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OPTICS 

 

Optics is the part of physics that deals with the propagation of light through 

transparent media and its interaction with substance. Optical effects can be divided 

into three broad classes: those which can be explained without reference to the fact 

that light is fundamentally a wave or particle phenomenon, those which can be 

explained only on the basis that light is a wave phenomenon, and those which can 

be only explained on the basis that light is the flux of particles (photons). So, there 

are three main parts of optics: geometric optics; wave (physical) optics; and 

quantum optics.  

 

Chapter 1.  GEOMETRIC OPTICS 

 

 Geometric optics does not make any explicit assumption about the nature of 

light; it tends to suggest that light consists of a stream of massless particles. This is 

certainly what scientists, including, most notably, Isaac Newton, generally 

assumed up until about the year 1800.  In geometric optics, light is treated as a set 

of rays, emanating from a source, which propagate through transparent media 

according to a set of four simple laws.  

1. The law of rectilinear propagation, which states that light rays propagating 

through a homogeneous transparent medium, propagate in straight lines.   

2.  The law of independent propagation of light rays, which states that light 

rays at the point of intersection do not disturb each other 

(superposition principle); 

3.  The law of reflection, which governs the interaction of 

light rays with conducting surfaces. This law states that the 

incident ray, the reflected ray, and the normal to the surface of 

the mirror all lie in the same plane. Furthermore, the angle of 

reflection   is equal to the angle of incidence . Both angles are measured with 

respect to the normal to the mirror. 
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4.      The law of refraction, which is generally known as Snell's law, governs 

the behavior of light-rays as they propagate across a sharp interface between two 

transparent dielectric media. This law states that the incident ray, the refracted ray, 

and the normal at the point of incidence all lie in the same plane. Furthermore,  
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where   is the angle of incidence 

(between the incident ray and the normal to 

the interface), and   is the angle of refraction 

(between the refracted ray and the normal to 

the interface). The quantities 1n    and 2n   are termed the refractive indices of media 

1 and 2, respectively,  21n  is relative refractive index of the 1st medium   relative to 

the 2nd medium.  

When light passes from one transparent medium to another, it’s refracted 

because the speed of light is different in the two media. The index of refraction 

(refractive index), n , of a medium is defined as the ratio  of the speed of light in 
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where 0  and   are is the electric permittivities  of free space and the 

substance, 0  and   are the magnetic permeabilities of free space and the 

substance, respectively.  

From this definition, we see that the index of refraction is a dimensionless 

number that is greater than or equal to one because v is always less than c. Further,  

1n   is   for vacuum.  

When light passes from one dielectric medium to another its velocity changes, 

but its frequency f  remains unchanged (the color of the light doesn’t change). 

Since, a speed v f  for all waves, where   is the wave-length, it follows that 
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the wavelength of light must also change as it crosses an interface between two 

different media. When light propagates from medium with refractive index 1n  to 

medium with refractive index 2n  , the ratio of the wavelengths in the two media is 

given by 

1 1 1 2
21

2 2 2 1

v f v n
n

v f v n




    . 

If the first medium is vacuum, 1 0   (in vacuum) and 2  (in substance),  

0n



 . 

 

The law of refraction is called by the name of the Dutch naturalist, Astronomer 

and mathematician Willebord Snell (Lat. Snellius), (1580-1626), which he 

formulated in 1621. Earlier, this law and other laws of optics were investigated and 

described by the great Arab scholar Ibn al-Haytham (Lat. Alhazen, بن الحسن ،علي أبو 

 .”who was called “The Father of optics ,(1039-965) (الهيثم بن الحسن
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Chapter 2.  WAVE  OPTICS 

 

In wave (physical) optics, light is considered to propagate as electromagnetic 

(EM) wave. It is the form of radiant energy.   

Visible light, the most familiar form of electromagnetic waves, may be defined 

as the part of the spectrum that is detected by the human eye. Light is produced by 

the rearrangement of electrons in atoms and molecules. The wavelengths of visible 

light are classified as colors ranging from violet ( 74 10   m) to red 

( 77.6 10   m). The eye’s sensitivity is a function of wavelength and is greatest 

at a wavelength of about 75.6 10 m (yellow green). 

Generally, physical optics studies other ranges of the EM waves.  

Ultraviolet (UV) light covers wavelengths ranging from about 74 10   m 

(400 nm) down to 106 10   m (0.6 nm). An important source of ultraviolet light 

is the Sun. 

Infrared (IR) waves, produced by hot objects, have wavelength from 310  m 

to 77.6 10   m. 

X-rays are electromagnetic waves with wavelengths from about 810  m (10 

nm) down to 1310  m ( 410 nm). The most common source of X-rays is the 

acceleration of high-energy electrons bombarding a metal target. 
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1. INTERFERENCE 

 

1.1. Coherence  

 

The distance that the wave covered in vacuum is 

geometrical path length s . The optical path length (or 

optical distance) L is the product of the geometric 

length of the path light follows through the system, 

and the index of refraction of the medium through 

which it propagates. 

L n s  . 

   s L =m. 

If two rays are propagating in the media with refractive indexes 1n  and 2n , and 

covered the optical distances 1L  and 2L , respectively, the optical path difference is 

1 2 1 1 2 2L L n s n s     . 

The phase difference    of two waves that, after having been in phase 

initially, have traversed optical path lengths 1L  and 2L , respectively, is  

2



   . 

Coherence is the matched progress of several oscillating or wave processes. 

Coherent waves are monochromatic (having the equal frequencies) waves 

which are correlated to each other in phase. These phase relationships are 

maintained over long time. Coherent sources emit light waves of the same 

wavelengths or frequencies, which are always in phase with each other or have a 

constant phase difference, i.e., coherent waves. Two coherent waves can produce 

the phenomenon of interference. 

Ordinary light is incoherent because it comes from independent atoms which 

emit on time scales of about 10-8 seconds.  
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1.2. Interference. Constructive and destructive interference 

 

If two light waves passing through some common point P where each of them 

causes a displacement, according to the principle of superposition the resultant 

displacement is given by a vector sum of two displacements produced by each of 

the waves. If both displacements are along the same direction we can use the 

expression for calculation the amplitude of resultant 

oscillation 2 2 2

1 2 1 22 cosA A A A A     . Since intensity I  of waves is proportional 

to 2A , 
1 2 1 22 cosI I I I I     . And finally, assuming 1 2 0I I I  , we obtain  

0 02 2 cosI I I    . 

In dependence on the phase difference there are different cases are possible: 

1. Constructive interference (maximum intensity)  

cos 1 2 , 0,1,2,...

2
2 2 ,

2

k k

k k k

  

 
  



      


          


            04I I  

2. Destructive interference (minimum intensity) 

 

   

cos 1 2 1 , 0,1,2,...

2
2 1 2 1

2

k k

k k

  

 
 



        



          


   0I   

At the points of maximum intensity the light waves emanating from each source 

are in phase. So the constructive interference occurs, resulting in a light patch on 

the screen. The general condition for constructive interference is that the path-

length difference between the two waves be an integer number of wave-length, or 

even number of half-wave-lengths: 

2
2

k k


   , 

where 0,1, 2,...k   

 At the points of minimum intensity waves are   out of phase, so the destructive 

interference occurs, resulting in a dark patch on the screen. The general condition 

for destructive interference on the screen is that the difference in path-length 
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between the two waves be a half-integer number of wavelengths, or odd number of 

half-wave-lengths: 

 
1

2 1
2 2

k k



 

     
 

, 

where 0,1, 2,...k   

Therefore, interference is a phenomenon of redistribution of light on account 

the superposition of the coherent waves.  

 

1.3. Coherent and incoherent sources of light. Huygens’s Principle 

 

The sources of light emitting waves having constant initial phase difference are 

called coherent sources. 

The sources of light emitting waves with random phase difference are called 

incoherent sources. For interference phenomenon, the sources must be coherent. 

So it is necessary to “prepare” light from readily available incoherent light sources 

- which typically emit individual, uncoordinated, short wave trains of fixed phase 

of no longer than 10−8  seconds - so that the light from such sources remains 

coherent over periods of time long enough to overlap and produce visible 

interference patterns. There are generally two ways to do this. 

Methods of producing coherent sources:  

- by division of the wave front: in this method the wave front which is the locus 

of points of same phase is divided into two (or the large amount) parts. The 

example is Young’ double slit method; 

- by division of amplitude: in this method the amplitude of a wave is divided 

into two parts by successive reflections. 

Interference and further, diffraction, are explained by wave theory first 

proposed by a Dutch physicist and mathematician Christian Huygens (1629-1695). 

The assumptions of Huygens theory are: a source sends waves in all possible 

directions. The locus of points of medium oscillating in same phase is called a 
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wave front. From the point source, the wave front is spherical: while for a line 

source the wave front is cylindrical. The distant wave front is plane.  

 

Huygens’s Principle:  Each point of a wave front acts as a source of secondary 

waves (spherical wavelets).   These wavelets travel with the velocity of light in the 

medium. A surface tangent to the wavelets at given instant constitutes the new 

position of the wave front is called the envelope of the wavelets.   

Each point on the wave front acts as a point source that emits secondary.  

 

1.4. Double-slit interference. Young’s experiment 

 

In 1801 English scientist and physician Thomas Young 

(1773 – 1829) conducted an experiment to understand to 

the nature of light. Young thought that light acted like a 

wave and with his double slit experiment, he could see how 

light waves would interact if they intersected. The 

monochromatic point source S is a source of light whose 

spherical wave front (circular in the drawing) falls on two 

slits to create secondary sources 1S  and 2S  according to Huygens’s Principle. They 
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act as coherent sources.  Spherical waves radiating out from the two secondary 

sources 1S  and 2S maintain a fixed phase relationship with each other as they 

spread out and overlap on the screen, to produce a series of alternate bright and 

dark regions. The production of the bright points takes place when the crest of one 

wave meets the crest of the other wave or the trough of one wave meets the trough 

of the other wave, the waves are in phase, and these points appear bright. This type 

of interference is said to be constructive interference.  

At points where the crest of one wave meets the trough of the other wave, the 

waves are in opposite phase, and these points appear dark. This type of interference 

is said to be destructive interference. The alternate regions of bright and dark are 

referred to as interference fringes which are shown at the right side of the figure. 

 

 

The coordinates of the bright and dark fringes (interference maxima and 

minima) are, respectively 

0
max 2 2

2 2

l l
x k k

nd d

  
      , 

   0
min 2 1 2 1

2 2

l l
x k k

nd d

  
        , 

where 0,1, 2,...k   is the number of interference maximum and minimum; 0  

and   are the wavelength in the free space and in medium; l is the distance from 
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the slits to the screen; n is the refractive index, and d is the separation between the 

slits. 

The distance between two bright (dark) fringes is  

0
max1 max 0

l l
x x x

n d d

  
    


. 

 

 

1.5. Thin film interference   

 

Double slit interference, described in the previous paragraph, is rarely observed 

in nature.  And there is another type of interference that is quite frequently 

observed, namely thin film interference. Swirling colors on an oil slick, colors on a 

soap bubble, the purple tinge on an expensive camera lens, coloration of the wings 

of certain moths and butterflies are all examples of thin film interference. 

Light wave interference results when two waves are traveling through a 

medium and meet up at the same location. When a light wave reaches the boundary 

between two media, a portion of the wave reflects off the boundary and a portion is 

transmitted across the boundary. The reflected 

portion of the wave remains in the original 

medium. The transmitted portion of the wave 

enters the new medium and continues traveling 

through it until it reaches a subsequent 

boundary. If the new medium is a thin film, 

then the transmitted wave does not travel far before it reaches a new boundary and 

undergoes the usual reflection and transmission behavior. Thus, there are two 
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waves that emerge from the film:  one wave that is reflected off the top of the film 

and the other wave that reflects off the bottom of the film. 

(a)  Film of uniform thickness 

Let us determine this optical path 

length difference for thin film 

interference. 

The first beam was propagated in 

the air  0 1n  , so its optical path 

length is equal to the geometric path 

length 1EC s . The second beam was 

propagated in a substance with a 

refractive index n , so the optical path length is   2n AB BC ns   . 

 Thus, the optical path length difference, that is equal to the difference of the 

optical path lengths, is 2 0 1 2 1ns n s ns s     . 

From ADB : 
cos cos

DB b
AB

 
  ,   

2

2
2

cos

b
s AB


   , 

tan tanAD BD b     ,  2 2 tanAC AD b    . 

From AEC : 1 sin 2 tan sins EC AC b       ,     

1 2 tan sins b     ;  
2

2

cos

b
s


 . 

Then the optical path length difference is 

 
 

 

2sin sin2 sin sin
2 tan sin 2 2

cos cos cos

n nbn n n
b b b

n n

   
 

  

    
        


. 

From the reflection law   21

0

sin

sin

n
n n

n




   ,  sin sinn    .                                    

Since  
2cos 1 sin   , 2 2 2 2 2 2cos 1 sin sin sinn n n n n          ,   

then 
 2 2 2

2 2

2 2

sin sin sin
2 2 2 sin

cos sin

n n n
b b b n

n n

  


 

  
      

 
. 
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When light incident from a less dense medium (smaller n) reflects off the 

boundary with a denser (larger n) medium a 180° phase change on reflection 

occurs. Substitution of this phase shift in the relationship between the optical phase 

difference and the optical path length difference 
2




   gives the additional 

path length difference  

2 2 2

    


 

  
    . 

Incorporating this phase change leads to the expression for optical path length 

difference 

2 22 sin
2

b n


     , 

where  b  is the thickness of the film, n  is the refractive index of the thin film 

substance,   is the angle of incidence,   is the wavelength of the incident light.  

The theory of the interference due to a parallel film can now enable us to 

understand as to why films appear colored. The incident light is white and falls on 

a parallel-sided film. The incident light will split up by reflection at the top and 

bottom of the film. The split rays are in a position to interfere and interference of 

these rays is responsible for the colors. The bright or dark appearance of the 

reflected light depends upon the refractive index, the thickness of the film and the 

incidence angle. At a particular point of the film and for a particular position of the 

eye, the interfering rays of only certain wavelengths will have a path difference 

satisfying the conditions of bright fringe. Hence only such wavelengths (colors) 

will be present there. Other wavelengths will be present with diminished intensity. 

The colors for which the condition of minima is satisfied are absent. We know that 

the condition for maxima and minima in transmitted light are opposite to that of 

reflected light. Hence, the colors that are absent in reflected light would be present 

in transmitted light. The colors observed in transmitted and reflected light are 

complimentary. 
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(b) Newton’s rings 

 

Another method for observing the interference is to place a plano-convex lens 

with long focal length on the top of a flat glass surface. With this arrangement, the 

air film in the gap between the glass surfaces varies 

in thickness from zero at the point of contact to a 

certain value b .  When the air film is illuminated by 

monochromatic light normally, alternate bright and 

dark concentric circular rings are formed with dark 

spot at the centre. These circular fringes, discovered by Newton, are called 

Newton’s rings. Generally, the substance with refractive index n  may be between 

the lens and the glass surface. The interference is due to the combination between 

the beams reflected from the plate at point A and from the lower surface at the 

point B, respectively. Depending on the path length difference at different points 

separated from the center O by distance r  the bright or dark rings can be observed.  

 

The incident beam (1) is partially reflected at the point A (beam 1 ), partially 

passes the gap and is reflected at the point B (beam 1 ). If we observe Newton's 
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rings in reflected light, then the optical path difference is twice the width of the gap 

(b ) multiplied by the refractive index  n of the medium in the gap, i.e. 2bn  . 

Taking into account the additional path length difference 
2


   due to reflection 

at point A, finally, the path length difference is 2
2

bn


   . 

From COA   

 
22 2 2 2 22R R b r R Rb b r       . 

Neglecting 2b due to b R  and b r , we obtain 
2

2

r
b

R
 . 

The bright ring radii can be determined using the condition for constructive 

interference 2
2

k


   : 

2 2
2 2

bn k
 

  ,                
22

2 2 1
2 2

nr
bn k

R


   . 

As a result, the radii of bright rings are 

 2 1

2
k

k R
r

n


 ,  1,2,...k  ; 

Using the condition for destructive interference  2 1
2

k


    , the radii of 

dark rings may be calculated  

  2 2 1
2 2

bn k
 

   , 
22

2 2
2 2

nr
bn k

R


   

k

kR
r

n


 ,             0, 1, 2,...k  , 

where k  is the number of ring; R  is the radius of lens curvature;   is the light 

wavelength; and n is the refractive index of the substance  in the gap between the 

lens and the glass surface. 
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This interference patterns were firstly observed by the great English physicist 

and mathematician Isaac Newton (1643-1727) in 

1717. When illuminated with monochromatic light, he 

found that the radii of rings increases with increasing 

wavelength, and when illuminated with white light, 

the light rings have an iridescent color, while the color 

changes with increasing distance from the center from 

violet to red. Newton could not give a sufficient 

explanation of the observed phenomenon.   The nature of Newton’s rings was 

explained by T. Young. 

 

2. DIFFRACTION 

 

Diffraction is a set of phenomena observed during the propagation of light in a 

medium with sharp inhomogeneities (near the boundaries of opaque or transparent 

bodies, small holes, etc.) and associated with deviations from the laws of geometric 

optics.  

The common between interference and 

diffraction is the redistribution of the light flux at 

the superposition of coherent waves. 

The difference is that interference comes from a 

finite number of discrete sources, and diffraction comes from continuously located 

sources. 
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As a result of diffraction, light waves envelop obstacles that are of the order of 

light wavelength and penetrate the region of geometrical shadow. 

If a plane wave normally falls on a hole in opaque screen, each point of the 

wave front in this hole according to the Huygens principle is a source of secondary 

waves. The envelope of these waves, which determines the position of the wave 

front at the next instant of time, enters the region of the geometric shadow. 

 

 2.1 Fresnel diffraction 

 

Diffraction phenomenon can be classified under two groups: Fresnel diffraction 

and Fraunhofer diffraction. In the Fresnel diffraction, the light source and the 

screen are at the finite distances from the obstacle producing diffraction. In this 

case the wave front undergoing diffraction is either spherical or cylindrical. In the 

Fraunhofer diffraction, the source and the screen are at the infinite distances from 

the obstacle producing diffraction, hence, the wave front is plane. The diffracted 

parallel beams are brought to focus with the help of a convex lens.  

Augustin-Jean Fresnel (1788 -1827), a French civil 

engineer and physicist, essentially developed Huygens 

principle introducing several innovative provisions 

into it: 

- all secondary sources of the wave front emanating 

from the same source are coherent; 

- equal areas of the wave surface radiate equal 

intensities; 

- each section of the wave surface radiates 

independently (the superposition principle for  secondary sources);  

- each element of the wave surface radiates predominantly in the direction of 

the external normal to it while the amplitude of the secondary spherical wave is 

proportional to the area of the element. The resulting oscillation at the observation 

point is determined by the formula 
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   cos
S

A
E K t kr dS

r
       , 

where E  is the light vector magnitude, A is the amplitude of the light 

oscillation, r is the distance from the element to the observation point, k is the 

wave number,  K  is the coefficient depending on the angle   between the 

normal to dS  and the direction from dS  to the observation point. 

Calculation using the above formula is quite complex hence Fresnel proposed a 

method of quantitative calculations of the diffraction pattern for cases 

characterized by a certain symmetry. This simple method is known as Fresnel half-

period zone method. 

 

Fresnel assumed that a wave front that started from a source P can be divided into 

large number of strips which are known as Fresnel’s half period zones (HPZ).  If 

the distance between the points O and P is b   then the distances to the edges of 

these zones from the point P  have to be 
2

b


 , 2
2

b


 , …, 
2

b k


 .  The resultant 

effect at any point on the screen is due to the combined effect of all the secondary 

waves from various zones. Since the path difference between the wavelets 

originating from two consecutive HPZ's and reaching the point P is 
2


 the phase 

difference is  .  

 Therefore, waves that arrive at P from two contiguous zones damp one 

another, whereas the action of zones separated by one zone is added.  
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1 1 3 3 5
1 2 3 4 2 4... ...

2 2 2 2 2

A A A A A
A A A A A A A

   
               

   
 

If the areas of zones are approximately equal 1 2 3S S S   , the amplitudes are 

approximately too:  1 2 3 ...A A A    As a result, if 

1. the first HPZ is open,  1A A . 

2. two HPZ  are open, 0A  . 

3. three HPZ  are open, 1A A . 

4. for large number of HPZ, the amplitude of light at point P due to whole wave 

front is half the amplitude due to the 1st HPZ.:  1

2

A
A  . 

(a) Fresnel diffraction by circular aperture demonstrates the dark and bright 

points in the center of diffraction pattern when respectively even or odd numbers 

of Fresnel zones are open.  
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(b) Fresnel diffraction due to the knife-edge and the opaque disc 

 

 

 

 

2.2. Fraunhofer diffraction   

 

Fraunhofer diffraction   of light waves takes 

place when the diffraction pattern is viewed at a long 

distance from the diffracting object, and also when it 

is viewed at the focal plane of an imaging lens. This 

technique names after Joseph von Fraunhofer (1787 
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– 1826), German physicist who first studied the dark lines of the Sun’s spectrum 

and used extensively the diffraction grating, a device that disperses light more 

effectively than a prism does. 

In Fraunhofer diffraction 

lines joining the source and the 

screen are subparallel. If a lens 

is placed in front of aperture 

Fraunhofer diffraction pattern 

can be seen in the focal plane of 

the lens.  

Fraunhofer diffraction at a 

single slit gives alternately dark 

and bright fringes observed at 

the viewing plane.  The 

Fraunhofer diffraction pattern 

has maximum intensity at the 

central location which is 

determined by the rectilinear 

propagation law of light, and a 

series of peaks of decreasing 

intensity and width on each side symmetrically 

 In single slit diffraction, instead of point source assumption for slit we use a 

fine slit to illustrate diffraction effects. Break down the slit for many point sources. 

Hence light from one portion interferes with another portion and the pattern at the 

point of observation depends on angle  . 

A phase difference for waves travelling from edges of the slit is 

sinb   . 

The resulting amplitude at the observation point P is zero or non-zero 

depending on the number of Fresnel zones located on the width of the slit: 
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sin 2
2

b k


   ,         1,2,...k                  - diffraction minimum 

 sin 2 1
2

b k


    ,   0,1,2,...k            - diffraction maximum 

 

The Fraunhofer diffraction pattern for a long narrow slit in an opaque screen 

consists of a set of light and dark parallel fringes. 

 

 

2.3. Diffraction grating 

 

If b  is a slit width and a  is an opaque gap width, d a b   is a grating 

constant. 

Each slit acts as a source and all sources are in phase. At some arbitrary 

direction away from horizontal, the beams must travel different path lengths to 

arrive at the screen. If the path-length difference is equal to one wavelength or an 

integer number of wavelengths, bright line (constructive interference) is observed 

at screen. Therefore the condition for maxima at an angle   is 

sind k  ,              k = 0, 1, 2 … 

The condition for minima is the same as for single slit diffraction:  
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sin 2
2

b m


   ,  m  = 1, 2, 3 …     

Diffraction grating is one of 

them, which allows a beam of light 

to be resolved into different colors. 

Diffraction grating consists usually 

of thousands of narrow, closely 

spaced parallel slits (or grooves). 

If we illuminate diffraction 

grating with monochromatic light of 

laser source, then the beam is splited 

into several divergent beams in accordance with parameters of grating. Particularly 

the angles between the beams will be inversely proportional to the period of 

grating. Investigating the interference pattern on the remote screen we can make a 

conclusion about parameters of grating. And, on the contrary, knowing the 

parameters of grating we can easily calculate the wavelength of light. In the figure 

below you can see the result of the diffraction of light at a single slit.                  

 

If the light is not monochromatic, then the angle of diffraction depends upon the 

wavelength. In this case, the radiation spectrums of different orders will appear 

instead of the beams.  If the diffraction grating is placed in front of objective glass 

of photo-camera and a photo of the candle flame is  taken. If the central image 

coincides with the one without the grating, then the images in higher orders are 

dissolved in spectrum similar to rainbow. This property of diffraction is used for 

investigation of the spectrums of the optical radiation.                            
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Diffraction gratings can be used to split light into its constituent wavelengths 

(colors). In general, it gives better wavelength separation than does a prism, 

although the output light intensity is usually much smaller. 

By shining a light beam into a grating whose spacing d is known, and 

measuring the angle     where the light is imaged, one can measure the 

wavelength   . This is the manner in which the atomic spectra of various elements 

were first measured. 

 If 1  and 2 are two nearly equal 

wavelengths between which the 

spectrometer can hardly distinguish, 

the resolving power (resolvance) of 

the grating R  is defined to be 

2 1

R
 

  
 

 
, 

where   1 2

2

 



 . 

 Resolvance is the measure of 

ability to resolve the different 

wavelength components. If N  lines are illuminated on the grating it can be shown 

that the resolvance is 

0

l
R kN kN l k

d
   , 

where k  is an order of a grating spectrum (maxima); l   is the length of a 

diffraction grating; 0N  is a number of lines per unit length.  
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Lattices for UV-radiation have 0N = 500 – 2500 mm-1, for a visible light - 0N =  

300 - 1500 mm-1, for IR-radiation - 0N = 1 - 300 mm-1.  

 

 

 

PROBLEMS 

 

Problem 1 

 

Light of wavelength 0 = 600 nm is traveling from the air to the glass ( 1.5n  ).  

Find the change in the velocity, the frequency, the wavelength and the color of 

light. 

 

Solution 

 

The frequency is unchanged characteristic of light: it isn’t changed at different 

transitions from one media to another. The frequency of given wave is 

8
14

7

3 10
5 10

6 10

c
f

 


   


Hz. 

The wavelength in the glass is 

7
70 6 10

4 10
1.5n







    m. 
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The velocity of the wave is given by 

7 14 84 10 5 10 2 10v f         m/s. 

The color of the light isn’t changed because it is determined by the frequency of 

light which is constant. 

 

 

Problem 2 

 

Find the path length 1d in the water ( 1n =1.33) that contains the number of the 

wavelengths which is equal to the number of the wavelengths located on the 

distance 2d = 5 mm in the glass ( 2n =1.5). 

 

 

Solution 

 

The absolute refractive index is the ration of the wavelengths in the vacuum 

(air)   and in the substance. Therefore, the wavelength in the glass is  

2

2n


  . 

The number of the wavelengths is  

2 2 2

2

d d n
k

 
  . 

The wavelength of the light in the water is 1

1n


  .  

Then the desired distance is 

3
32 2 2 2

1 1

1 1

5 10 1.5
5.64 10

1.33

d n d n
d k

n n







 

        m. 
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Problem 3 

 

The coherent rays with the wavelength   = 404 nm hit the screen at the point 

P. What is observed at this point if the path length difference is (a)   17.17 μm: (b) 

12.12 μm? 

 

Solution 

 

The condition for the constructive 2
2

k


    and destructive  2 1
2

k


    

interference may be written in the general form as 

2
m


   , 

 where 2m k  is an even number for constructive interference, and 

1
2

2
m k  is an  odd number for destructive interference. 

(1) Magnitude of  m for the first case is 

6

9

2 2 17.17 10
85

404 10
m







  
  


. 

The result is an odd integer; therefore, there is the interference minimum at this 

point. 

(b) For the second case 

6

9

2 2 12.12 10
60

404 10
m







  
  


. 

There is the interference maximum at this point since the result is an even 

integer. 
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Problem 4 

 

In an interference pattern from two slits, the seventh-order bright fringe is 32.1 

mm from the zeroth-order bright fringe. The double slit is 5 meters away from the 

screen, and the two slits are 0.691 mm apart. Calculate the wavelength of the light. 

 

Solution 

 

The coordinate of the k-maximum is  

max 2
2

l k l
x k

d d

   
     . 

From this equation, the wavelength is 

3 3
77 0.691 10 32.1 10

6.34 10
7 5

d x

k l


 
   

   
 

m. 

 

Problem 5 

 

The separation between the slits in Young’s experiment is d = 1.5 mm, the 

distance to the screen l = 2 m. Determine the distance between the interference 

fringes on the screen if the wavelength is  = 670 nm. 

 

Solution 

 

The width of the interference fringe is  

l
x

n d

 
 


. 

Taking into account that the experiment is carried out in the air, 1n  . Then the 

width is equal to   

9
4

3

670 10 2
8.9 10

1.5 10

l
x

d

 




  
    


 m. 



 30 

7
74.074 10

1.019 10
4 4

film
d

 


    m. 

Problem 6 

In the double-slit experiment, the distance between the slits is 0.15d  mm, 

‘slit-screen’ separation is 120l  cm, the wavelength is 600  nm, and position of 

the point P is 1.44x   cm. What is the path length difference    for the rays from 

two slits arriving at point P? Does point P correspond to a maximum, a minimum, 

or an intermediate condition? 

Solution 

 

The path length difference is given by sind   . When l x , the angle  is 

small and we can make the approximation  sin tan
x

l
   . Thus, 

3 2
60.15 10 1.44 10

sin tan 1.8 10
1.2

d x
d d

l
 

 
   

       m. 

The ratio of the path difference and the wavelength is 

6

9

1.8 10
3

600 10





 
 


. 
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Since the path difference is an integer multiple of the wavelength 3   or , in 

other words, it is equal to the even number of half-wavelengths 2
2

k


  , the 

intensity at the point P is the maximum. 

 

Problem 7 

 

In Young’s experiment, monochromatic light falling on two slits 20 μm apart 

produces the fifth-order fringe at a 7.8° angle. What is the wavelength of the light 

used? 

 

Solution 

 

As was shown in the previous problem, the path difference can be expressed as 

sind   . Taking into account that the “slits-screen” separation is much larger 

than the coordinates of the interference maxima ( l x ), the small-angle 

approximation may be used: sin tan
x

l
   . Therefore, tand   .  

For the fifth-order maximum 2 2 5 5
2 2

k
 

      . As a result, 

tan 5d   . 

Solving for  , we obtain 

5
7tan 2 10 tan7.8

5.5 10
5 5

d 



  

     m. 

The resulting wavelength corresponds to the wavelength of green light . 

 

Problem 8 

Natural light beam passes through two slits 0.58 mm apart in Young’s 

experiment. How far apart are the second-order fringes for red ( R = 720 nm) and 

green ( G  =530 nm) light beams on a screen 1.0 m away? 
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Solution 

 

For constructive interference, the path difference is a multiple of the 

wavelength 

sin 2
2

d k k


      , where  0,1, 2,...,k   

 The location of the fringe the screen is tanx l   . But for small angles 

sin tan  , and  

tan sin
k

x l l l
d


     

For two given wavelengths, the coordinates of the second order maxima are 

9
3

3

2 1 720 10
2.48 10

0.58 10

R
R

kl
x

d

 




  
   


 m, 

9
3

3

2 1 530 10
1.83 10

0.58 10

G
G

kl
x

d

 




  
   


 m. 

Thus, two second-order fringes related to given wavelengths are separated by 

the distance 

 3 3 42.48 10 1.83 10 6.5 10R Gx x x            m. 
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Problem 9 

 

In the Young’s experiment, thin glass plate is located on the path of one of the 

rays. As a result, the central bright fringe is displaced to the position which was 

the location of the fifth bright fringe. The beam is normal to the plate surface. The 

refractive index of glass is n =1.5. The wavelength  =600 nm. Find the thickness 

of the glass plate. 

 

Solution 

 

The bright fringe is produced as a result of constructive interference 

2
2

k k


     ,      where  k  = 0, 1, 2, … 

For the fifth bright line  

5 5k     . 

The glass plate gives the addition path length 

difference 

  1n h h n h      , 

 which determines the fifth fringe production. Therefore, from 5   , we 

obtain   5 1n h   , and 

9
65 5 600 10

6 10
1 1.5 1

h
n

 
 

   
 

 m. 

 

Problem 10 

 

White light falling on the soap ( n = 1.33) film makes an angle 30° with the film 

surface. Find the minimum thickness of the film when the reflected light is yellow 

( = 600 nm). 
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Solution 

 

If the incident beam makes an angle  30  with the film surface, the incidence 

angle will be 60    since the angle of incidence is the angle that the incident 

beam makes with the normal to the surface.  

The path length difference at the interference in the thin films is 

2 22 sin
2

b n


    . 

Since the reflected beams are yellow, the constructive interference takes place; 

therefore, the path length difference is equal to the even number of the half-

wavelengths: 

2 22 sin 2
2 2

b n k
 

   , 

 
2 2

2 1

4 sin

k
b

n









. 

The minimum thickness is at 0k   ( 0sin60 0.866 ) 

9
7

2 2 2 2

600 10
1.48 10

4 sin 4 1.33 0.866
b

n








   
 

 m. 

 

Problem 11 

 

White light at normal incidence illuminates the surface of the glass ( n =1.5) 

film of thickness b= 0.4 μm. Find the wavelength in visible range (400 – 700 nm) 

for which the constructive interference of reflected light is realized. 

 

Solution 

The path length difference at normal incidence with consideration of the 

additional path length difference connected with the reflection ( 2   ) is 

2
2

bn


   . The condition for the constructive interference is 2
2

k


   . Then, 
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2 2
2 2

bn k
 

  , 

 2 2 1
2

bn k


  , 

4

2 1

bn

k
 


, where 0, 1, 2,...k   

Calculation gives: 

0k              6 64 4 0,4 10 1.5 2.4 10bn         м, 

1k               
6

64 2.4 10
0.8 10

3 3

bn





    м, 

2k              
6

64 2.4 10
0.48 10

5 5

bn





    м, 

3k              
6

64 2.4 10
0.34 10

7 7

bn





    м. 

It is obvious that only 60.48 10   m meets the requirements of the problem. 

 

Problem 12 

 

Monochromatic light with a frequency of 7.5·1014 Hz is traveling through the 

air when it reaches a thin film ( 1.45n  ). The incidence angle is 400.  Determine 

the minimum thickness of the film that will result in de constructive interference of 

the reflected light. 

 

Solution 

 The wavelength of the incident light is 
8

7

14

3 10
4 10

7.5 10

c

f
 
   


m. 

The path length difference at the interference in thin films is 

 2 22 sin
2

b n


    . 

The condition for destructive interference is  2 1
2

k


   . Therefore 
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 2 22 sin 2 1
2 2

b n k
 

      , 

2 22 sinb n k   , 

2 2sin

k
b

n







 

The minimum thickness is at 1k  , 

7
7

min 2 2 2 2 0

4 10
3.08 10

sin 1.45 sin 40
b

n








   
 

m. 

 

Problem 13 

 

White light is incident on a soap film ( n = 1.3) in air.  The reflected light looks 

bluish because the red light (  = 670 nm) is absent in the reflection.  What is the 

minimum thickness of the soap film? 

 

Solution 

 

At the normal incidence of the light on the thin soap film the path length 

difference is 2
2

bn


   . This path length difference has to be multiple of the odd 

number of the half-wavelength:  

 2 2 1
2 2

bn k
 

   .  

It gives 2bn k  and    
2

k
b

n


 . 

 The minimum thickness for destructive interference realization foe the red light 

is at 1k  : 

9
9

min

670 10
258 10

2 2 1.3
b

n

 


   


m. 
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Problem 14 

A picture frame manufacturer wishes to design picture frames that provide 

minimal glare from the glass cover. In order to achieve this, a thin plastic film 

( n = 1.35) is placed on the glass surface ( 1n  = 1.52). If light reflected in the middle 

of the visible spectrum with a wavelength of 550 nm is to be minimized, what film 

thickness is required?  

Solution 

The reflection from the “air-film” interface will be 180° out of phase with the 

incident light. The reflection from the “film-glass” interface will also be 180° out 

of phase with the incident light. (Both reflections occur at a less dense to more 

dense boundary.) Therefore, two reflected rays would be in phase if the path 

difference were zero. To produce destructive interference between these two rays, 

and hence minimize the glare, the path difference must be 2  . To achieve this, 

the film thickness must be 2  , where    is the wavelength of the light in the 

film. According to the definition, the refractive index of the plastic film is 

air

film

n



 . The wavelength in the film is 

9
7550 10

4.074 10
1.35

air
film

n







    m.   

The thickness of the film has to be 
7

74.074 10
1.0185 10

4 4
d

 


     m. 

Problem 15 

 

In Newton’s rings apparatus, the radii of the k-th and (k + 20)-th dark rings are 

found to be 0.162 and 0.368 cm, respectively, when light of wavelength 546 nm is 

used. Calculate the radius of curvature, R, of the lower surface of the lens. 
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Solution 

 

The radius of the k -th dark ring is given by 

kr kR . 

The radius of (k + 20)-th dark ring is  

 20 20kr k R   . 

Squaring above equations, subtracting and solving for R , the radius of curvature 

of the lower lens is 

   
2 2

2 22 2

20

9

0.368 10 0.162 10
1

20 20 546 10

k kr r
R



 





  
  

  
m. 

 

Problem 16 

 

The radius of the 10th dark ring in Newton’s rings apparatus changes from 60 

to 50 mm when a liquid is introduced between the lens and the plate. Calculate the 

refraction index of the liquid. 

 

Solution 

 

The radius of the dark ring when the air is in gaping is given by  

kr kR . 

When the gap is filled by liquid, the radius is 

 k

kR
r

n


  . 

k

k

r kR n
n

r kR




 


. 

The refractive index is equal to 

2 2
60

1.44
50

k

k

r
n

r

   
     

   
. 
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Problem 17 

 

The Newton’s rings apparatus is illuminated by the monochromatic light which 

is normal to the upper surface of the plane-convex lens. The radii of the adjacent 

dark rings are 4 mm and 4.38 mm. The radius of curvature of the lens is R =6.4 m. 

Find the numbers of the rings and the wavelength of the light. 

 

Solution 

 

Let the numbers of the rings be k  and 1k  . Then their radii are 

 

3

3

1

4 10 ,

1 4.38 10 .

k

k

kR r

k R r











   


   

 

3

3

4 10
0,913

1 4,38 10

k

k






 

 
, 

 1 0,834k k   . 

5k  ,              1 6k   . 

The wavelength from the expression kr kR  is 

2 6
716 10

5 10
5 6.4

kr

k R





   
 

m. 

 

Problem 18 

 

The Newton’s rings apparatus is illuminated by the monochromatic light which 

is normal to the upper surface of the plane-convex lens. The distance between the 

fifth and twenty fifth bright rings is 4.8 mm. Find the distance between the fourth 

and sixteenth rings. 

 

 

 



 40 

Solution 

Using the formulas for the radii of the bright  
 2 1

2
k

k R
r


  and dark 

kr kR  rings,   the given distance is expressed as 

25 5

49 9 7 3
2.83

2 2 2

R R
r r R R

 
 

 
     

 
. 

The sought distance is 

16 4 16 4 2r r R R R      . 

The ration of these two expressions is 

25 5

16 4

2.83

2

r r R

r r R









. 

Then the distance between the fourth and sixteenth rings is 

  3 3

16 4 25 5 0.707 4.8 10 0.707 3.4 10r r r r            m. 

 

Problem 19 

 

The Newton’s ring apparatus is illuminated by the monochromatic light (  = 

500nm). The gaping between the lens and the glass plate is filled with water. Find 

the thickness of the water layer at the locus of the forth bright ring. 

 

Solution 

 

From the drawing of the Newton’s ring apparatus, 

 
22 2

kR R b r   , 

2 2 2 22 kR R Rb b r    . 

Since b R , we neglect 2b , and obtain 
2

2

krb
R

 . 

The radius of  k -th  bright ring is  
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 2 1

2
k

k R
r

n


 . 

   2 1 2 1

4 4

k R k
b

nR n

  
  .  

Substituting the given data:   = 500 nm, 1.33n   and 4k  , we obtain 

  9

72 4 1 500 10
6.58 10

4 1.33
b



   
  


m. 

 

 

DIFFRACTION 

 

Problem 1 

 

A slit of width d is illuminated by the light of wavelength 550 nm. Find the slit 

width b  when 

(a) the  first maximum falls at an angle of diffraction 30 ; 

(b)  the first minimum falls at an angle of diffraction 30 . 

 

Solution 

 

(a) The condition of the diffraction maximum is sinb k  . The slit width is 

sin

k
b




 . 

Substituting the given data 1k   550  nm = 75.5 10 m, and sin30 0.5   

gives 

7
61 5.5 10

1.1 10
0.5

b


 
    m =1.1 μm. 

(b) The condition of the diffraction minimum is  sin 2 1
2

b k


   . The slit 

width is 
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 2 1

2 sin

k
b









. 

After substituting the given data 0k   550  nm = 75.5 10 m, and 

sin30 0.5   we obtain 

7
71 5.5 10

5.5 10
2 0.5

b


 
  


 m = 0.55 μm. 

 

Problem 2 

 

Light of the wavelength  = 589 nm falls on the slit of width b  = 2.25 μm. Find 

the angular deviations for the diffraction minimum. Determine the number of 

minima that this slit gives. How many minima does this slit give? 

 

 Solution 

The condition for diffraction minimum is sin 2
2

b k


   , so the number of 

maximum is 

sinb
k




  . 

Since sin 1  ,  

6

max 9

2.25 10
3.83

589 10

b
k








  


. 

As k  is the number of the diffraction minimum, it has to be integer, therefore, 

maxk = 3.  Note!  We didn’t round the obtained result 3.83 according to the 

mathematical rules. If we round it to 4, we would obtain  sin  greater than 1. But 

it is nonsense. Therefore, we omitted the fractional part of 3.83 and obtained the   

result k = 3. 

The angles that are related to the diffraction minima may be found according to  

sin
k

b


  . 
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1k         
9

1 6

1 589 10
sin 0.295

2 10






 
 


,     1 17.1   ; 

2k        
9

2 6

2 589 10
sin 0.59

2 10






 
 


,       2 36.2   ; 

3k        
9

3 6

3 589 10
sin 0.885

2 10






 
 


,      3 62.3   . 

This slit gives six diffraction minima; three minima on the each side of the 

central maximum, i.e.,  max2 2 3 6K k    . 

 

Problem 3 

 

The monochromatic light of wavelength 600 nm illuminates the slit of width b= 

30 μm. There is the convex lens behind the slit and the observation screen in its 

focal plane. What is observed on the screen at the diffraction angles that are (a) 

4.59º and (b) 6.32º? 

 

Solution 

The conditions for diffraction maximum  sin 2 1
2

b k


     and minimum 

sin 2
2

b k


    may be written in the general form as 

sin
2

b m


   , 

where m  is an odd number for maximum and an even number for minimum, 

relatively. 

Then,  

2 sinb
m




 . 

(a) For the first given diffraction angle, 

6

1
1 9

2 sin 2 30 10 sin4.59
8

600 10

b
m









   
  


. 
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The result is an even integer, therefore, 1 2 8m k  ,   4k  . Thus, there is the 

4th diffraction minimum. 

(b) For the second diffraction angle, 

6

2
2 9

2 sin 2 30 10 sin6.32
11

600 10

b
m









  
  


. 

The result is an odd integer, therefore, 2 2 1 11m k   , 5k  . This is the 5th 

diffraction maximum. 

 

Problem 4 

 

Light of wavelength 500 nm falls from a distant source on a slit 0.5 mm wide. 

Find the distance between the dark bands on either side of the central band of 

diffraction pattern (the central maximum width) observed on screen placed 2 m 

from the slit. 

 

 Solution 

 

As it is seen from the figure, the 

desired distance 2x  may be 

calculated from the relationship   

tan
x

L
  .  

tanx L   . 

Using the condition for 

diffraction minimum sinb m  , 

we can determine the sine of the diffraction angle, and, therefore, the angle  . It 

should be noted that in the most cases, the angle of diffraction is so small 

thatsin tan  , especially, for the maxima and minima of the first orders. So, 

tan sin
m

b


   , 
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9
3

3

2 2 1 500 10
2 2 tan 2 4 10

0.5 10

m
x L L

b









   
      


m = 4 mm. 

 

Problem 5 

 

A diffraction pattern using blue light with a wavelength of  = 438 nm creates 

a central maximum that is 2x = 6.50 cm wide. If the slit width used is b=17.5 µm, 

how far away is the screen? 

Solution 

The width of the maximum is equal to the separation between the adjacent 

minima, therefore, in this case, the distance between the first minima on the both 

sides of the central maximum. 

The condition for diffraction minimum is sinb m  .  

The sine of the first angle of diffraction is  
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9

6

438 10
sin 0.025

17.5 10

m

b b

 







   


. 

arcsin0.025 1.43   .  

On the other side, the tangent of the diffraction angle can be expressed using 

the “slit-screen” separation L and the distance from the center of the diffraction 

pattern to the first order minimum x. As a result, the required distance is 

0.065
1.3

tan 2 tan1.43

x
L


  

 
m. 

 

Problem 6 

 

A coherent beam of light from a hydrogen discharge tube falls normally on a 

diffraction grating of 8000 lines per centimeter. Calculate the angular deviation of 

each line in the first-order spectrum. Do any lines of the second-order spectrum 

overlap the first-order spectrum? (For the hydrogen discharge tube,  red  = 656.3 

nm; blue green  = 486.1 nm, blue = 434.0 nm, violet  = 410.1 nm.) 

 

Solution 

 

Since the grating has 0N 8000 lines per centimeter, the grating spacing is 

given by: 

0

1 1

8000
d

N
  cm= 61.25 10 m. 

 

We can calculate the deviation of each component in turn by using the 

diffraction grating equation for bright fringes:  

sind k  , where 0,1, 2,...k   
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It is necessary to calculate the angles of the first order fringes and the second 

order fringes for the given lights and to compare them to determine whether they 

have overlap. The general idea is to compare the biggest angle max1  of the first-

order fringes and the smallest angle min 2  of second-order fringes. If  

max1 min 2  , the overlap happens. Otherwise, no overlap occurs.  

 

(1) The first-order maximum: 

Violet line:                           
9

1 6

1 410 10
sin 0.328

1.25 10
V

k

d








 
  


 

1 arcsin 0.328 19.14V    . 

Blue line:                                
9

1 6

1 434 10
sin 0.347

1.25 10
B

k

d








 
  


, 

1 arcsin0.347 20.31B     

Blue-green line:                      
9

1 6

1 486.1 10
sin 0.389

1.25 10
BG

k

d








 
  


, 

1 arcsin0.389 22.88BG     
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Red line:                                  
9

1 6

1 656.3 10
sin 0.525

1.25 10
R

k

d








 
  


 

1 arcsin0.525 31.67R     

(b) The second-order maximum 

Violet  line:                               
9

2 6

2 410 10
sin 0.656

1.25 10
V

k

d








 
  


 

2 arcsin 0.656 41V   . 

Blue line:                                   
9

2 6

2 434 10
sin 0.694

1.25 10
B

k

d








 
  


, 

2 arcsin0.694 87.9B    . 

Blue-green line:                           
9

1 6

2 486.1 10
sin 0.778

1.25 10
BG

k

d








 
  


, 

2 arcsin0.778 51.1BG    . 

Red line gives 
9

1 6

2 656.3 10
sin 1

1.25 10

k

d








 
  


. This is the impossible result. So 

the red line is absent in the second-order spectrum produced by this diffraction 

grating. 

To determine whether the second-order spectrum for violet line overlaps the 

first-order spectrum, we need to compare the angles corresponding to red line in 

the 1st order spectrum and the violet line in the 2nd order spectrum, namely, 

2 41V    and 1 31.67R   . Since 31.67 41   ,  overlapping of the spectra is not 

observed. 

 

Problem 7 

 

 The monochromic light with the wavelength  =600 nm falls on the diffraction 

grating. The distance between the zeroth and the first maxima on the screen 

separated by distance L= 2.5 m from the grating, is x =4 cm. Find: (a) the 

grating constant; (b) maximum diffraction angle; (c) the total number of maxima 

which this grating gives. 
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Solution 

 

The condition for diffraction maximum is sind k  ,  k = 0, 1, 2,…. For the 

first  ( 1k  ) maximum: 

 1sind   . 

On other hand,  1
1tan

x

L
  ,          

-2

1
1

4 10
arctan arctan arctan0.016

2.5

x

L



   . 

1 0.9   . 

The grating constant is  

5

1

3.75 10
sin

d




   m. 

The highest order of diffraction spectrum can 

be calculated, assuming that the maximum magnitude of sin 1  , Then,  

  5

max
max 9

sin 3.75 10
62.5

600 10

d d
k



 





 
   


. 

The resulting value has to be rounded to an integer, since k is the number of the 

diffraction spectrum. It should be remembered that the value of the sine should not 

be greater than 1, therefore, we remove the fractional portion. As a result, the 

highest number of diffraction spectrum is max 62k  .The diffraction angle for this 

spectrum can be calculated as 

9

max
max 5

62 600 10
sin 0.992

3.75 10

k

d








  
  


, 

max arcsin 0.992 82.75     

The total number of diffraction maxima is 62 at each side and one central 

maximum: 

max2 1 2 62 1 125K k      . 
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Problem 8 

 

A parallel beam of white light is shines normally on a diffraction grating with 

6500 lines per 1 cm. Assuming the wavelengths of yellow and blue light in air are 

1 = 600 nm and 2  = 400 nm, respectively, show that there is overlapping 

between yellow  and blue spectra. Find the orders of the overlapping spectra.  

 

Solution 

 

 The conditions for diffraction maxima for the yellow and blue lights in the case 

of their overlapping are 

1 1

2 2

sin ,

sin .

d k

d k

 

 

 


 
 

Since the left sides of the expressions 

are the same, 1 1 2 2k k  . The resulting 

equation contains two unknown 

quantities and can not be solved from a 

formal point of view. But, if we recall 

that the 1k  and 2k  are the numbers of the 

diffraction spectra, and hence the integers, then we obtain 

1 2

2 1

400 2

600 3

k

k




   . 

The obtained result indicates that the yellow line in the 2nd-order diffraction 

spectrum is overlapped by the blue line of the 3rd-order spectrum 

Problem 9 

Diffraction grating with 100 lines per 1 mm is at the distance 2 m from the 

screen. It is illuminated by white light that strikes normally to the grating. Find the 
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width of the first order diffraction maximum if the visible light refer to the 

wavelength range between V = 380 nm (violet)   and R =760 nm (red).  

Solution 

 

If the number of lines per unit length 0N   is 100 lines per 1 mm (or 100000 

lines per 1 meter), the grating spacing can be found as 

5

5

0

1 1
10

10
d

N

   m. 

The positions of the diffraction maxima (excluding the central maximum) 

according to sind k   depend on the wavelength  . That is why the 

diffraction grating is the spectroscopic instrument.  

The conditions for diffraction maxima for two wavelengths and the equations 

based on the geometric relationship of the experimental parameters are 

sin 1 ,

sin 1 ,

tan ,

tan .

V V

R R

V V

R R

d

d

x L

x L

 

 





  


  


 
  

 

Two diffraction angles expressed from the 

first two equations are 

9

5

380 10
sin 0.038

10

V
V

d









   , 

9

5

760 10
sin 0.076

10

R
R

d









   . 

Since the angles for the first orders of diffraction are very small, tan sinV V   

and tan sinR R  . Therefore, 

tan sinV V Vx L L     , 

tan sinR R rx L L    . 

Finally, the sought width of the first maximum is  

 tan tan sin sinR V R V R Vx x x L L L            , 
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 0.076 0.036 0.076x     m. 

 

Problem 10 

 

Find the resolvance of the diffraction grating if it must have to resolve the 

components of Sodium doublet, i.e. two closed lines of Na with the wavelengths 

1 = 589.0 nm and 2 = 589.6 nm. Calculate the number of lines of this grating 

that it can resolve these lines in the third order spectrum. 

 

Solution 

 

The resolving power (resolvance) of diffraction grating is a dimensionless 

measure of ability to separate adjacent spectral lines, or the difference in 

wavelength between two lines ( 1 and 2 ) of equal intensity that can be 

distinguished in a given order of their spectrum  .   

R






. 

1 2 589 589.6
589.3

2 2

 


 
    nm, 

2 1 589.6 589 0.6         nm. 

Resolvance is  

589,3
982

0,6
R




  


. 

R kN ,  
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where k  is the number of the diffraction spectrum  in which the lines are 

observed separately, and N  is the total number of lines of the grating. 

Substituting 3k   and 982R   gives the sought number of lines 

982
328

3

R
N

k
   lines. 

 

Problem 11 

 

Diffraction pattern is obtained by means of the diffraction grating of the length 

l = 0.5 cm with 0N =100 mm-1. Find the order of the spectrum in which two lines 

with the wavelengths 1  = 578nm and 2  = 580 nm can be clearly resolved. 

 

Solution 

 

The resolvance of the diffraction grating is 

0R kN l



 


. 

The average wavelength is equal to 

1 2 578 580
579

2 2

 


 
    nm. 

The wavelength difference is  

2 1 580 578 0.2         nm. 

The order of the spectrum is determined as 

9

9 5

0

579 10
5.8 6

0.2 10 10 0.005
k

N l










   
     

. 

Note! We obtained the result as a broken number. The number of spectrum has 

to be integer; therefore, it is necessary to round the obtained result. Remember that 

we have to round it to the greater integer regardless the mathematical rule: 5.2 and 

5.8 are to round to 6, because the lines couldn’t be resolved in the 5th order 
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spectrum. It is possible in the spectra of 6k   as the width of the spectrum 

increases with its number. 

Now it is necessary to check if this grating allows obtaining the 6th spectrum. 

Since
sind

k





 , the largest spectrum number can be calculated assuming  

 
max

sin 1   and substituting 2 1    .  

 
max

max 5 9

2 0 2

sin 1 1
17.24 17

10 580 10

d
k

N



  


    

 
 . 

The maximum spectrum number is max 17k  , therefore, it is possible to observe 

the given lines in the spectra of 6k  . 

 

Problem 12 

 

A diffraction grating 4 cm wide produces a deviation of 30 degrees in the 

second order spectrum with light of wavelength 660 nm. What is the total number 

of lines on the grating? 

 

Solution 

 

The total number of lines depends on the number of lines per unit length 0N  

and the width of the diffraction grating as 0N N l  .  

In turn, the grating spacing is 
0

1
d

N
 . 

From the condition for diffraction maximum sind k  , the grating spacing 

is 

9
62 2 660 10

2.64 10
sin sin30

d





 

   


 m. 

The total number of lines is 

2

0 6

4 10
15152

2.64 10

l
N N l

d






    


 lines. 


