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Chapter 5. MAGNETIC FIELD IN VACUUM 

 

I. MAGNETIC FIELD. BIOT-SAVART LAW 

 

1. Magnetic field 

 

The magnetic and electrical phenomena were considered for a long time to have 

a different nature and were unrelated to each other. For the first time the link 

between them was established by Danish scientist Hans Christian Oersted (1977-

1851). In 1920, he found out that a pivoted magnetic needle placed parallel to a 

wire carrying an electric current made a great oscillation. The needle deflected one 

way for one direction of the current and the opposite way for the other direction.     

 

French physicist Andre Marie Ampere (1775-1836) found In the same year the 

that the two conductors arranged parallel to each other feel a mutual attraction  

when currents flow in the same direction, and repulsion when the currents flow in 

the opposite directions. Ampere called this phenomenon of currents interaction    

the electrodynamic effect.  
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This strong interaction is carried out at a distance, and therefore must be 

associated with a force field. But it is not associated with an electric or 

gravitational interactions. Therefore, it is necessary to introduce other type of field. 

We call it the magnetic field. 

As with any force field, the magnetic field must be characterized by a vector 

quantity. This characteristic is magnetic field B  (magnetic induction or magnetic 

flux density). 

 = Tesla = TB . 

Magnetic fields are produced by electric currents (or moving charges) and 

affect only the currents (or moving charges).   

For magnetic fields the principle of superposition of fields is valid: the field 

generated by several sources (charges or currents) is the vector sum of the 

magnetic fields generated by them separately, 

                                                      i

i

B B .                                               (5.1) 

 

2. Biot-Savart law and its applications 

 

Biot-Savart law relates magnetic fields to the currents which are their sources. 

In a similar manner, Coulomb’s low relates electric fields to the point charges 

which are their sources. Finding the magnetic field resulting 

from a current distribution involves the vector product, and is 

inherently a calculus problem when the distance from the 

current to the field point is continuously changing. 

Each infinitesimal current element makes a contribution to 

the magnetic field at a chosen point which is perpendicular to 

the current element, and perpendicular to the vector from the 

current to this field point. If dB  is the magnetic field contribution from the current 

element Idl , the relationship between the magnetic field contribution and its 

source current element is called the Biot-Savart law, 

  0 0

3 2

, ,

4 4

rI dl r I dl e
dB

r r

 

 

   
        , (5.2) 

where dl is an infinitesimal  length of the conductor carrying electric current I , 

r  is the vector distance from the current to the field point, re  is unit vector to 
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specify the vector r , 7

0 4 10      (H/m) is the magnetic permeability of free 

space. 

The direction of the magnetic field contribution follows the right hand rule. 

This direction arises from the vector product nature of the dependence upon 

electric current. 

The magnitude of magnetic field vector is 

  0

2

sin

4

I dl
dB

r

 



 
  . (5.3) 

According to the principle of superposition the magnetic field at any point is  

  0

3

,

4

I dl r
B

r





 
   . (5.4) 

Applications of Biot-Savart law: 

 

а) Magnetic field due to a single, isolated, infinitely long  straight wire 

carrying a current 

Start with the Biot-Savart law 

0

3

,

4

I dl r
B

r





 
   . 

Let the angle between vectors dl and r  be 

  (instead of  ). Then the magnitude of the 

field is 

0

2

sin

4

I dl
dB

r

 



 
  .  

sin cos

sin cos cos
cos

cos

b
dl dl r d dl d

r b

 

    




 


       
 

.  

Consequently, 0 0

2

cos cos

4 4

I dl I d
dB

r b

    

 

   
     . 

All vectors dB  are of the same direction so we may summarize their 

magnitudes. Integrating  dB  in the limits 
2

 
 
 

 and 
2

 
 
 

 we obtain 

2 2

0 0

2 2

2
cos

4 4

I I
B dB d

b b

 

 

 
 

 
 

       . 
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So, the magnetic field due to a long straight wire is 

  0 02

4 2

I I
B

b b

 

 
    .   (5.5) 

The   direction is given by a   right-hand rule: point the thumb of your right 

hand in the direction of the current, and your fingers indicate the direction of the 

circular magnetic field lines around the wire. 

b) Magnetic field on the axis of a circular loop of radius R 

The total vector of magnetic field B  directs upwards and is equal to the sum of 

vertical projections ZdB  (the sum of horizontal projections XdB  is equal to zero). 

The angle between vectors dl and r is a right angle, therefore, 0

24

I dl
dB

r






  . 

0

2

cos
cos  

4
Z

I dl
dB dB

r

 




 
    . 

 Since

 
1

2 2 2

cos
R R

r
z R

  



, then 

 

0 0

33
2 2 2

  
4 4

Z

I dl R I dl R
dB

r
z R

 

 

   
   



. 

 

   

0

3
2 2 2

2

0 0

3 3
2 2 2 22 2

4

2
2

4 4

Z

I R
B dB dl

z R

I R R I
R

z R z R





  


 


   




    

 

 

. 

Special case is when 0z   (magnetic field in the center of a circular loop): 

  0
0

2

4

I
B

R

 


  . (5.6) 

 A right-hand rule for circular loop: curl the fingers of your right hand in the 

direction of the current flow, and your thumb points in the direction of the 

magnetic field inside the loop. 

 

3.  The magnetic field of a moving charge. Relationship between B  and E  

 

The current is the charge flow. In conductors the current is the directed flow of 

electrons moving with a velocity v (drift velocity). Then 
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I j S n e v S       , 

where S is a cross-sectional area of a conductor, 

n  is a number of carriers in a unit volume. 

So, taking into account that vectors v and dl are 

of the same direction, S dl is the infinitesimal 

volume of an element of a conductor, and n is the 

total number of carriers in this volume, we have: 

   0 0 0 0

3 3 3 3

, , , ,

4 4 4 4

I dl r n e v S dl r n e S dl v r dq v r
dB

r r r r

   

   

                   . 

The magnetic field of a moving charge is 

  
 0

3

,

4

q v r
B

r




  . (5.7) 

Any moving electrical charge generates both electric and magnetic fields. Let’s 

find the relationship between the electric and magnetic fields. 

Electric field of a point charge is 

2

0

1

4
r

q
E e

r
   , 

hence,  2

04 , rq r E e . Then, 

 

 

     (5.8) 

8

0 0

1
3 10c

 
    m/s is an electrodynamics constant (speed of light in free 

space), 0  is electric permittivity of free space, 0  is magnetic permeability of free 

space. 

 

II. FUNDAMENTAL LAWS OF A MAGNETIC FIELD 

 

Magnetic field, as well as electrical field, has two important properties. They 

are related to the flux and circulation of the vector B .  

       

 

2

0 0 00 0

3 3

0 0 0 0

0 0 2

4 , , , ,,

4 4

, , , ,
, ,

r r

r

r E e v r E e v rq v r
B

r r r

r e v E r v E v E
v E

r r c

   

 

   
 

     

               
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Magnetic field can be mapped out by the lines of the vector B  which may be 

defined as the lines whose tangents coincide with the vectors of magnetic field. 

The number of these lines per unit area is proportional to the magnitude of the 

vector B . 

 

1. Gauss’ law for magnetic field B   

 

Magnetic flux is the dot product of the average magnetic 

flux density  B  times the area   dS  that it penetrates, or the 

product of the magnetic field  B  times the perpendicular area  

 dS  that it penetrates. The contribution to magnetic flux Фd  for a given area is 

equal to the area times the component of magnetic field perpendicular to the area. 

   Ф , cosd B dS B dS B dS B dS B dS            . (5.9) 

 Ф = Weber = Wb . 

 Gauss’ law:   For closed surface, the sum of magnetic fluxes is always equal to 

zero 

  0
S

B dS  . (5.10) 

Thinking of the force lines as representing a kind of fluid flow, the so-called 

"magnetic flux", we see that for a closed surface, as much magnetic flux flows into 

the surface as flows out. Gauss’ law is the mathematical expression of the fact that 

no magnetic monopoles have ever been discovered (the sources of magnetic fields 

are currents). 

 

2. Circulation theorem for the vector B  (for the magnetic field of direct 

    currents in free space) 

 

Circulation theorem*. Circulation of a vector B  along any path is equal to 

product 0 and an algebraic sum of the currents enclosed by this path. 

Mathematically, 

  0Bdl I , (5.11) 
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where i

i

I I ( 0I  , if its direction connected with the direction of going 

around the contour by a right screw rule).  

In some textbooks this theorem is named “Ampère's Law” or “Ampère’s 

circuital Law”: sum of the magnetic fields along any closed path is proportional to 

the current that passes through. We use the name 

“Ampère's Law” for the law describing the forces 

between current-carrying wires in magnetic field, 

which is named “Ampère's force Law”. 

If circulation of a vector B  is not equal to zero, the 

magnetic field is not potential (like electrostatic). Such 

fields are called rotational or vorticity field. 

Like Gauss's Law, the circulation theorem can be used to find the magnetic 

field of a sufficiently symmetric current.  

а) Magnetic field due to a long (infinite) straight wire of radius a . 

Outside of a conductor (contour 1 ) (cos 1  , as B dl ) 

0cos 2Bdl B dl B dl B r I          .  

Consequently, for r a , 

  0

2

I
B

r




 . (5.12) 

Outside of a conductor (contour 2 ), taking into account the fact that  

22

2

rI r r

I a a





 
   

 
 , 

2

r

r
I I

a

 
  

 
,     

we obtain 

2

0 02 r

r
B r I I

a
  

 
    

 
.  

Consequently, for r a , 

  0

22

I r
B

a






 . (5.13) 
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b) Magnetic field inside a straight, infinite, air core solenoid 

 

Solenoid (a long straight coil of 

wire) can be used to generate a 

nearly uniform magnetic field 

similar to that of a bar magnet. Such 

solenoids have an enormous number 

of practical applications. The field 

can be greatly strengthened by 

adding an iron core. The magnetic 

field is concentrated into a nearly uniform field in the center of a long solenoid. 

The field outside is weak and divergent. 

Apply the circulation theorem for the path indicated. The current enclosed is 

enclosedI NI , where N is the number of turns inside the path and I is the current in 

the wire. The path integral of the field can be broken into four parts, one for each 

side of the path 

1 2 3 4

Bdl Bdl Bdl Bdl Bdl        . 

Along side 4 the field is close to zero. Along sides 1 and 3 the field is 

perpendicular to the path so, 
2

0 0 0Bdl Bdl Bl      . Assume that the 

solenoid is so long that symmetry requires the magnetic field to be constant along 

the path. Using the circulation theorem, 0 enclosedBdl I .    0Bl NI  .  

Consequently, 

  0 0

N
B I n I

l
       , (5.14) 

where n is an amount of turns per unit length of the solenoid. 

   

III. AMPÈRE'S LAW 

 

1. Ampère's force  

 

When a conductor carrying a current I  is placed into magnetic field B  the 

force on an infinitesimal segment of it  dl  is given by 
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                                                   ,dF I dl B    .                                 (5.15) 

This is the Ampère's force. This force acting on a 

conductor is always at the right angle to the plane 

which contains both the conductor and the direction 

of the field in which it is placed. The direction of the 

force F may be visualized by the left hand rule: you 

orient your left hand so that the outstretched fingers 

point in the direction of the current and the magnetic 

field lines enter into your palm. If your hand is oriented in this way, then the 

extended thumb points in the direction of the magnetic 

force on the conductor.  

Let us consider the magnetic force between two 

parallel wires carrying the currents 1I  and 2I . Magnetic 

field of current 1I at wire 2 according to Biot-Savart law 

is 0 1
1

2

4

I
B

b




  . The force on length l of wire 2 is 

2 2 1F I l B    (sin 1  , since B Idl ). Force per unit length is  

                         2 1 0 1 22

4
l

F I l B I I
F

l l b





  
   
 

,                                    (5.16)                            

where b   is the distance between wires. 

When the currents in both wires flow in the same direction, the force is 

attractive.  When the currents flow in opposite directions, the force is repulsive.  

 

2. The force acting on current loop. Magnetic dipole moment   

 

The net force on any arbitrarily shaped current loop placed into a magnetic field 

is 

                                                    ,F I dl B    .                                   (5.17) 

a) In the uniform field  B const  the vector B can be taken outside the 

integral sign and dl = 0, hence, 0F  , i.e. the force is equal to zero. 
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b) In the non-uniform field  B const  it is necessary to calculate an integral 

and the force, generally speaking, is nonzero. 

 

Let us consider a case when a contour is flat and its size is 

small enough (so-called unit loop). 

If I is the current in the loop and S  is its area, the 

magnetic moment (magnetic dipole moment) is 

  mp I S n   , (5.18) 

where n  is a normal to a loop. The direction of the magnetic moment is 

perpendicular to the current loop according to the right-hand rule. 

Using the magnetic moment, the expression for the force is 

  
m

B
F p

n


 


. (5.19) 

 

3. The torque on a current loop. Definition of B . 

 

If an arbitrarily shaped current loop is placed into 

a uniform magnetic field B , the total force is zero. 

Hence, the torque of Ampere’s forces is independent 

on the point of the forces application. 

 

The definition of torque is 

  ,M r dF    , (5.20) 

where ,dF I dl B    . 

So using the magnetic moment we may write that the torque on a current loop 

is 

  ,mM p B     (5.21) 



 12 

  

The magnitude of torque is  

  sinmM p B    . (5.22) 

а) If vectors mp  and B are parallel, 0M  , i.e. the torque is zero. The loop is in 

the state of stable equilibrium; 

b) If vectors mp  and B are antiparallel, 0M  , the torque is zero, as well, but 

the loop is in a state of labile equilibrium: the slightest deviation from this position 

leads to torque acting; 

c) If mp B ,   maxM M . 

The torque magnitude depends on the magnitude of mp . However, the ratio 

mM p  at the fixed angle   at a chosen point of the field remains constant. Hence, 

this ratio is the characteristic of this point of the magnetic field. 

Magnetic field (magnetic flux density) is a vector quantity, which magnitude is 

determined by expression  

  max

m

M
B

p
 , (5.23) 

and the direction coincides with the direction of the 

normal to loop in its stable equilibrium position in the 

magnetic field. 

  The expression ,M p B     is valid in every magnetic 

field. 

  In external non-uniform magnetic field the current 

loop behaves analogously to, how an electric dipole 

behaves  in an external non-uniform electric field: it  turns to the position of stable 

equilibrium (at which vectors mp  and B are parallel) and under the action of force 

F  the current loop is retracting into the area of a field where the magnitudes of 

B are larger.  

 

4. Work done on the displacement of a current conductor in the magnetic 

field 

 

The work done by Ampere’s force is   
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2

1

A F dx  ,  

where ,F I l B    . 

Let’s consider a specific case when B const , and B  is   

normal to the plane of the figure. Then B dl , 

and F I l B   . 

2 2 2

2 1

1 1 1

( )A I l B dx I BdS I dФ I Ф Ф I Ф            , 

  A I Ф  . (5.24) 

Though this formula was obtained for a specific case, it is valid for any 

arbitrary displacement in any magnetic field. 

 

 

IV. LORENTZ FORCE LAW 

 

1. The magnetic force on a moving charge 

 

The force on the current wire is ,dF I dl B    . The current is composed of 

individual charges. We want to know the magnetic force on a single charge. Recall 

the definition of current density,
I

j
S

 , then I j S   and ,dF j S dl B     . Using 

the expression for the drift velocity j n e v   , we obtain 

, , , , ,dF I dl B n e v S dl B n e S dl v B e n dV v B dq v B                              . 

The magnetic force acting on a single charge (magnetic component of 

Lorentz force) is 

  ,F q v B    . (5.25) 

and its magnitude equals to 

  sinF q v B     . (5.26) 

Both the electric and magnetic force can defined from Lorentz force law 

  , e mF qE q v B F F      . (5.27) 
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The electric force is straightforward, being in the direction of the electric field if 

the charge q  is positive, but the direction of the magnetic part of the force is given 

by cross product rule. 

The magnitude of magnetic force is zero when 1) the angle between the 

velocity and the magnetic field is zero (or 1800); 2) the velocity is zero. This 

implies that the magnetic force on the stationary charge or the charge moving 

parallel to the magnetic field is zero. 

The magnetic force is perpendicular both to the velocity of the charge and to the 

magnetic field, therefore, no work is done. Hence magnetic forces do no work on 

charged particles and cannot increase their kinetic energy. If a charged particle 

moves through a constant magnetic field, its speed stays the same, but its direction 

is constantly changing. 

Resolving the Lorentz force into components depends on the choice of the 

frame of reference as the velocity of the particle depends on the frame of reference. 

Let us compare electrical and magnetic forces eF  and mF  for two equal charges 

moving with velocity v  (v c –  light speed). 

2 2 2

, sin

m

e

F q v B

F q E

v E v E v E
B B E B

c c c






   


  


            

2

2

m

e

F qvB vvE v

F qE c E c

 
    

 
.  (5.28) 

This result allows making the following conclusions: 

1.  The explanation of the nature of magnetic interaction is possible only on the 

basis of modern physics as the velocity of light c  in Newtonian physics; 

2.  For usual velocities v c  the magnetic force a million times less than 

electrical force. 

But it is necessary to take it into account at least for two reasons: 

1.  when v c , the role of magnetic force sharply increases;  

2.  electrical force during the motion of electrons in wires is almost equal to 

zero due to the   balance of the positive and negative charges inside a conductor. 

Then magnetic interaction is practically unique in this case.  
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2. Charged particles in the magnetic field 

 

Since the magnetic force is always perpendicular 

to the velocity, a charged particle moves along the 

curvilinear path and the acceleration of the particle 

is the centripetal one.  Firstly, let us consider the 

special case, whenv B . 

According to Newton's second law ma F     

sinnma qvB  . As sin 1  , 
2v

m qvB
R
 .   

The radius of path is given by 

  
mv

R
qB

 . (5.29) 

All magnitudes in this expression do not change during the particle motion in 

uniform magnetic field, hence, the radius is constant for the given motion, and, 

therefore, the path of the particle is the circle. 

The period  

  
2 2 2R mv m

T
v vqB qB

  
   . (5.30) 

is independent on the velocity. In the given 

magnetic field it depends on the specific charge, 

i.e. the ratio q m . It allows classifying the 

charged particles in the magnetic field depending 

on their specific charges. The mass spectrometer 

is an instrument which can measure the masses 

and the relative concentrations of atoms and 

molecules.  

In the general case, the particle takes part in two motions simultaneously: along 

the circular path at the velocity v  and along the straight line at v (as the charged 

particle moving parallel to the magnetic field does not experience a force). 

Therefore, the general motion is the helical motion. If the angle between v  and  B  

is  ,  then sinv v    and cosv v  , hence   

  
mv

R
qB

 ;                      (5.31) 
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2v m

h v T
qB


  . (5.32) 

The property that magnetic forces compel the charged particles to change their 

direction of motion  without changing their speed is used in high-energy particle 

accelerators to focus the beams of particles which eventually collide with targets to 

produce new particles, and in the mass spectrometers, which are used to identify 

elements. In these devices the beam of charged particles (ions) enters the region of 

the magnetic field, where they experience a force and are bent in a circular path. 

The amount of bending depends on the mass (and charge) of the particle, and by 

measuring this amount one can infer the type of particle that is present by 

comparing to the bending of known elements. 

 

 

Chapter 6. MAGNETIC FIELD IN MATTER 

 

I. MAGNETIZATION OF MATTER. THE  MAGNETIZATION J . 

 

1. A field in a magnetic 

 

Placing any material into the magnetic field causes changing in the field and in 

this material because every substance is magnetic, i.e. it can be magnetized. So 

magnetization is acquisition by the material of the magnetic moment. 

Magnetic induces its own magnetic field B  which together with initial external 

magnetic field 0B  creates the total field in magnetic  

  0B B B  . (6.1) 

For this total field B  Gauss’ law is valid  

0BdS  . 

Therefore, the lines of the vector B  in the presence of substance remain 

continuous, i.e. they form closed loops. 
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2. The mechanism of magnetization 

 

The substances whose molecules have their own magnetic moments (the origin 

of them is tiny current loops connected with the orbital motion of electrons) are 

magnetized due to orientation of these moments in an external field This process 

induces the field B . 

If molecules of a substance without external magnetic field have no magnetic 

moments placing of these substances into a magnetic field creates currents in 

molecules. Therefore, molecules and the substance as a whole gain a magnetic 

moment that also causes a field Bappear. 

 

3.  The magnetization J  

 

The magnetization of a material is expressed in terms of density of net 

magnetic dipole moments in the material as the magnetic dipole moment per unit 

volume, i.e.  

  
1

mJ p
V



 , (6.2) 

where V a physically infinitesimal volume in a neighborhood of the given 

point, mp is a magnetic moment of a molecule. 

If n  is the concentration of molecules and mp  is an average magnetic moment 

of a molecule, magnetization is 

  mJ n p .                                          (6.3) 

 

4. Magnetization currents  

 

The macroscopic properties of matter are a manifestation 

of the microscopic properties of the atoms which it is 

composed of.  All matter is built up of atoms, and each atom 

consists of electrons in motion. The currents associated with 

this motion are termed atomic currents. Each atomic current 

is a tiny closed circuit of atomic dimensions, and may 
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therefore be appropriately described as a magnetic dipole. The magnetic dipole 

moments of moving electrons, protons, and neutrons create the magnetic fields of 

bulk materials.     

An elementary circular current in molecule is molecular current. Orientation of 

molecular currents causes the appearance of macroscopic currents I  , which are 

termed as magnetization currents. Usual currents connected with transition of the 

carriers of current in substance are termed as conduction currents I .   

To understand the appearance of magnetization currents imagine the cylinder 

made of the homogeneous magnetic with magnetization J  directed along its axis. 

The planes of molecular currents in the magnetized magnetic are oriented 

perpendicularly to the vector J . The molecular currents of adjacent molecules in 

places of their contact flow in opposite directions and compensate each other. 

Uncompensated molecular currents are exclusively on a lateral surface of the 

cylinder. These currents form the macroscopic surface magnetization current  I   

which is circulating on a lateral surface of the cylinder. The current I   induced the 

same macroscopic field as the molecular currents induce together. 

If the magnetic is inhomogeneous there is no compensation of currents inside it, 

and as a result the macroscopic volume magnetization current I   appear in it. The 

current distribution depends not only on the configuration and properties of the 

magnetic but also on the field B . Generally the problem of determination of field 

B  has no simple solution. Searching the solution of this problem leads to the 

necessity of clearing the relationship between I   and J . 

 

5. Circulation theorem for the vector J  

 

Circulation of a magnetization J  around any closed path is equal to an 

algebraic sum of magnetization currents 'I  in enclosed region 

  Jdl I  , (6.4) 

where 'I j dS    and 'j  is a magnetization current density.  

The field of the vector J  depends on all currents (both on magnetization 

current I   and on conduction current I ). However, in some cases with a special 

symmetry the field of the vector J  is determined only by magnetization current. 
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II. THE VECTOR H  

 

1. Circulation theorem for the vector H  

 

We’ll formulate the circulation theorem for the vector H  for magnetic fields 

due to direct currents. 

If a magnetic is placed into an external magnetic field magnetization currents 

are induced in it. Now the circulation of the vector B  is determined not only by 

conduction currents I  but also by magnetization currents I  , therefore, 

 0 'Bdl I I  . 

It is difficult to calculate the currents I  . But it is possible to introduce an 

auxiliary vector whose circulation depends only on conduction currents through 

this closed path.  

Since 'Jdl I  and    0 'Bdl I I  , 

0

1
Bdl I Jdl


   ,    

0

B
J dl I



 
  

 
 . 

Put  

  
0

B
H J


  .  (6.5) 

Then the mathematical expression for the circulation theorem is 

  Hdl I . (6.6) 

  H =A/m. 

Circulation of the vector H around any closed path is equal to an algebraic sum 

of the conduction currents. 

The magnetic intensity (or magnetic field strength) H  has no clear physical 

meaning. The only reason for its introducing is the fact that it allows calculating 

fields in the presence of magnetic materials without knowing the distribution of 

magnetization currents. However, this will be possible if we possess a constitutive 

relation connecting J  and H . 
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2. Dependences  J H  and  B H . Types of magnetics 

 

As it is known the magnetization J  depends on B  but usually the relationship 

between vectors J  and H  is used.  

In a large class of substances the magnetization vector J  is proportional to the 

magnetic strength H : 

  J H , (6.7) 

where   is called the magnetic susceptibility (magnetizability) of substance. 

The magnetic susceptibility   can be both positive and negative, in contrast to 

the electrical susceptibility   which is always positive. 

If  J H ,  then  
0 0

B B
H J H

 
    . Therefore,  

0

1
B

H 


  . Put  

  1   . (6.8) 

Then  

                                                    0B H .                                          (6.9) 

Dimensionless quantity   is called magnetic permeability of substance, 

0r    is called relative magnetic permeability, a quantity which measures the 

ratio of the internal magnetization to the applied magnetic field.   

If the material does not respond to the magnetic field by magnetizing, then the 

field in the material will be just the applied field and the relative 

permeability 1r  . A positive relative permeability greater than 1 implies that the 

material magnetizes in response to the applied magnetic field. As 1   , then 

the magnetic susceptibility is zero if the material does not respond to any 

magnetization. So both quantities give the same information, and both are 

dimensionless quantities.  

For ordinary solids and liquids at room temperature, the relative permeability 

r  is typically in the range from 1.00001 to 1.003. We recognize this weak 

magnetic character of common materials by saying "they are not magnetic", which 

recognizes their great contrast to the magnetic response of ferromagnetic materials. 

More precisely, they are either paramagnetic or diamagnetic, but that represents a 

very small magnetic response compared to ferromagnets. 
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Type of magnetic 

material 

Magnetic 

susceptibility,   

Magnetic 

permeability,   

Dependence 

 J H  

Diamagnetic 0   1   linear 

Paramagnetic 0   1   linear 

Ferromagnetic 0  ( 0 ) 1   ( 1 ) nonlinear 

 

3. Diamagnetic and paramagnetic materials 

 

 Paramagnetic materials Diamagnetic materials 

Examples Na, Mg, K, Ca, Al, Pt, O2, 

solutions of salts  

Bi, Cu, Ag, Au, Hg, Be, Ce, 

inertial gases 

Magnetic susceptibility 0     0   

Magnetic permeability 1      1    

Magnetic dipole 

moment mp  

Atoms have their own 

magnetic dipole moment  

Atomic magnetic moment 

is absent  

Behavior 

in 

external 

magnetic 

field 

  Induced magnetic moment 

appears 

Uniform 

field 

Magnetic moments are 

oriented along the field 

J H  

Magnetic moments are 

oriented against the field 

J H  

Nonuniform 

field 

Are retracted into a field Are pushed out from a field 
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III. THE FERROMAGNETISM 

 

Iron, nickel, cobalt and some of the rare earths 

(gadolinium, dysprosium) exhibit a unique 

magnetic behavior which is called 

ferromagnetism because iron (ferric) is the most 

common and most dramatic example. 

Ferromagnets will tend to stay magnetized to 

some extent after being subjected to an external magnetic field. 

The magnetization of ferromagnets in a huge amount of times (~ 1016) exceeds 

the magnetization of paramagnetic materials and diamagnets. 

 

1. The basic magnetization curve 

 

The magnetic permeability   for ferromagnets is 

not constant. It depends on a magnetic field strength 

and the dependence  H  is nonlinear. Magnitudes 

of the maximum magnetic permeability vary over a 

wide range depending on the material. For example, 

5000  (iron) and 610  (superpermalloy).  

 

2. Magnetic hysteresis 

 

The ferromagnet follows a non-linear 

magnetization curve when magnetized from a zero 

field value. The dependence  B H for 

ferromagnets shows that the magnetization of a 

ferromagnetic substance depends on the history of 

the substance as well as on the strength of the 

field. Plot B versus H is called the magnetization 

curve.  

If an alternating magnetic field is applied to the material, its magnetization will 

trace out a loop called a hysteresis loop. The lack of retraceability of the 
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magnetization curve is the property called hysteresis (hysteresis means ``to lag 

behind'').   

When a ferromagnetic material is magnetized in one direction, it will not relax 

back to zero magnetization when the imposed magnetizing field is removed. The 

amount of magnetization it retains at zero driving field is called its 

remanence rB . It must be driven back to zero by a field in the opposite direction; 

the amount of reverse driving field required to demagnetize it is called its 

coercivity  cH . The materials with high remanence and high coercivity from 

which permanent magnets are made are sometimes said to be "magnetically hard" 

(or high-coercitivity, or retentive) materials to 

contrast them with the “magnetically soft” (or 

low-coercitivity, or nonretentive) materials 

from which transformer cores and coils for 

electronics are made.  

The points 1 and 2 match the saturation 

magnetization. The area of the hysteresis loop 

is related to the amount of energy dissipation 

upon reversal of field.  

 

3. The Curie temperature. The physical nature of ferromagnetism 

 

Increasing temperature courses decrease the ability of a ferromagnet to be 

magnetized as saturation magnetization falls down. For a given ferromagnetic 

material its ferromagnetic properties abruptly disappears at certain temperature 

which is called the Curie temperature for the material. The Curie temperature of 

iron is about 1043 K.  

The physical nature of ferromagnetism can be 

understood only by means of quantum mechanics. In 

this material, there are domains in which the 

magnetic fields of the individual atoms align. The 

long range order which creates magnetic domains 

arises from quantum mechanical interaction at atomic level. This interaction is 

remarkable in that it locks the magnetic moments of neighboring atoms into rigid 

parallel order over a large number of atoms in spite of the thermal agitation which 
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tends to randomize any atomic level order. The sizes of domains range from 0.1 

μm to a few mm. The main implication of the domains is that there is already a 

high degree of magnetization in ferromagnetic materials within individual 

domains, but in the absence of external magnetic fields those domains are 

randomly oriented. A modest applied magnetic field can cause a larger degree of 

alignment of the magnetic moments with the external field, giving a large 

multiplication of the applied field. The microscopic evidence about magnetization 

indicates that the net magnetization of ferromagnetic materials in response to an 

external magnetic field may actually occur more by the growth of the domains 

parallel to the applied field at the expense of other domains rather than the 

reorientation of the domains themselves.     

 

Chapter 7. ELECTROMAGNETIC INDUCTION 

 

I.    FARADAY’S LAW OF INDUCTION. LENZ’S LAW 

 

After Ampere and others had 

investigated the magnetic effect of a 

current, Faraday tried to find its opposite. 

He tried to produce a current by means of a 

magnetic field. He began working on the 

problem in 1825 but didn’t succeed until 

1831. The apparatus with which he worked consisted of coils and galvanometer. 

Any change in the magnetic environment of a coil of wire will cause a voltage 

(emf) to be "induced" in the coil. No matter how the change is produced, the 

voltage will be generated. The change could be produced by changing the magnetic 

field strength, moving a magnet toward or away from the coil, moving the coil into 

or out of the magnetic field, rotating the coil relative to the magnet, etc. 

Faraday’s Law of induction: The line integral of the electric field-strength E  

around a closed loop is equal to the negative of the rate of change of the magnetic 

flux through the area enclosed by the loop. 

                                                                             
dФ

E dl
dt

   .                                          (7.1) 
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The left part of this equation is electromotive force (emf), therefore, another 

form of Faraday’s law of induction is 

  i = 
dФ

dt
 . (7.2) 

This induced emf (i) is called motional emf. 

Generated (or induced) voltage in any loop depends on the rate of changing the 

magnetic flux linking the circuit. The current stipulated by this emf is induced 

current. 

The minus sign in this formula denotes Lenz’s law. When an emf is generated 

by a change in magnetic flux according to Faraday’s law, the polarity of the 

induced emf is such that it produces a current whose magnetic field is opposite to 

the magnetic field change which produces it. The induced magnetic field inside 

any loop of wire always acts to keep the magnetic flux in the loop constant. If the 

external magnetic field is increasing, the induced field acts in opposition to it. If it 

is decreasing, the induced field acts in the direction of the applied field to try to 

keep it constant. Another variant of Lenz’s law is: the induced current flows in a 

direction such as to fight the change in a field. 

  If the wire has N turns, the total magnetic flux (flux linkage) is 1Ф N Ф  , 

where 1Ф  is the flux through one loop. Then Faraday’s law is  

  i = 
dФ

N
dt

 . (7.3) 

 

II. THE NATURE OF THE ELECTROMAGNETIC INDUCTION 

 

1. A wire movement in a stationary magnetic field 

 

Consider a wire of length l  moving at a velocity v in a 

stationary magnetic field B whose direction is 

perpendicular to the plane of the figure. All electrons in the 

have the same velocities v . This movement of charged 

particles in a magnetic field makes the charges in the wire feel a downward 

magnetic force (Lorentz force) 

,F e v B      . 
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Negative charges are accumulated at the bottom of the wire. The excess of 

positive charges is at the top of the wire. This creates a downward electric field in 

the wire. The electric field is  

,
,

e v BF
E v B

e e


           .   

The emf can be found as circulation of the vector I  along the length of wire 

  i  = E dl v B l      , (7.4) 

The product v l  is an increment of area per unit time 
dS

dt
, 

therefore,
dS dФ

v l B
dt dt

   . Hence, 

i  =  
dФ

dt
 . 

This law is valid for any wire or a loop of wire moving in a stationary magnetic 

field. 

  

2. A wire loop in a changing magnetic field 

 

The appearance of an induction current in the wire in the case mentioned above 

testifies that the magnetic field varying in time causes the appearance of the 

extraneous forces in it. These forces aren’t magnetic (not proportional to ,v B 
  ) 

and, therefore, can’t make the motionless charges move. But other forces, except 

for qE  and ,v B 
  , aren’t. So, it is necessary to assume that the induction current is 

stipulated by the electric field which has been induced in a wire. Just this field is 

responsible for appearance of emf in a motionless loop when a magnetic field is 

changing. 

Maxwell has assumed that just the magnetic field varying in time induces the 

appearance of an electric field in space irrespectively a conductive loop presence. 

The presence of a loop allows detecting the existence of this electric field. 

Thus, according to Maxwell’s theory, the varying magnetic field induces an 

electric field. This electric field is not potential (its circulation around a closed loop 

is not equal to zero). This is a rotational field. 
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Faraday’s law of induction is valid when the magnetic flux through a loop 

varies both due to a loop motion and due to changing a magnetic field (or when 

both processes take place). 

To offer an explanation it was necessary to use different phenomena: for a 

moving loop – a magnetic force action, and for a field varying in time – the 

representation about rotational electric field due to changing magnetic field. Both 

of these phenomena are independent of each other, but in both cases a motional 

emf in a loop is always equal to a magnetic flux changing rate. 

 

III. SELF-INDUCTION AND MUTIAL INDUCTION 

  

The induction phenomenon is observed in all cases when the magnetic flux 

through a contour varies. The modification of a current in a contour leads to origin 

of motional emf in this contour. This appearance is termed as a self-induction. 

 

1. Inductance 

 

The phenomenon called self-induction was discovered by Joseph Henry in 

1832.  

When current flows through a coil, it sets up a magnetic field. And that field 

threads the coil which produces it. If the current I through the coil is changed (for 

example, by means of variable resistance), the flux linked with the turns of the coil 

changes. An emf is therefore induced in the coil. By Lenz’s law the direction of the 

induced emf will be such as to oppose the change of current. 

When an emf is induced in a circuit by a change in the current through that 

circuit, the emf induced is called a back-emf.  

To discuss the effects of self-induction more fully, note that the total flux Ф is 

proportional to the current in the circuit. The coefficient L in this linear 

dependence ( 0L  ) is inductance (or self-inductance) 

                                                         Ф L I  .                                             (7.5) 

So proceeding from Faraday’s law, the back-emf generated to oppose a given 

change in current is 

                                                         s =  
dI

L
dt

 .                                       (7.6) 
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Inductance depends on the shape and sizes of a circuit and also on magnetic 

properties of the surrounding medium. If the circuit is rigid and ferromagnetic 

medium is absent, the inductance is a constant for a given 

circuit (independent of a current I ).   

 
Wb

 = Henry = H
m

L  .  

Let’s calculate the inductance of the long solenoid. If V  

is a volume of the solenoid, n  is a number of turns of wire 

per the unit length,   is a magnetic permeability of 

substance inside the solenoid, B is the magnetic field in 

solenoid, then 

0B nI  1 0Ф BS nIS   2

1 0 0Ф NФ nlBS nl nIS n VI     , 

  2

0L Ф I n V  .   (7.7) 

The examples of self-induction phenomenon are the processes of switching on 

and switching off in electrical circuits. Appearance of the current when switching 

on and disappearance of the current when switching off do not occur instantly. 

These processes take the more time the more inductance is. 

 

2. Mutual induction   

 

Consider two circuits located close to each other. The flux through the first 

circuit with current 
1I  is equal to 1 21 1Ф L I . Similarly, for the second circuit: 

2 12 2Ф L I . Coefficients 12L  as well as 21L are called the mutual inductance of 

circuits. It is possible to show that 12 21L L  (this property is reciprocity theorem). 

The fact that a change in the current in one circuit affects the current and emf in the 

second circuit is quantified in the property called mutual induction. 

The inductive coupling between circuits is that emf is produced in one circuit 

because of the change in current in a coupled circuit. 

The emf is described by Faraday’s law and its direction is always opposite to 

the change in the magnetic field produced in it by the coupled circuit. The induced 

emf in circuits due to self-induction is 

  s1
1 2

12

dФ dI
L

dt dt
   ,    s2

2 1
21

dФ dI
L

dt dt
   . (7.8) 
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The mutual inductance can be defined as the coefficient of proportionality 

between the emf generated in circuit 1 to the change in current in circuit 2 which 

produced it. 

 

 IV. MAGNETIC FIELD ENERGY 

 

The circuit with inductance L  and without ferromagnets has energy storage 

  
2 2

2 2 2

LI IФ Ф
W

L
   .           (7.9) 

These formulas express energy using characteristics of circuit. Let’s express 

magnetic field energy through the field characteristics. We’ll find the energy for 

solenoid. 

Inductance of the solenoid is 2

0L n V . Taking into account that 

0nI H B   , we obtain 

                         
 2 2 2 2

0

0

,

2 2 2 2

B HLI n I V B V
W V




    .                       (7.10) 

This formula is valid for a uniform magnetic field in any volumeV . 

In general theory it is shown that the energy can be expressed by means of 

vectors B  and H in any case (in the absence of ferromagnetic media) by formula 

                                 
 ,

2

B H
W dV  .                                            (7.11) 


