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RELATIVITY

1. Galileo transformation 

There are two frames of references ( K and K  ), and K  is moving relatively 

K at velocity V


. The relationship between coordinates, velocities and 

accelerations of the object M in these frames are 

the following:

x x Vt

y y

z z

t t
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dr dr
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 
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 
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=  d dr
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    

   
.

v v V  
 

.    

This is the classical (Galilean) addition law for velocities.

 dv dv d dv
a v V a

dt dt dt dt

 
      



    
.

The acceleration is the same in both systems.  The equality of accelerations in 

two inertial frames of reference expressed the fact that the acceleration is Galilean 

invariant.

Forces depend on the mutual arrangement  12r


and the velocity 12u


of relative 

motion of the points

   
   
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             


             

          

            F F 
 

.

Consequently, the force is Galilean invariant as well.

Moreover, it is adopted, that the equation of Newton’s 2 law F ma
 

is also 

Galileo invariance.  So, mechanical (Galileo’s) principle of relativity is the 

following: all mechanical phenomena occur identically under the same conditions.
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2. Speed of light. The Michelson-Morley experiment. Einstein’s postulates

According to Galilean addition law for velocities, the speed of light is different 

in the frame of reference at rest in moving frame.  The most famous experiment 

designed to detect these small changes in the speed of light was first performed in 

1881 by Albert A. Michelson (1852–1931) and later repeated under various 

conditions by Michelson and Edward W. Morley (1838–1923). They examined the 

speed of light along and opposite the Earth rotation, but no changes of the light 

speed was ever observed.

In 1905 Albert Einstein (1879-1955) proposed a theory that explained the result 

of the Michelson–Morley experiment and completely altered our notions of space 

and time. He based his special theory of relativity on two postulates:

1. The principle of relativity: All the laws of physics are the same in all inertial 

frames.

2. The constancy of the speed of light: The speed of light in a vacuum has the 

same value, 8 82.99792458 10 3 10c     m/s, in all inertial reference frames, 

regardless of the velocity of the observer or the velocity of the source emitting the 

light.

3. Lorentz transformation 

The Galilean transformation is not valid when the velocity of an object 

approaches the speed of light.  This transformation, known as the Lorentz 

transformation, was derived by Dutch physicist Hendrik A. Lorentz (1853–1928) 

in 1890. The Lorentz coordinate transformation is a set of formulas that relates the 

space and time coordinates of two inertial observers moving with a relative 

speedV . If  
V

c
  and 

2

1

1 
- the Lorentz factor, Lorenz transformation is
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2

2

2

1

1

x Vt
x
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z z
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ct
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  

 


 
   

In the Lorentz transformation, time t (in moving frame) depends on both t and 

x (time and coordinate in frame at rest). This is unlike the case of the Galilean 

transformation, in which t t . WhenV c� , the Lorentz transformation should 

reduce to the Galilean transformation.

4. Consequences of special relativity

We restrict our discussion to the concepts of length, time, and simultaneity, 

which are quite different in relativistic mechanics and Newtonian mechanics. For 

example, we will find that the distance between two points and the time interval 

between two events depend on the frame of reference in which they are measured. 

That is, there is no such thing as absolute length or absolute time in relativity. 

Furthermore, events at different locations that occur simultaneously in one frame 

are not simultaneous in another frame moving uniformly past the first.

(a) Simultaneity and the relativity of time. Two events that are simultaneous in 

one frame are in general not simultaneous in a second frame moving with respect 

to the first. That is, simultaneity is not an absolute concept, but one that depends on 

the state of motion of the observer.

Einstein devised the following thought experiment to illustrate this point. A 

boxcar moves with uniform velocity V


, and two lightning bolts strike the ends of 

the boxcar, leaving marks on the boxcar and ground. The marks left on the boxcar 

are labeled A and B ; those on the ground are labeled A and B . An observer at 

Omoving with the boxcar is midway between A and B , and a ground observer 
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at O is midway between A and B . The events recorded by the observers are 

the light signals from the lightning bolts. The two light signals reach the observer 

at O at the same time. This observer realizes that the light signals have traveled at 

the same speed over equal distances. Thus, observer O concludes that the events at 

A and B occurred simultaneously. Now consider the same events as viewed by the 

observer on the boxcar at O . By the time the light has reached observer O , 

observer O has moved forward. Thus, the light signal from B has already swept 

pastO , but the light from A has not yet reached O . According to Einstein, 

observer O must find that light travels at the same speed as that measured by 

observerO . Therefore, observer O concludes that the lightning struck the front of 

the boxcar before it struck the back. This thought experiment clearly demonstrates 

that the two events, which appear to O to be simultaneous, do not appear to O to 

be simultaneous. Although the two observers reach different conclusions, both are 

correct in their own reference frame because the concept of simultaneity is not 

absolute.  Both observers are correct, because the principle of relativity states that 

there is no preferred inertial frame of reference. This, in fact, is the central point 

of relativity: any uniformly moving frame of reference can be used to describe 

events and do physics.

(b) Time dilation.  Observers in different inertial frames always measure 

different time intervals between a pair of events

0

21







,

where   the proper time 0 is the time interval between two events measured by 

an observer moving along with the clock, and  is the time interval  measured by 

the observer moving with respect to the clock. As it is seen from this formula, a 

moving clock runs slower.
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Time dilation is a very real phenomenon that has been verified by various 

experiments. For example, muons are unstable elementary particles that have a 

charge equal to that of an electron and a mass 207 times that of the electron. 

Muons are naturally produced by the collision of cosmic radiation with atoms at a 

height of several thousand meters above the surface of the Earth. Muons have a 

lifetime of only 2.2 μs when measured in a reference frame at rest with respect to 

them. If we take 2.2 μs (proper time) as the average lifetime of a muon and assume 

that its speed is close to the speed of light, we would find that these particles could 

travel a distance of about 650 m before they decayed. Hence, they could not reach 

the Earth from the upper atmosphere where they are produced. However, 

experiments show that a large number of muons do reach the Earth. The 

phenomenon of time dilation explains this effect. Relative to an observer on Earth, 

the muons have a lifetime equal to 
6

0

2 2

2.2 10
16

1 1 0.99





  

 
μs, if muon’s 

speed is 0.99v c . Hence, the average distance traveled as measured by an 

observer on Earth is about 4700 m.

Twins Paradox. There are two identical 20-year-old twins.  The twins carry 

with them identical clocks that have been synchronized. The first brother sets out 

on a journey to planet X. His spaceship is capable of a speed of 0.500c relative to 

the inertial frame of his twin brother. After reaching planet X, the brother returns 

to Earth at the same high speed. On his return, the astronaut discovered that his 

twin brother on the Earth has aged more than he and is now 60 years of age. The 

astronaut, on the other hand, has aged by only 34.6 years. But which twin is the 

traveler and which twin would really be the younger of the two? If motion is 

relative, the twins are in a symmetric situation and either’s point of view is equally 

valid. From the point of view of astronaut, it is he who is at rest while twin on the 

Earth is on a high-speed space journey. This leads to the paradox: Which twin will 

have developed the signs of excess aging? 

To resolve this apparent paradox, recall that special relativity deals with inertial 

frames of reference moving with respect to one another at uniform speed. 
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However, the trip situation is not symmetric. The space traveler must experience 

acceleration during his journey. As a result, his state of motion is not always 

uniform, and consequently he is not in an inertial frame. Therefore, there is no 

paradox; there is an incorrect application of special relativity.

(c) Length contraction.  The measured distance between two points depends on 

the frame of reference. The proper length 0l of an object is defined as the length of 

the object measured by someone who is at rest with respect to the object. The 

proper length is defined similarly to proper time, i.e. it is measured by an observer 

who is at rest with respect to the object. The length l of an object measured by 

someone in a reference frame that is moving relative to the object is always less 

than the proper length. 

2
0 1l l   .

Note that the length contraction takes place only along the direction of motion.

(d) Relativistic addition law for velocities

21

v V
v

Vv
c

 


.

5. Relativistic dynamics

Relativistic momentum

0

21

m v
p









,

where  0m   is the rest mass. Note that at v <<c , it reduces to 0p m v .

The magnitude of linear momentum is

2 21
1

mv m c
p

v
c




 
   

 
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Relativistic mass   0

21

m
m






Newton’s 2 Law         0

21

dp d m v
F

dt dt 

 
     

 
,

Total energy             
2

2 0

21

m c
E mc


 


.

Rest energy              2
0 0E m c .

Kinetic energy

         
2

2 2 2 20
0 0 0 02 2

1
1

1 1
k

m c
E Е Е mc m c m c m c

 

 
           

.

Relationship between the energy and linear momentum

2

E
p v

c


 
,

2 2 2 2 4
0E p c m c  ,

2 2 2
0E c p m c  .
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PROBLEMS

Problem 1

How long would a meter stick appear if it were thrown like a spear at 99.5% 

the speed of light?

Solution

The proper length 0l is the distance between two points measured by an 

observer who is at rest relative to both of the points. The proper length of the meter 

stick is 0 1l  m, the Lorenz factor is 
0.995

0.995
v c

c c
    , therefore,   the 

observed length of the moving stick is

2
2 2

0 01 1 1 1 0.995 0.0999
v

l l l
c

          
 

m.

Problem 2

Find the speed of the moving body if its length in the direction of motion is 

twice shorter than its length at rest.

Solution 

The relationship between the length l of the moving object and its proper length 

0l is given by

2
0 1l l   .

Since 0 2l l ,

2
0 02 1l l   .

Then the Lorentz factor is

3 2 0.866   ,

and the speed of the moving body is

80.866 2.6 10v c c    m/s.



10

Problem 3

The average lifetime of an elementary particle  -meson in its own frame of 

reference (i.e., the proper lifetime) is 82.6 10 s. If  -meson moves at v =0.98c , 

what is its mean lifetime as measured by an observer on the Earth?

Solution

The  -meson’s lifetime in its own frame of reference is the proper time 

interval, 8
0 2.6 10   s. An earthbound observer measures a longer dilated time 

interval  . The Lorentz factor is 

0.98
v

c
   .

The life time measured by the observer on the Earth is 

8
70

2 2

2.6 10
1.31 10

1 1 0.98







   
 

s.

Problem 4

Find the mass of an electron moving at a speed of 0.999c .

Solution

Applying the equation for the mass of the object moving at relativistic velocity 

and taking into account the  rest mass of electron is 31
0 9.1 10m   kg, we find that 

electron mass increases from its rest mass to the magnitude

31
290

2 2

9.1 10
2.04 10

1 1 0.999

m
m






   
 

kg.
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Problem 5

Find the speed at which the relativistic mass is thrice greater than its rest 

mass?

Solution

When the object is moving at the velocity which is closed to the speed of light 

its mass is

0

21

m
m





,

where 
v

c
  , and 0m is the rest mass.

Since 03m m , then 0
0 2

3
1

m
m





, and

2 1
1

3
  ,

0.94  .

The speed of the object is

82.82 10v c   m/s.

Problem 6

A certain chemical reaction requires 48.2 kJ of energy input for it to go. What 

is the increase in mass of the product over the reactants?

Solution

The relation of the mass and energy is 

2E mc .

Hence, the energy increase gives rise to the increase in mass 2E mc   . From 

there,

 
4

13
22 8

4.82 10
5.36 10

3 10

E
m

c
 

    


kg.
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Problem 7

A particle of rest mass 0m travels at a speed 1v =0.2c. At what speed 2v will its 

momentum be doubled?

Solution

If the particle travels at the speed 1 0.2v c , its linear momentum is

 
0 1 0

1 1 02 2

1

0.2
0.2

1 0.2
1

m v m c
p mv m c

v
c


   

   
 

.

Under the condition of the problem, 2 12p p , therefore,

2 1 0 02 2 0.2 0.4p p m c m c    .

0 2
2 2 2

21

m v
p mv

v
c

 
   
 

.

Since 2
2

v

c
 , the second speed is 2 2v c , and

0 2
02

2

0.4
1

m c
m c







.

2

2
2

0.4
1







 
2

22
2
2

0.4
1







,

2 0.37  .

The speed at which the momentum of the particle is doubled is

8 8
2 2 0.37 0.37 3 10 1.11 10v c c       m/s.
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Problem 8

An electron is accelerated from rest through a potential difference of  10⁶ V. 

Find the electron’s rest energy, kinetic energy, final total energy, and final speed.

Solution

The rest energy of electron is

 22 31 8 14
0 0 9.1 10 3 10 8.2 10E m c         J.

We can express this result in units of MeV, using the conversion 1 eV 

= 191.6 10 J.

14
0 8.2 10E   J=

14
5 6

19

8.2 10
5.125 10 eV 0.5125 10 eV

1.6 10






     


0.51 MeV

Electron gains the kinetic energy due to the work of electric field qU . Since the 

charge of electron is e , the work of electric field is eU . 

19 6 131.6 10 10 1.6 10KE eU        J = 610 eV =1 MeV.

The electron’s final total energy is

0 1 0.51 1.51E KE E     MeV.

Finally we relate energy to speed

2
2 0 0

2 21 1

m c E
E mc

 
  

 
,

2 0 0.51
1 0.338

1.51

E

E
    .

Solving for  , we find

0.941  ,

or

8 80.941 0.941 3 10 2.82 10v c c       m/s.
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Problem 9

Determine the accelerating potential difference passing through which the 

electron have been accelerated to the velocity equaled to 95% of the light speed.

Solution

The kinetic energy of the electron was gained due to the work of electric field: 

KE W , or  KE eU . Since the particle is moving with relativistic velocity its 

kinetic energy is 

2
0 2

1
1

1
KE m c



 
    

.

Therefore,

2 31 16
60

192 2

1 9.1 10 9 10 1
1 1 1.13 10

1.6 101 1 0.95

m c
U

e 





     
             

V.

Problem 10

The energy of the particle is 10 times greater than its rest energy. Find the 

velocity of the particle.

Solution

The total energy and rest energy are, respectively, 

2
2 0

21

m c
E mc


 


,

2
0 0E m c

Since 010E E , we obtain

2 2
010mc m c ,   

2
20

02
10

1

m c
m c





.
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0.995  ,

80.995 2.98 10v c c    m/s.

Problem 11

Find the velocity of the particle if its kinetic energy is equal to its rest energy.

Solution

Kinetic energy of the particle is equal its rest energy 0KE E , therefore,

2 2
0 02

1
1

1
m c m c



 
  
  

,

2

1
2

1 



,

3
0.866

2
   .

Finally the speed of the particle is

8 80.866 3 10 2.56 10v c      m/s.

Problem 12

The linear accelerator accelerates the electrons from rest through a potential 

difference of 50 GV. Determine the speed of these electrons.

Solution

Electrons gained their kinetic energy in the accelerating electric field:

KE qU , 

where 2
0 2

1
1

1
KE m c



 
    

, v c  , and q e .

2
0 2

1
1

1
m c eU



 
    

,
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22
0

1
1

1

eU

m c
 


,

22
0

1
1

1

eU

m c
 


.

The usage of the units of energy electron-Volts allows simplifying the 

calculations.  1 electron-Volt is equal to the energy of electron passed through 

the potential difference 1 V, therefore, 1 eV= 191.6 10 J. Consequently, the energy 

of the electron accelerated by potential difference of 50 GV = 105 10 V is 

105 10 eV. The rest energy of electron is 2
0 0.512m c  MeV 55.12 10  eV. Then 

the ratio 

9

2 6
0

50 10
97656.25

0.512 10

eU

m c


 


.

2

1
97656.25 1 97657.25

1 
  


,

0.999  .

The electron velocity is 80.999 2.997 10c   m/s.

Problem 13

The mass of the proton after passing through the accelerating potential 

difference becomes equal the mass of  -particle with the kinetic energy 

910KE  eV. Find this potential difference.

Solution

The total energy of the  -particle consists of the kinetic energy and the rest 

energy

0E KE E    , therefore, 0KE E E    , or

2 2
0KE m c m c    ,
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2
0

2

KE m c
m

c
 




 .

The kinetic energy and the mass of the proton are, respectively,

2 2
0p p pKE m c m c  ,

2
0

2

p p
p

KE m c
m

c


 .

According to the given data, pm m , therefore,

22
00

2 2

p pKE m cKE m c

c c
 


 ,

2 2
0 0p pKE m c KE m c    .

Taking into account that 0 04 pm m  , we obtain

2 2 2 2 2
0 0 0 0 04 3p p p p pKE KE m c m c KE m c m c KE m c           .

This kinetic energy was gained by proton in the electric field

pKE eU ,

2
03 pKE m c eU   ,

Finally, the accelerating potential difference is

2 9 19 27 16
0 9

19

3 10 1.6 10 3 1.66 10 9 10
3.8 10

1.6 10
pKE m c

U
e


 



       
   


V.

Problem 14

An electron travels at 0.69 c in a circle at right angles to a uniform magnetic 

field of strength 2 T. Find the radius of the circle and compare it to the radius 

calculated without considering mass dilation.

Solution

The force on the charged particle in magnetic field is ,F q v B   
 

. The 

equation of motion is 
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2

sin
mv

ma qvB
R

  .

If the charged particle is electron ( q e ), the motion is perpendicular to the 

magnetic field ( 090  , 0sin90 1 ), and the acceleration of the electron is 

centripetal acceleration (
2v

a
R

 ), then  

0 0m v m v
r

eB eB
  .

31 8
4
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  

 
m.

When the mass is dilated, 0

2

1

m
m

v
c


   
 

, so

0

2

1

mv m v
r

eB v
eB

c

 
   
 

31 8
4
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r
c

c






   
  

      
 

m.

Problem 15

Cosmic rays collide with atoms or molecules in the upper atmosphere. If a 

proton moving at 0.7c makes a head-on collision with a nitrogen atom, initially at 

rest, and the proton recoils at 0.63c, what is the speed of the nitrogen atom after 

the collision? (The mass of a nitrogen atom is about 14 times the mass of a proton)

Solution

According to the law of conservation of the linear momentum

p p Np p p  
  

.
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If we chose the positive direction of x -axis and take into account that proton

after collision moved in the direction opposite to its initial direction, we can write 

for magnitudes of momenta

p p Np p p    .

Since the particle move at the relativistic velocities we deal with relativistic 

momenta. Therefore,

0 1 1
0 0 02 2 2

1 1

0.7
0.9802

1 1 1 0.7

p
p p p p p p

m c
p m v m c m c m c

 
 

       
  

.
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 
 

         
  

0 0 00.9802 0.8112 1.7914N p N p p pp p p m c m c m c        

00

2 2

14

1 1

pN
N N N

m cm c
p m v


 

   
 

0
02

14
1.7914

1

p
p

m c
m c






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
,

2

1.7914
0.128

141




 


.

0.127  .

The velocity of nitrogen atom is  73.84 10v   m/s


