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Chapter. 9. ELECTROMAGNETIC OSCILLATIONS 

 

 

9.5. Electromagnetic oscillations in the circuits 

 

In a circuit containing inductor and capacitor, the energy is stored in two 

different ways: 1) when a current flows in an inductor, energy is stored in the 

magnetic field, and 2) when a capacitor is charged, energy is stored in the static 

electric field. 

The magnetic field in the inductor is built by the current, which gets provided 

by the discharging capacitor. Similarly, the capacitor is charged by the current 

produced by collapsing magnetic field of the inductor and this process continues 

on and on, causing electrical energy to oscillate between the magnetic field and the 

electric field. This forms a harmonic oscillator for current. In RLC circuit, the 

presence of resistor causes the oscillations to decay over the period of time and it is 

called as the damping effect of the resistor. 

Consider the circuit (Fig. 9.5). By the Kirchhoff’s Voltage Law  

                                    ( )1 2 SIR  − = ++ E E .                                            (9.31) 

Substitution of 
dq

I
dt

= , 1 2

q

C
 − = , and 

2

2S

dI d q
L L

dt dt
= − = −E  in (9.31) gives 

the equation of RLC circuit (or oscillatory circuit, or oscillator): 

                                     
2

2

1d q dq
L R q

dt dt C
+ + =E .                                         (9.32) 

The solution of this second order differential equation depends on the presence 

of electrical elements in the circuit. 
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9.5.1. Free undamped oscillation in LC circuit 

 

LC circuit consists of the capacitor (to produce the electric field and to store an 

electric energy) and inductor (to produce the magnetic field) (Fig. 9.6). The 

capacitor was charged up by connecting to emf. When the capacitor was fully 

charged the source was disconnected.   

 

Since 0R =  and 0=E , equation (9.32) takes on the form  

                                               
2

2

1
0

d q
q

dt LC
+ = ,                                           (9.33)     

                                                 2

0 0q q+ = .                                                (9.34) 

The solution of (9.34) is the equation of harmonic oscillations  

                                           ( )0cosmqq t = + ,                                        (9.35) 

where q is the instantaneous charge, mq  is the maximum charge (amplitude of 

the charge), 0

1

LC
 =  is the natural angular frequency, and   is the initial phase 

(epoch angle). 

Thomson’s formula gives the period of free undamped oscillations 

                                            0

0

2
2T LC





= = .                                         (9.36) 

Dividing the both sides of (9.35) by C  gives the equation for instantaneous 

voltage across a capacitor: 

                                            ( )0cosmU U t = + ,                                     (9.37) 

where the maximum voltage is    

                                                   m
m

q
U

C
= .                                                 (9.38) 
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On differentiating (9.35) we get the instantaneous current  

                       ( ) ( )0 0 0sin sinm m

dq
I q t I t

dt
    = = − + = − + .                 (9.39) 

The energy of LC circuit is initially stored in the electric field of the charged 

capacitor (Fig. 9.7, a).  The relative graphs of charge versus time and current 

versus time are shown in Fig. 9.8, a,b. The plots of the time variations of CU  

 and LU are shown in Fig. 9.8, c,d. The sum of CU  and LU is equal to the mU .  

                                          
2

2

m
el m

CU
W W= =                                                (9.40) 

Then the capacitor begins to discharge, producing a current in the circuit. 

Electric energy depends on time as  

                   ( ) ( )
2 2

2 2

0 0cos cos
2 2

m
el m

CU CU
W t W t   = = + = + .             (9.41) 

 

 

The current, in turn, creates a magnetic field in the inductor. The net effect of 

this process is a transfer of energy from the capacitor, with its diminishing electric 

field, to the inductor, with its increasing magnetic field.  

                    ( ) ( )
2 2

2 2

0 0sin sin
2 2

m
mag m

LI LI
W t W t   = = + = + ,             (9.42) 
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When the capacitor is completely discharged, all the energy is stored in the 

magnetic field of the inductor (Fig. 9.7, b). At this instant, the current is at its 

maximum value  mI  and the energy in the inductor is 

                                            
2

2
mag m

mW W
LI

= = .                                          (9.43)  

Since there is no resistance in the circuit, no energy is lost through Joule 

heating; thus, the maximum energy stored in the capacitor is equal to the maximum 

energy stored at a later time in the inductor: 

                                                 
2 2

2 2

m
m

mC
W

LIU
= = .                                      (9.44) 

 

At an arbitrary time when the capacitor charge is q and the current is I the total 

energy in the circuit is given by 

                                                   total el mW W W= +                                           (9.45) 

 

After reaching its maximum mI , the current  I continues to transport charge 

between the capacitor plates, thereby recharging the capacitor. Since the inductor 

resists a change in current, current continues to flow, even though the capacitor is 

discharged. This continued current causes the capacitor to charge with opposite 

polarity. The electric field of the capacitor increases while the magnetic field of the 

inductor diminishes and the overall effect is a transfer of energy from the 
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inductor back to the capacitor. From the law of energy conservation, the maximum 

charge that the capacitor re-acquires is mq . However, the capacitor plates are 

charged opposite to what they were initially (Fig. 9.7, c). 

When fully charged, the capacitor once again transfers its energy to the inductor 

until it is again completely discharged (Fig. 9.7, d). Then, in the last part of this 

cyclic process, energy flows back to the capacitor, and the initial state of the circuit 

is restored (Fig. 9.7, e). 

The electromagnetic oscillations are analogous to the mechanical oscillations of 

a mass at the end of a spring (Fig. 9.7). In this latter case, energy is transferred 

back and forth between the mass, which has kinetic energy 
2

2

mv
KE = , and the 

spring, which has potential energy  
2

2

kx
PE = . With the absence of friction in the 

mass-spring system, the oscillations would continue indefinitely. Similarly, the 

oscillations of an LC circuit with no resistance would continue forever if 

undisturbed.   

 

  

9.5.2. Free damped oscillation in RLC circuit 

 

When 0R   and 0=E , equation (9.32) takes on the form 

                                     
2

2

1
0

d q R dq
q

dt L dt LC
+ + = .                                         (9.46)  

If we denote  2
R

L
= and 2

0

1

LC
=  the equation (9.46) can be expressed as 

                                                2

02 0q q q + + = .                                     (9.47) 

This equation has the general solution at the initial condition of ( ) 00q t q= =  

and at weak damping: 

                                           ( )0 costq q e t  −= + .                                    (9.48) 

The equation (9.48) describes a sinusoidal oscillation with an exponentially 

decaying amplitude 0

tq e − . 

In this equation,  
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2

R

L
 =                                                      (9.49)  

is a damping or decay constant (damping factor) that describes the damping 

rate, or how apparent resistance is in the system. A large β means that oscillations 

are stopped rapidly; while β approaching zero gives an infinitely-oscillating system 

(LC circuit). 

The other parameter, 0 , is the natural frequency of the system; that is, if the 

damping is reduced to almost zero, the system would oscillate with this frequency. 

When with damping, the oscillation frequency is an angular frequency of the 

damped oscillations 

                               2
2

2
0

1

2

R

LC L
  

 
− 


− = 


= .                                  (9.50)  

Since L, C and R are the constant magnitudes for a certain circuit, therefore, a 

period of damped oscillations  

                         
2 2 2

0

2 2 2

1

2

T
R

LC L

  

  
= = =

−  
−  
 

                           (9.51) 

is assumed to constant. It is possible at a condition of the weak damping due to 

the small resistance. As a result, the period T  is a conditional period unlike the 

period (9.36) 0 2T LC= , which is a natural period of undamped oscillations.  

The voltage across a capacitance is 

                                      ( )0 costU U e t  −= + .                                         (9.52) 

The current in an inductor is 

     
( ) ( )

( )

0

0

cos sin

cos ,

t

t

dq
I q e t t

dt

q e t





     

   

−

−

= = − + − + =  

= + +

                              (9.53) 

where   is introduced according to 0cos  = −  and 0sin  = . 
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Because the charge is still decaying the decrement  D  can be defined as the 

ratio between two successive peaks of charge 

                                         0 0

1 0

T

T

q q
D e

q q e





−

−
= = =                                       (9.54) 

and logarithmic decrement  (log decrement)  , which is the natural logarithm 

of the decrement: 

                                                     ln D T = = .                                         (9.55)   

The quality factor Q of the circuit is defined as  

                                                       Q



= .                                                  (9.56) 

This magnitude shows the ratio of the energy of oscillations to the energy lost 

in one cycle. 

The decay (or relaxation) time   for circuit is the period of time during which 

the charge amplitude decreases by factor 2.71828e = . 

                                        0 0

0

q q
e e

q q e






−
= = = , 

                                                 
1 2L

R



= = .                                               (9.57) 
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It is clear that the greater R,   the less , the faster the oscillations will stop. 

The relationship between Q-factor and relaxation time is given as  

                                   
2 2 2

Q
T

   


   
= = = = .                                  (9.58)                      

When we consider larger values of R, we find that the oscillations damp out 

more rapidly; in fact, there exists a critical resistance cR  value above which no 

oscillations occur, and a system with is said to be critically damped (Fig. 9.10, b). 

If the angular frequency is 
2

2

1
0

4

R

LC L
 = − = ,  the critical resistance is 

                                                     2c

L
R

C
=                                               (9.59) 

When cR R  the system is said to be overdamped. The oscillator is aperiodic 

which means that there is no periodic process, and the charge in the capacitor falls 

to zero exponentially and very quick (Fig. 9.10, a). 

When cR R  the system is underdamped. Our previous description of damped 

oscillations was related just the underdamped case when the amplitude decreases 

exponentially in time. The damped oscillation exhibited by the underdamped 

response is known as ringing. It stems from the ability of the L and C to transfer 

energy back and forth between them. 

 

9.5.3. Driven oscillations in RLC circuit. Resonance 

 

Assuming that the capacitor is initially uncharged so that I dq dt= + is 

proportional to the increase of charge in the capacitor, the equation (9.32) can be 

rewritten as 

                                   
2

2
sin

1
m d

d q dq
L R q

dt d
t

t C
+ + =E ,                               (9.60) 

where sinm tE  is the alternating emf with angular frequency d . 

Now, using the previous notation for 
2
0 1 LC =  and 2R L = , we get the 

equation  

                                       2

0 sin2 m
dq q q

L
t + + =

E
.                                  (9.61) 

One possible solution to this equation is 
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                                      ( )cosm dq q t = − ,                                               (9.62) 

where the maximum charge  is 

                                

( )( )
22 1

m

d

m

d d

q

R L C  

=

+ −

E
.                              (9.63) 

The 

corresponding current is   

                                   ( )sinm d d

dq
I q t

dt
  = = − ,                                      (9.64) 

with the maximum current  

                          

( )( )
22 1

m m d
m

d d

I q

R L C



 

= =

+ −

E
                              (9.65) 

and phase 

                                        
1 1

tan d
d

L
R C

 


 
= − 

 
.                                       (9.75)  
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As it can be seen from (9.65), the current amplitude mI  in RLC circuit is a 

function of the driving angular frequency  d  of the external alternating emf. For a 

given resistance R, the amplitude is a maximum when the quantity in the 

parentheses is equal zero:  

                                                
1

0d
d

L
C




− = , 

then, 

                                                     
1

d
d

L
C




= ,                                             (9.76) 

in other words, when the inductive reactance  (9.10)  is equal to the capacitive 

reactance (9.18)                           

                                                      L CX X= .                                               (9.77) 

From (9.76), the driving angular frequency equals 

                                                     
1

d
LC

 = .                                             (9.78) 

Because the natural angular frequency of the LC circuit is also equal 

to 0

1

LC
 = , the maximum value of the current occurs when the driving angular 

frequency matches the natural angular frequency 0d = . The phenomenon at 

which the current reaches a maximum is called a resonance, and the relative 

frequency (9.78) is called the resonant frequency. At resonance, the impedance 

(9.28) becomes equal to the resistance  

                                       ( )
22

L CZ R X X R= + − = ,                                (9.79) 

the amplitude of the current (9.65) is 

                                                      m
mI

R
=

E
                                                 (9.80)                      
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and the phase (9.75) is  0 = . 

The qualitative behavior of the current and impedance is illustrated in Fig. 9.11. 

 

 Notice that the reactances ( LX and CX ) are dependent on the angular frequency 

while the resistance R is not. At the low frequencies, there is no inductive effect: 

LX   goes to zero and current is passed through the inductor, while no current is 

passed through the capacitor. As the frequency gets large, CX  goes to zero and 

current is passed through the capacitor, while no current is passed through the 

inductor ( LX  gets large because of the quickly changing current). These properties 

can be used to create frequency filters: inductors are used as “low-pass” filters, and 

capacitors are used as “high-pass” filters. In combination, a “cross-over” circuit 

can be created. Additionally, since resonance in series RLC circuit occurs at a 

particular frequency, so it is used for tuning purpose as it does not allow unwanted 

oscillations that would otherwise cause signal distortion, noise and damage to the  

circuit to pass through it. 
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The resonance of a parallel RLC circuit (Fig. 9.12, a) is a bit more involved 

than the series resonance. The resonant frequency can be defined in three different 

ways, which converge on the same expression as the series resonant frequency if 

the resistance of the circuit is small. 

 

This parallel RLC circuit is exactly opposite to series RLC circuit. In series RLC 

circuit, the current flowing through all the three components, i.e., the resistor, 

inductor and capacitor, remains the same, but in the parallel circuit, the voltage U  

across each element remains the same and the current gets divided in each 

component depending upon the impedance of each component. That is why 

parallel RLC circuit is said to have the dual relationship with series RLC circuit. 

The current  

                                            ( )
22 2

R L CI I I I= + − ,                                        (9.81) 

where I is the total source current;  RI , LI  and CI  are the currents flowing 

through the resistor, inductor, and capacitor, respectively; 

                                   

22

L C

U U U
I

R X X

  
= + −  

   
.                                    (9.82) 

Admittance Y  is equal to 

                              

22
1 1 1 1

L C

I
Y

Z U R X X

  
= = + −  

   
.                              (9.83) 



 14 

The equation (9.83) that in a parallel RLC circuit, each element has reciprocal 

of impedance, i.e., admittance; and the total admittance of the circuit can be found 

by simply adding each branch's admittance.  The branch's admittances are 

conductance G: 

                                                          
1

G
R

= .                                                (9.84)    

and inductive  LB  and capacitive CB   susceptances, respectively:           

                                                   
1 1

L
L

B
X L

= = ,                                         (9.85) 

                                                   
1

C
C

B C
X

= = .                                        (9.86) 

Resonance occurs when L CX X= , therefore, the resonant frequency is 

1r LC = . Notice that at resonance the parallel circuit produces the same 

equation as for the series resonance circuit. Therefore, it makes no difference if the 

inductor or capacitor are connected in parallel or series.  

Unlike series RLC circuit, in parallel RLC circuit, the impedance becomes 

maximum and the circuit behaves like purely resistive circuit (Fig. 8.12, b). 

Resonant circuits are the most important circuits used in electronics. For 

example, a resonant circuit, in one of many forms, allows tuning into a desired 

radio or television station from the vast number of signals that are around us at any 

time. 

Fig. 9.13 shows an application of RLC circuit to a loudspeaker system. Low-

frequency sounds are produced by the woofer (low tons), which is a speaker with a 

large diameter; the tweeter, a speaker with a smaller diameter, produces high-

frequency sounds (high tone). In order to route signals of different frequency to the 

appropriate speaker, the woofer and tweeter are connected in paraIlel across the 

amplifier output. The capacitor in the tweeter branch blocks the low-frequency 

components of sound but passes the higher frequencies; the inductor in the woofer 

branch does the opposite.  

The series or parallel resonance will generate the voltage, which is several 

times higher than the power source. The voltage can be applied to the equipment in 

the circuit, such as the capacitor, current transformer, and fuse etc, causing damage 

to high voltage electrical equipment insulation. 
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PROBLEMS 
 

Problem 1 

 

 The oscillatory circuit consists of a coil with inductance L= 400 μH and a 

capacitor with a capacitance C = 0.5 μF. Initially, the capacitor was charged to a 

voltage of 65 V. Find the time dependence for the charge and the voltage across 

capacitor, and the current through inductor. Determine the current in the circuit at 

the instant of time when the voltage across capacitor decreased to 56.3 V. Neglect 

the resistance of wires in the circuit. 

 

Solution 

 

The initial charge of capacitor determines the initial voltage across it, which is 

the maximum voltage mU  = 65 V.  Proceeding from this fact, the equation of the 

oscillations should be written as 0cosmU U t=  since it satisfies this condition, 

namely, the instantaneous voltage at the instant of time 0t =  is mU U=  . 

The natural frequency of LC circuit is equal to 

6 6 4

0 1 1 400 10 0.5 10 7.07 10LC − −= =    =   s– 1. 

The law of the voltage change across capacitor is 

4

0cos 65cos7.07 10mU U t t= =   (V) 

Considering that q CU= , the maximum charge will be 

6 50.5 10 65 3.25 10m mq CU − −= =   =   (C),  

and the equation for the charge (since it is in phase with the voltage across the 

capacitor) takes on the form 

5 4

0cos 3.25 10 cos7.07 10mq q t t −= =   (C). 

The instantaneous current through the coil is determined by differentiating the 

dependence of the charge with respect to time: 

( )0 0 0cos sinm m

dq d
I q t q t

dt dt
  = = = − . 
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According to this time dependence of current, it is possible to calculate the 

desired instantaneous current. It is necessary to know the instant of time. But we 

can facilitate the task calculating 0cos t  (instead of the instant of time t ),  and 

then, using the basic trigonometric relation, we can find the corresponding 

magnitude of  0sin t .  

Since 0cosmU U t= , 0

56.3
cos 0.866

65m

U
t

U
 = = = . 

As a result,  

2

0 0sin 1 cos 0.5t t = − = . 

Finally, the current at the desired time is 

5 4

0 0sin 3.25 10 7.07 10 0.5 2.3 0,5 1.15mI q t  −= − = −     = −  = −  A. 

 

 Problem 2 

 

 RLC circuit consists of a capacitor of C = 7 μF, an inductor of C= 0.23 H and 

an active resistance R = 40 Ω. Initially it was charged to the charge 0q  = 0.56 μC. 

Find the period of oscillations, logarithmic decrement, and the equation for the 

time dependence of the potential difference across the capacitor. 

 

Solution 

 

If the circuit consists of the capacitance, inductance and active resistance, free 

damped oscillations take place in it. The conditional period of these oscillations is  

( ) ( ) ( )

3

2 2-6

2 2
8 10

1 2 1 0.23 7 10 40 2 0.23
T

LC R L

  −= = = 
−   − 

 s. 

To determine the logarithmic decrement of damped oscillations we have to 

calculate the damping coefficient  

40
87

2 2 0.23

R

L
 = = =


 s – 1. 
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As a result, the logarithmic decrement is equal to 

387 8 10 0.7T  −= =   = . 

The equation of the potential difference across the capacitor as a function of 

time is 

 ( )0 costU U e t  −= +  , 

where the maximum value of the voltage across the capacitor is 

  
-3

0
0 -6

0.56 10
80

7 10

q
U

C


= = =


, 

and the frequency of damped oscillations is 

 
3

2 2
250 785

8 10T

 
 

−
= = = =


s – 1. 

The charge and voltage across the capacitor are in phase. If the capacitor was 

charged at the initial instant of time, then the capacitor was at the maximum 

voltage. Therefore, the initial phase 0 = . Then the equation of potential 

difference across capacitor is 

   ( ) ( )0.780 cos 250tU t e t−=  (V). 

 

Problem 3 

 

Find the number of oscillations during which the charge amplitude in RLC-

circuit with a logarithmic decrement of 0.0004 decreases fivefold. Write the 

dependences of the change in charge, voltage and current as a function of time, if 

the capacitor initially was charged up to 100 V. The frequency of damped 

oscillations is 2·103  s–1, and the inductance of the coil is 0.5 mH. 

 

Solution 

 

The charge amplitude has been decreased by five times 

00

0

5 t

t

t

qq
e

q q e



−
= = =


.  
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Taking the logarithm gives 

 ln5t = . 

 Considering that the time of the amplitude reduction consists of N oscillation 

periods, that is, t NT= , it is possible to write down 

ln5 t NT N  = = = . 

As a result, the number of oscillations is  

ln5 1.609
4020

0.0004
N


= = = . 

This number of oscillation occurs over time t  

3

2 2 4020
12.6

2 10

N
t NT

 




= = = =


. 

With this in mind, the damping coefficient is equal to 

ln5 1.609
0.128

12.6t
 = = =  s-1. 

The voltage across the capacitor depends on time as 

0 cos( )tU U e t  −= +  

 To write this dependence it is necessary to find the maximum voltage 0U  and 

initial phase  .  Based on the data, the capacitor was charged to a voltage of 100 

V, which means that the initial amplitude of voltage is 0U = 100 V. If the 

instantaneous voltage is 0U U=  at 0t = , the initial phase 0 = . 

Angular frequency of damped oscillations is 

  3 32 2 2 10 4 10   = =   =  rad/s. 

Finally, the voltage across capacitor depends on time as 

0,126 3100 cos4 10tU e t−=     (V). 

The charge of capacitor is changing on the time as 

 ( )0 costq q e t  −= + . 

Considering that 
q

C
U

= , the maximum charge of the capacitor 0 0q CU= . 
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Angular frequency of damped oscillations related to the natural angular 

frequency as 2 2 2

0  = − . Therefore, 

( ) ( ) ( )
2 22

2
32

0

32 4 10 0.128 4 10     +  = + = . 

In other words, we can consider that 0 = .   Since  2

0

1

LC
 = , the capacitance 

of capacitor  is    

5

2 2 2 6 3

0

1 1 1
1.3 10

16 10 0.5 10
C

L L  

−

−
= = = = 

  
 F. 

Then the maximum charge of capacitor is  

5 3

0 0 1.3 10 100 1.3 10q CU − −= =   =   (C). 

and the time dependence of the charge on the capacitor is 

 3 0.126 31.3 10 cos4 10tq e t− −=       (C). 

 To obtain the time dependence of current through the coil, it is necessary to 

differentiate the expression for the charge ( )q t . 

0 cos( )tdq
I I e t

dt

   −= = + + , 

where 0 0I q= ,   0 0cos , sin     = − = .  

3 3

0 0 1.3 10 2 10 2.6I q  −= =    = А,  

Assume that 0 = .  

The phase shift can be found from  

3
40

0

sin 4 10
tan 9.8 10

cos 0.128

    


   

 
= = − = − = − = − 


,  

 ( )4arctg 9.8 10
2


 = −   − ,  

0 0 0cos( ) cos sin
2

t t tI I e t I e t I e t  
    − − − 

= + + = − = − 
 

.  

 Finally, the dependence of the current through the coil on time is: 

 0.128 32.6 sin4 10tI e t−= −      (A). 
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Problem 4 

 

 The natural frequency of oscillation is 0  = 8 kHz, the quality factor is Q = 72. 

If the damped oscillations are observed in this RLC-circuit, define the change in 

the energy stored in circuit on time ( )W t , and a part of energy which remains in 

the circuit after   = 1 ms.  

 

Solution 

 

Assume that the oscillations in the RLC- circuit begin with charging the 

capacitor to the maximum charge 0q . In this case, the energy of the charged 

capacitor is equal to 
2

0
0

2
C

q
W

C
= . When 0t =  the current in the circuit is absent, 

therefore, there is no magnetic field of the coil.  That is, and the total energy of the 

circuit is equal to the energy of charged capacitor 
2

0
0 0

2
C

q
W W

C
= = . Over time, the 

maximum charge of the capacitor decreases according to 0( ) tq t q e − = . Thus, the 

total energy is decreasing as 

( )2 2
0 0

0

2 2

2 2 2

t

m
t

t t
q eq q

W W
C C C

e e



 

−

− −= = =  =   

The energy that is remained in the circuit after the time  = 1 ms, is equal to 

 0

2W W e

−=  . 

This energy is a fraction of the initial energy, therefore, 

0

0 0

2
2W W

W W

e
e




−
−

= = . 

For calculations, we have to determine the damping coefficient  . But firstly, 

let’s find the logarithmic decrement of damping 

0.0436
72Q

 
 = = = . 
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According to definition, 
2 2

0

2
T


  

 
= =

−
. 

Let us square this expression for finding  : 

( )
2

2

2 2

0

2


 
=

−
,  

2 2 2 2 2 2

0 4     − = , 

( )2 2 2 2 2

0 4    = + , 

0

2 24




 
=

+
 . 

Since 2 24  , then 

 0 0

2 2 24

 


 
= 

+
. 

Then, 

 30 0
0

2
0.0436 8 10 349

2 2

  
 

 
= = = =   =   s–1. 

 Finally, 

2 349 0.001

0

2 0.5
W

e
W

e   −  −= = =  . 

Thus, a half of the initial energy will remain in the circuit after the time interval 

  = 1 ms. 

 

 

Problem 5 

 

 The oscillatory circuit consists of the capacitor of capacitance C = 10 μF, the 

coil of inductance L= 25 mH and active resistance R= 0.1 Ω. Find for what time 

the stored energy decreases 2e , and how many oscillations are necessary for this 

reduction. Determine the logarithmic decrement. 
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Solution 

The energy stored in the circuit 
2

2

q
W

C
=  is proportional to 2q , therefore, the 

instantaneous energy is 

( )( )
( ) ( )

2
2 2

0 2 2 2 20
0

cos
cos cos

2 2 2

t

t t
q e tq q

W e t W e t
C C C



 
 

   

−

− −
+

= = = + = + . 

This means that the amplitude of the energy depends on time according to 

2

0

t

tW W e −= . Then 

20 0

2

0

t

t

t

W W
e

W W e



−
= = . 

From the data of the problem,   

2 20 t

t

W
e e

W

= = , 

As a result, 

1t = . 

The damping coefficient can be expressed through the parameters of the circuit 

as  

  
3

0,1
2

2 2 25 10

R

L


−
= = =

 
 s–1. 

Then the time interval during which the energy that was stored in the circuit 

decreases by a factor of 2e  is 

  
1 1

0.5
2

t


= = =  s. 

By the way, note that this time interval is the relaxation time. 

To determine the number of oscillations for this time interval, let’s find the 

angular frequency of damped oscillations: 

  
2

2 3 6 6

1 1 0.01
2000

4 25 10 10 10 4 625 10

R

LC L


− − −
= − = − =

    
 rad/s 

The conditional period of damped oscillations is 
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32 2
3.14 10

2000
T

 



−= = =   s. 

Then from 1t NT = = , the desired number of oscillations equals 

3

1 1
159

2 3,14 10
N

T −
= = =

 
. 

The logarithmic decrement will be 

3 32 3.14 10 6.28 10T  − −= =   =  . 

 

Problem 6 

 

The inductance of the LC-circuit is 0.5 mH. Find the capacity of capacitor in 

the circuit if the emitted wavelength    = 300 m. 

 

Solution 

 

The angular frequency of the oscillations is 
0

1

LС
 =  

The wavelength of the radiated electromagnetic wave is equal to 

  
0

2 2
2cT c c c LC

 
 

 
= = = = . 

Therefore, the capacitance is expressed as 

  
2 4

11

2 2 2 16 3

9 10
5 10

4 4 9 10 0.5 10
C

c L



 

−

−


= = = 

    
 F = 50 pF. 

 

 Problem 7 

 

Find the capacitance of capacitor if the wavelength of electromagnetic 

radiation emitted by this circuit is   = 300 m, the rate of the current change in the 

coil is I t  = 4 A/s, and the motional emf arising in the circuit is s = 0.04 V. 
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 Solution 

 

The emf of self-induction that arises in the oscillatory circuit according to 

Faraday's law is 

  
s

dI
L

dt
 = − . 

The inductance of the circuit is 

0.04
0.01

4

sL
I t


= = =
 

 H. 

 If the period of undamped electromagnetic oscillations is 0 2T LC= , and the 

speed of the electromagnetic waves propagation in vacuum (air) is 83 10c =   m/s, 

the wavelength that the LC-circuit emits will be 

2cT c LC = = . 

Hence, the capacitance of the capacitor is determined as 

 

( )

2 2
12

22 2 2 8

300
2.53 10

4 4 3 10 0.01
C

c L



 

−= = = 
  

 F = 2.53 pF. 

 

 


