current I associated with this orbiting electron is its 

charge e divided by T. Using  2T   and v r  , we have

2 2

e e ev
I

T r


 

   . 

The magnetic moment associated with this 

current loop is mp IS ISn 
 

, where 2S r is the 

area enclosed by the orbit, and n


is the unit normal 

to the loop. Therefore,

2

2 2m

ev evr
p IS r

r



    . 

Since the magnitude of the angular momentum of the electron is L mvr , the 

ratio of the magnetic and orbital angular momentum is

2 2
mp evr e

L mvr m
  .

This is so called gyromagnetic (or magnetic) ratio which magnitude for electron 

is    
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19
10

31

1.6 10
8.8 10

2 2 9.1 10
mp e

L m






   

 
C/kg.

Its important to note that vectors mp


and L


point in opposite directions because 

the electron is negatively charged particle.

Problem 17

An electron in the ground state of hydrogen atom is revolving in anti-clockwise

direction in a circular orbit of radius R =5.3·10-11 m at the velocity v = 2.19·106 

m/s. 1) Find the magnetic moment of electron mp . 2) The atom is placed in a 

uniform magnetic field (B = 2 T) such that the plane normal of the electron orbit 

makes an angle of 300 with the magnetic induction B


. Find the torque experienced 

by the orbiting electron.

Solution

Current constituted as a result of the motion of electron is equal to

2

e ev
I

T R
    ,

where 191.6 10e   C is the elementary charge, and v is a linear velocity of its 

motion along the circular path.

Magnetic moment is

mp ISn
 

, 

where 2S R is the area of the circle, and  n


is the normal to the plane of the 

circle.  

The magnitude of the magnetic moment is
2 19 6 11

241.6 10 2.19 10 5.3 10
9.3 10

2 2 2m

ev R evR
p IS

R




 
    

      A·m2.

The torgue experienced by the orbiting electron is ,mM p B   
 

, and its 

magnitude is

sinmM p B  ,

where  is the angle between the normal to the plane of the orbit and the 

magnetic induction vector  B


.
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Therefore,
0 24 24sin30 9.3 10 2 0.5 9.3 10mM p B         N·m.

Problem 18

The circular loop of the radius  R = 2 cm is located perpendicularly to the 

direction of the uniform magnetic field of the strength H = 150 A/m. The current in 

the loop is I = 2 А. Find the work which is required to turn the loop by the angle 

 = 900 about the axis coinciding with the diameter of the loop. Suppose the 

current is unchanged during the turn.

Solution

The problem may be solved by two methods.

1. The torgue acting on the loop is

,mM p B   
 

, 

where mp IS ISn 
 

is the magnetic moment of the loop, S is an area of the 

loop, n


unit normal to the loop. 

The magnetic field induction B


related to the magnetic field strength H


according  to 0B H
 

, where 7
0 4 10    H/m is the magnetic constant (or 

vacuum permeability).

The magnitude of the torque is sinmM p B  , where  is the angle between 

mp


and B


. 
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In the initial position when the vectors mp


and B


are of the same direction, and 

the torque 0M  and the loop is in the equilibrium state.  For turning the loop from 

this state the external force has to do the work.

The elementary work of the external force is 
2sin sin sinmdA M d p B d ISB d I R B d           .

The work don at the turn by the finitesmal angle is

 
0 090 90 0

2 2 2 2

0 0

90
sin sin cos

0
A I R B d I R B d I R B I R B              

2 4 7 3 5
0 2 4 10 4 10 150 10 3,16 10I R H               J.

2. The work may be determined by another method using the expression for the 

work of magnetic field  dA Id  , where cosBS   is the magnetic flux,  is 

the angle between B


(or H


) and the normal to the loop.

In the initial position the magnetic flux  1 BS  is maximum, and in the final 

position 2 0  . Then

  2 5
2 1 0( ) 0 3,16 10dA Id I I BS IBS I R H                J.

We have obtained the same value of the work but with the opposite sign 

because in the first case we found the work of external force (it is positive), and in 

the second case we found the work of magnetic field. This work is negative as the 

external force done this work. 

Problem 19

The rectangular loop (a = 0.5 m, b=0.6 m) consists of N = 75 turns and carries 

a current of I = 5 A. A magnetic field B = 2 T is directed along the +y axis. The 

loop is free to rotate about the z-axis. Determine the magnitude of the net torque 

exerted on the loop. State whether the  = 30° angle will increase or decrease.

Solution

The torque on the loop is given by ,mM p B   
 

, where  mp NISn
 

is the 

magnetic moment of the loop.
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The magnitude of the torque is sinmM p B  ,  where mp NIS NIab  , and 

the angle   between the normal to the plane of the loop and the magnetic field is
0 0 0 090 90 30 60      . 

The magnitude of the net torque exerted 

on the loop is 

sinM NIabB  .

75 5 0.5 0.6 2 0.866 195M        N.

When a current-carrying loop is placed in 

a magnetic field, the loop tends to rotate 

such that its normal becomes aligned with 

the magnetic field. The normal to the loop 

makes an angle of 60° with respect to the 

magnetic field. Since this angle decreases as the loop rotates, and the angle 
increases.

Problem 20

A positively charged particle entering a 0.6-T magnetic field (directed out of the 

paper). The particle has a speed of 300 m/s and moves perpendicular to the 

magnetic field. Just as the particle enters the magnetic field, an electric field is 

turned on. What must be the magnitude and direction of the electric field such that 

the net force on the particle is twice the magnetic force? Determine the conditions 

under which the particle moves in the same direction as it moved before entering 

into the fields.

Solution

According to the expression   ,F q v B   
 

, the magnetic 

force on the positively charged particle is toward the bottom 

of the page in the drawing in the text.  If the presence of the 

electric field is to double the magnitude of the net force on 

the charge, the electric force and, consequently, the electric 

field must also be directed towards the bottom of the page. 
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Furthermore, if the magnitude of the net force on the particle is twice the 

magnetic force, the electric force eF qE must be equal in magnitude to the 

magnetic force sinmF qvB  (with sin =1).

sinqE qvB  .

Then, solving for E

300 0.6 180E vB    V/m.

If the particle4 is moving without changing its direction 

in the magnetic and electric fields, it means that the net force 

on this particle is zero. This is possible when electric force is equal to the magnetic

force in the magnitude and opposite in direction, i.e., when the electric field is 

directed upwards to the top of the page.  

Problem 21

A proton (charge +e, mass pm ) is accelerated through a  potential difference  

 =100 V. The particle enters a uniform magnetic field B


(B= 2T) with a 

velocity in a direction perpendicular to B


. 

1) Describe the motion of the proton.

2) Determine the values of the radius of the circular path, the orbital period for 

the motion,   cyclotron’s frequency and the angular momentum of the particle. 

Solution

The speed of the particles can be found from the kinetic energy resulting from 

the change in electric potential given. An electric field changes the speed of 

charged particle according to 

2 1k k k eW W W A    .

Since the initial velocity of the proton 0 0v  , its initial kinetic 

energy
2
0

1 0
2k

mv
W   . The final kinetic energy is

2

2 2k

mv
W  , and the work of 

accelerating electric field is A q e     .  Then

2

2

mv
e   .
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The velocity of the proton when it enters the magnetic field is

2e
v

m


 .

The force on the proton in a magnetic field is given 

by ,mF q v B   
 

, where v


is a velocity of the proton 

and B


is the magnetic field induction. This force is 

always perpendicular to the direction of motion of the 

particle, and will therefore only change the direction 

of motion, and not the magnitude of the velocity. If 

the charged particle is moving in a uniform magnetic 

field, with strength B


, that is perpendicular to the 

velocity v, then the magnitude of the magnetic force is 

given by

mF qvB evB  ,

and its direction is perpendicular tov


. As a result of this force, the particle will 

carry out uniform circular motion. The radius of the circle is determined by the 

requirement that the strength magnetic force is equal to the centripetal force.

The normal (centripetal) acceleration is perpendicular to the velocity and has a 

magnitude
2

n

v
a

R
 , where R is the radius of the circle. Applying Newton’s second 

law to the proton motion n mma F


, we obtain

2mv
evB

R
 ,

mv
R

eB
 .

The orbital period for the proton’s motion is

2 2 2R mv m
T

v veB eB

  
   .

Cyclotron’s frequency is inverse proportional to the orbital period

1

2

eB
f

T m
  .

An angular momentum of the proton is
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 2
mv

L mvR
eB

  .

Substituting the given data, we obtain

19
5

27

2 2 1.6 10 100
1.4 10

1.66 10

e
v

m

 



   
   


m/s.

27 5
4

19

1.66 10 1.4 10
7.26 10

1.6 10 2
R






  
  

 
m.

27
9

19

2 1.66 10
5.18 10

1.6 10 2
T

 




 
  

 
s.

8
9

1
1.93 10

5.18 10
f   


Hz.

 27 5

25
19

1.66 10 1.4 10
1.7 10

1.6 10 2
L






  
  

 
kg·m2·s-1.

Problem 22

An electron after accelerated motion through a potential difference U =500 V 

enters a uniform magnetic field B


(B = 0.05 T) with a velocity v


that makes an 

angle  = 600 with the magnetic field. Find the trajectory of the electron and its 

parameters.

Solution

The speed of the electron is obtained from the 

work-energy theorem:
2

2

mv
eU  . 

Hence

19
7

31

2 2 1.6 10 500
1.33 10

9.1 10

eU
v

m





  
   


m/s.

The electron is acted on by the magnetic Lorentz force: ,F e v B   
 

. The cross 

product is perpendicular to both v


and B


, so the force will not change the 
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magnitude of the velocity, and therefore the magnitude of the force vector also 

stays constant: sinF evB  . 

The velocity of the electron may be decompose into two components 

sin ,

cos .

v v

v v




 
  �

Since the force has no component parallel to the  B


 sin 0F evB v B � �


, 

the motion of the electron in the direction of the field lines is uniform at v�= 

const.

The motion at v


  in a plane perpendicular to the field lines is along the circular 

path. The radius of its orbit can be determined by using Newton’s second law.

 
2

sinn

v
ma m ev B v B ev B

R


    


,

31 7
3

19

sin 9.1 10 1.33 10 0.866
1.31 10

1.6 10 0.05

mv mv
R

eB eB

 




   
    

 
m.

Thus the trajectory of the electron is a helix with its axis parallel to the field 

lines. In a reference frame moving along the electron at a parallel speed of  

cosv v � , the electron is moving in a circular orbit at a tangential speed  of  

sinv v   , and its orbital period is 

31
10

19

2 2 2 9.1 10
7.14 10

1.6 10 0.05

R m
T

v eB

   





 
    

 
s,

independently of the initial direction of the velocity of the electron.

Travelling at a speed of cosv v � , the electron  covers the distance h in a time 

period T :
31 7

5
19

2 cos 2 9.1 10 1.33 10 0.5
4.75 10

1.6 10 0.05

mv
h v T

eB

   




    
    

 � m.

Problem 23

A conducting rod 4 meters in length is placed in a magnetic field at right angles 

to the direction of B


which has a magnitude of 0.3 Tesla. If the rod is moved with 

a speed of 3 m/s in a direction perpendicular to its length and perpendicular to B


, 
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what emf is induced across the ends of the rod? Indicate the direction of the 

induced emf.

Solution

We first determine the direction of the induced emf in the 

rod. We can do this by using the magnetic component of 

Lorentz force ,mF q v B   
 

. The force acting on the 

negative charges in the rod moving to the right is directed

downward, and the bottom of the rod will become the 

negative end of the emf. 

The emf produced is given by:

   , cosd B S d B Sd dS lvdt
B B Blv

dt dt dt dt dt

 
            



.

Substituting the given data, we obtain the magnitude of the emf:

0.3 4 3 3.6     V.

Problem 24

A rod of length R = 50 cm rotates at an angular velocity  = 50 rad/s in a 

uniform magnetic field of induction B = 2 mT. Determine the emf  developed 

across the ends of the rod. 

Solution

Consider an element of length dr situated a distance 

r from the end of the rod (see Figure) If the linear 

velocity of the rod is at right angles to the field B


by 

which the element dr is moving,   the  emf developed 

across the element is given by

d B v dr B r dr        ,  
2

0 2

R B R
d B r dr

       .
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The same result may be obtained by the following reasoning. 

The emf according to the Faraday’s law of induction is

d

dt


   .

Since the change of the magnetic flux d takes place for the time of one 

revolution, and this the period of rotation is equal to
2 R

T
v


 , the emf is 

2 2

2 2 2

B S B R v BvR B R

T R

 


 
     .

On substituting the values of B , R and , we have

 23
22 10 50 0.5

1.25 10
2


  

    V.

Problem 25

A coil of 1000 turns and 12 cm radius flips 180˚ about an axis that points 

northward.  The coil has a resistance of 4.8 Ω.  The vertical component of Earth's 

magnetic field is 46 µT.  Find the total charge that flows when the coils flips.

Solution

Notice that the horizontal component of the Earth’s field contributes no flux. 

All the flux through the loop is due to the vertical component. Faraday’s Law 

requires,

d
N

dt


   .

The charge that flows is related to Ohm’s Rule,

dq
IR

dt
   .

Setting the voltage equal,

dq d
R N

dt dt


  ,

2

10

q
N

dq d
R





    ,
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   2 1 1 2

N N
q

R R
       .

The initial flux is just the product of the vertical component of the field and the 

area (cos 1  ):

  2
1 , cosV V VB S B S B r    


.

The final flux in just the opposite of the initial flux (cos 1   ):

  2
2 , cosV V VB S B S B r     


.

    
 

2
2 2

1 2

26
4

2

2 1000 46 10 0.12
8.67 10 C.

4.8

V
V V

N N NB r
q B r B r

R R R

 




       

    
  

Problem 26

A coil consists of N = 300 turns of wire. Each turn is a square of side a = 20 

cm and a uniform magnetic field directed perpendicular to the plane of the coil is 

turned on. If the field changes linearly from 0 to 0.5 T in t = 1s, what is the 

magnitude of the induced emf in the coil while the field is changing? What is the 

magnitude of induced current in the coil if its total resistance is 4R  Ω?

Solution

The area of one turn of the coil is 2S a . 

The magnetic flux 1 through the coil at 1 0t  is zero because 0B  at that 

time. At 2 1t  s, the magnetic flux through one turn is 2 cosBS BS   , as 

cos due to the perpendicularity of the magnetic flux and the normal to the turn 

plane.  The magnetic flux change is 2 1 B S      . Therefore, the 

magnitude of the induced emf is

 22 300 0.5 0.2
6

1

B S B a
N N N

t t t

     
     

  
V.

The current in the coil

6
1.5

4
I

R


   A.
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Problem 27

A 200-turn circular coil has a diameter of D =4 cm, a resistance of R = 80 Ω, 

and the two ends of the coil are connected together. The plane of the coil is 

perpendicular to a uniform magnetic field of magnitude B = 2 T. The direction of 

the field is reversed.  Find the total charge that passes through a cross section of 

the wire. If the reversal takes t =0.2 s, find the average current and   the average 

emf during the reversal.

Solution

An average current is equal to the total charge passing through the coil for the 

time t . Because the induced current is proportional to the induced emf and the 

induced emf, in turn, is given by Faraday’s law, we can express q as a function of 

the number of turns of the coil, the magnetic field, the resistance of the coil, and 

the area of the coil. Knowing the reversal time, we can find the average current 

from its definition and the average emf from Ohm’s law.

Faraday’s law gives

 cosd BSd dB
N N NS

dt dt dt


       ,

as 0cos cos90 1   due to perpendicularity of the magnetic field and coil’s 

plane.

On the other hand, according to Ohm’s law

dq
IR R

dt
   .

Combining these equations, we obtain

dq dB
R NS

dt dt
  .

Since the charge passes during the time interval when the magnetic field is 

changing

NS
dq dB

R
  ,

2 2 4
22 200 16 10 2

2.53 10
4 2 2 80

B

B

NS N D B N D B
q dB

R R R

   
   

      
 C.
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An average current is 
22.53 10

0.126
0.2

q
I

t


  


A.

An average emf in the coil is

0.126 80 10.11E IR    V.

Problem 28

The coil consists of N =20 turns of wire, each of area S = 0.1 m2, and the total 

resistance of the wire is R = 10 Ω. The loop rotates in a magnetic field of B = 1 T 

at a constant frequency of n =50 Hz.  Find the maximum induced emf max . What is 

the maximum induced current maxI when the output terminals are connected to a 

low-resistance conductor?

Solution

 
max

cos
sin sin sin

d BSd d
N N NBS NBS

dt dt dt

    
          .

Taking into account that 2 n  ,

max 2 20 1 0.1 2 50 628NBS n          V.

The maximum induced current

max
max

628
62.8

10
I

R


   A.

Problem 29

A square loop with length a = 0.5 m on each side is placed in a uniform 

magnetic field B = 2 T pointing into the page. During a time interval t =1ms the 

loop is pulled from its two edges and turned into a rhombus with acute angle as

shown in the Figure. Assuming that the loop is made of iron wire with cross-

section area 0S = 1 mm2, find the charge that passes through the loop and an 

average induced current in it.
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Solution

Using Faraday’s law, we have 

   , cosd B S d BSd dS
B

dt dt dt dt


       



,

dq
E IR R

dt
  ,

dq dS
R B

dt dt
  ,

   2

1

2 1 1 2
S

S

B S S B S SB
q dS

R R R

 
     .

Since the initial and the final areas of the loop are 2
sqS a and 

2 2sin 2 0.866rhS a a  , respectively; the resistance of the loop is 
0

l
R

S
 , 

where 60,087 10   Ω·m, 4l a , the charge that passed through the loop is

     2 2 2
01 2 0

sin 2 1 sin 2

4

B a a SB S S Ba S
q

R l a

 
 

 
   

 6

6

2 0.5 10 1 0.866
0.385

4 0.087 10





  
 

 
C.

The average induced current is

3

0.385
385

10

q
I

t   


A.
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Problem 30

Calculate (a)  the inductance of an air-core solenoid containing 300 turns if the 

length of the solenoid is 25 cm and its cross-sectional area is 4.00 cm2; and (b) the 

self-induced emf in the solenoid if the current it carries is decreasing at the rate of 

50 A/s.

Solution

The inductance of the solenoid is
2 2 7 2 4

4
0 02

4 10 300 4 10
1.81 10

0.25

N N
L Sl S

ll

 
 

   
     H = 0.181 mH.

Using the expression for the self-induced emf and given that 50
dI

dt
  A/s, we

obtain

4 31.81 10 ( 50) 9.05 10s

dI
L

dt
           V = 9.05 mV.




