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Chapter 2.  QUANTUM OPTICS 

 

1. BLACK BODY RADIATION 

 

1.1. Thermal radiation and its characteristics 

 

Thermal radiation is the electromagnetic radiation emitted by heated bodies due 

to their internal energy and depending only on the temperature and the optic 

properties of these bodies. 

Thermal radiation takes place at any temperature: depending on the temperature 

the bodies change the spectral composition of the emitted radiation. The color of 

the heated bodies seemed to depend only on their temperature and not on the 

material, quality of the surface, etc. 

Thermal radiation is the only one which is in thermal equilibrium with the 

substance. Thermal equilibrium means that the system is in the state when the 

amount of emitted and absorbed power does not depend on time but reaches a 

steady state. Therefore, this radiation is the equilibrium radiation. 

The intensity of thermal radiation is characterized by the energy flux, emitted 

by a unit area of the body surface along all directions - radiant emittance R – the 

total energy radiated per square meter per second at a temperature T or the rate at 

which radiation is emitted from a unit area.  

Radiant emittance (radiant exitance) is the function of the temperature and the 

frequency. It is shown by indices   andT - R
T

. 

If the unit area emitted the energy flux 
TdR  in the frequency ranged , then, 

T TdR r d    

where  
Tr  is the emissive (radiating) power or spectral density of radiant 

emittance. As the radiation consists of the waves of different frequencies , 

therefore,  
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The radiating power 
Tr depends on the temperature and characterizes the 

power of radiation emitted per unit area per unit frequency. 

2

J

m
Tr    . 

The absorption coefficient (absorptivity or absorption power) Ta  is the 

fraction of the incident power absorbed per unit area per unit frequency by the 

heated object or it is a ratio of the absorbed and incident energy fluxes.  
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Ta  is the function of frequency and temperature.  

A blackbody is an ideal system that absorbs all radiation incidents on it. 

Mathematically, a black body is defined to have 1Ta   at any temperature. 

A grey body 1Ta  . 

 

1.2. Kirchhoff’s law of radiation 

 

Kirchhoff’s law of radiation: the ratio of the emissive power and the absorption 

coefficient is independent on the nature of the body. It is a universal function (the 

same for all bodies) that depends only on  , the light frequency, and T , the 

absolute temperature of the body, and is called black body emissive power Tr
 : 

 
1 2

,
T T T

T

T T T black

r r r
r f T

a a a

  



  


     
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1.3. Stefan-Boltzmann Law 

 

Austrian physicist Josef Stefan (1835–1893) in 1879 found experimentally that 

the total power per unit area emitted at all frequencies by a hot solid black body, 

TR

 , was proportional to the fourth power of its absolute temperature T . 5 years 

later Ludwig Boltzmann derived this law from a combination of thermodynamics 

and Maxwell’s equations. Therefore, Stefan-Boltzmann law is 

4

0

T TR r d T



      , 

where 
85.67 10   W·m

-2
·K

-4
 is the Stefan-Boltzmann constant. 

 

1.4. Wien’s displacement law 

 

The peak of the wavelength distribution shifts 

to shorter wavelengths as the temperature 

increases. This behaviour is described by the 

following relationship, called Wien’s displacement 

law: 

m

b

T
  , 

where 
32.898 10b   m·K =

32.9 10   m·K is 

the Wien’s constant, m is the wavelength corresponding to the blackbody’s 

maximum intensity (spectral density of radiant emittance), and T  is the absolute 

temperature of the surface of the object emitting the radiation. 

 

1.5. Rayleigh-Jeans Law  

 

Attempts to use classical ideas to explain the shapes of the curves  Tr  failed. 

Rayleigh and Jeans suggested the expression based on classical physics 
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 
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c







   ,  

where  c is the speed of light and k is the Boltzmann’s constant. 

An experimental plot (red curve) of the blackbody radiation spectrum, together 

with the theoretical picture of what this curve should 

look like based on classical theories (green curve) 

are shown at the figure. At long wavelengths, 

classical theory is in good agreement with the 

experimental data. At short wavelengths, however, 

major disagreement exists between classical theory 

and experiment. As    approaches zero, classical 

theory erroneously predicts that the intensity should 

go to infinity, when the experimental data shows it should approach zero. This 

mismatch of theory and experiment was so disconcerting that scientists called it the 

ultraviolet catastrophe. (This “catastrophe” – infinite energy – occurs as the 

wavelength approaches zero in the violet short wavelength range) 

In 1900 Planck developed a theory for blackbody radiation that was in complete 

agreement with experiments at all wavelengths. Planck made assumption that 

atoms oscillating in any frequency could only have energy that is some multiple of 

a small constant h  times the frequency, that is, possible energies of atomic 

oscillators were given as 

nh  ,    

where 0,1,2,...n  , and   
346.63 10h   J·s is Planck’s constant. 

The electromagnetic radiation is emitted, propagates and is absorbed in form of 

discreet portions – quanta. The energy of quant is proportional to the frequency 

 
2

c
h h h


  

 
     , 

where  341.05 10
2

h



    J·s is Planck’s constant. 
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Planck gives the expression for the spectral density of radiant emittance 

(Planck's law) 

 
3
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
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Since
2c c

cT



 

   , the emissive power is the function of the wavelength 

and the temperature, i.e. Tr . In these terms Planck's law for radiation can be 

rewritten in the form: 

 
2

5

2 1
,

1

T hc
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r f T

e
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




   
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The maximum magnitude of emissive power may be defined as  

5

max( )Tr CT

  , 

where 
5

3 5

W
1.3 10

m К
C  


. 

Planck's law for radiation is in good correlation with experimental data. The 

Stefan-Boltzmann law and Wien’s displacement law may be obtained from it. 

 

1.6. Practical applications 

 

(a) Pyrometry (“pyro” - Greek “fire”) is the set of noncontact methods of 

temperature measurements. The appropriate devices are called pyrometers (or 

pyroscopes). There two types of pyrometers: 

1. Optical pyrometers. They work on the basic principle of using the human eye 

to match the brightness of the hot object to the brightness of a calibrated lamp 

filament inside the instrument. Optical pyrometers are of brightness and colour 

types. Example, pyrometer with “disappearing” filament. 
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2. Radiation pyrometer determines the temperature of an object from the 

radiation (infrared and, if present, visible light) given off by the object. The 

radiation is directed at a heat-sensitive element such as a thermocouple, a device 

that produces an electric current when part of it is heated. The hotter the object, the 

more current is generated by the thermocouple. The current operates a dial that 

indicates temperature. 

 (b) Filament lamps  

Hot object glow is used for making light sources. The first filament lamps were 

invented by A. Lodygin (1873) and the electric arc lamps – by P. Yablochkov 

(1876). The main characteristic of the filament lamps is light efficiency. For the 

light efficiency increase: (i) the filament is made of wolfram which has  high 

melting point and high selectivity of its thermal radiation; and (ii) glass balloons 

are filled by  inert gas for  prevention of filament evaporation. The efficiency of 

modern filament lamps is ~ 5%. 

 

2. PHOTOELECTRIC EFFECT 

 

2.1. Stoletov’s experiment 

 

For the first time the phenomenon latter referred 

to as photoelectric effect  was observed by Hertz, 

who showed that metals under ultraviolet light emit 

charges, which were later identified to be electrons 

by Thomson.  
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In 1888-1889 A. Stoletov carefully investigated the phenomenon of electron 

emission by solid and liquid objects under the influence of EM radiation – electron 

photoemission or photoelectric effect.  

Stoletov’ experiments showed:  

1. The saturation photocurrent satI  is proportional to the incident light flux   

(Stoletov’s law): 

satI   , 

where    is the sensitivity of illuminated surface 

that depends on the nature and the quality of the 

surface, and on the wavelength of incident light. 

2. Maximum initial velocity of electrons and 

their kinetic energy do not depend on the intensity of 

the light, but increase with light frequency.   

3. No electrons are emitted if the incident light frequency falls below some 

cutoff (or threshold) frequency 0  (or if the incident light wavelength is greater 

than cutoff (or threshold)  wavelength 0 ), which is characteristic of the material 

being illuminated.  

4.  There is no time lag between the start of illumination and the start of the 

photocurrent.  

 

2.2. Einstein’s law for photoelectric effect 

 

Einstein based on Planck’s idea about quantization to electromagnetic waves 

successfully explained (1905; Nobel Prize, 1921) the nature of photoelectric effect 

which could not be explained using classical concepts.  

When light illuminates a piece of metal, the light will kick off electrons from 

the metal’s surface and these electrons can be detected as a change in the electric 

charge of the metal or as an electric current. Hence the name: “photo” for light and 

“electric” for the current. At photoelectric effect the photon (quantum of light) 
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gives all its energy   to the single electron of the illuminated metal.  According to 

Einstein, the maximum kinetic energy for these liberated photoelectrons is 

KE A  ,  

where A  is called the work function of the metal.  

Einstein’s equation for photoelectric effect is 

A KE   , 

where 
hc

h  


     is the energy of the photons of the incident light; KE  

is kinetic energy which is 
2

2

mv
KE   for classical case (v c ) and 

2

2

1
1

1
KE mc



 
  

  

 relativistic case (v c ); v c  ; 

and the work function A . 

The work function, which represents the minimum 

energy with which an electron is bound in the metal, therefore, this is minimum 

amount of energy which is necessary to start photoelectric emission. If the amount 

of energy of incident radiation is less than the work function of metal, no 

photoelectrons are emitted. Work function is the property of material. Different 

materials have different values of work function which is usually is on the order of 

a few electron-Volts. 

0 0

0

hc
A h 


    , 

 where 
0

A

h
  , 

0

2A A

h





 


and 0

hc

A
   are the cutoff (threshold) 

frequency, angular frequency and wavelength. 

The negative potential at which the photoelectric current becomes zero is called 

stopping potential or cutoff potential. Stopping potential sU is that value of 

retarding potential difference between two plates which is just sufficient to halt the 

most energetic photoelectrons emitted.  

sh A eU    
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The photoelectric effect has many practical applications which include the 

photocell and solar cells. A photocell is usually a vacuum tube with two electrodes. 

One is a photosensitive cathode which emits electrons when exposed to light and 

the other is an anode which is maintained at a positive voltage with respect to the 

cathode. Thus when light shines on the cathode, electrons are attracted to the anode 

and an electron current flows in the tube from cathode to anode. The current can be 

used to operate a relay, which might turn a motor on to open a door or ring a bell in 

an alarm system. The system can be made to be responsive to light, as described 

above, or sensitive to the removal of light as when a beam of light incident on the 

cathode is interrupted, causing the current to stop. Photocells are also useful as 

exposure meters for cameras in which case the current in the tube would be 

measured directly on a sensitive meter.  

Solar cells, usually made of specially prepared silicon, act like a battery when 

exposed to light. Individual solar cells produce voltages of about 0.6 volts but 

higher voltages and large currents can be obtained by appropriately connecting 

many solar cells together. Electricity from solar cells is still quite expensive but 

they are very useful for providing small amounts of electricity in remote locations 

where other sources are not available. It is likely however that as the cost of 

producing solar cells is reduced they will begin to be used to produce large 

amounts of electricity for commercial use. 

 

2.3. Discovery of electron 

 

In 1885, Sir William Crookes carried out a 

series of investigations into the behavior of metals 

heated in a vacuum. He used discharge tube. It was 

the long glass tube having two metal plates, sealed 

at its two ends as electrodes. It has a side tube 

through which air can be pumped out by using a 

vacuum pump, so that experiments can be 



 11 

performed at low pressure.  When the pressure of air in the discharge tube is 

reduced to 
310
mm of mercury and a high voltage is applied to the electrodes, the 

emission of light by air stops. But the phenomenon of fluorescence in which the 

walls of the discharge tube at the end opposite to the cathode begin to glow with a 

greenish light is observed. The 

experiment of Crookes and others 

showed that a heated cathode 

produced a stream of radiation, 

which could cause gases at low 

pressure to glow and which made 

other substances emit light too.  

The radiation emitted from the cathode was given the name 'cathode rays'.  

Experimentally observed properties of cathode rays: 

1. They travel in straight lines: when an opaque 

object like a metal Maltese cross  is placed in the path 

of cathode rays in a discharge tube; a shadow of the 

metal cross is formed at the end opposite to the cathode.   

2. Cathode rays produce mechanical effect. They 

can rotate a high paddle wheel placed in their path.  

3. The cathode rays are deflected in electric and magnetic fields.  

4. The cathode ray particles being negatively charged.   

5. The nature of cathode rays does not depend on the nature of gas taken in the 

discharge tube or material of the cathode.  

6. The ratio of the charge to mass (e m  ratio) of cathode ray particles obtained 

from different gases was found to be exactly the same.  

Eventually, J.J.Thomson (1856-1940), working in Cavendish Laboratory 

(University of Cambridge), showed that cathode rays consists of electrons (Nobel 

Prize, 1906). 
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2.4. X-rays 

 

X-rays were discovered in 1895 by Wilhelm Conrad Roentgen (Röntgen) 

(1845-1923; Nobel Prize, 1901) and identified as electromagnetic waves in 1912 

by Max von Laue (1879-1960; Nobel Prize, 1914).  

Wilhelm Roentgen experimented with Crookes’ tube. He had covered his tube 

with black cardboard and darkened the room. Suddenly he noticed a weak light 

shimmering on a little bench nearby and discovered that the source of the 

mysterious light was a little barium platinocyanide screen lying on the bench. The 

cathode rays was able to travel only several centimeters in air but the little screen 

was a meter away from the tube hence cathode rays couldn’t be the cause of this 

light. Roentgen supposed that this fluorescence was coursed by unknown radiation, 

X-rays. 

He found that the X-rays traveled in straight lines, and, 

unlike the cathode rays, were not deflected by electric and 

magnetic fields. He found they passed through flesh almost 

unimpeded, but bone cast a shadow. By having his wife place 

her hand between the point source of X-rays on the Crookes' 

tube and some unexposed film in a box, then developing the 

film, he took a picture of the bones of her hand. Roentgen 

announced his finding complete with the bone picture on January 1, 1896. Already 

in 1896 several hospitals had X-ray facilities, and X-

ray photographs were ruled as acceptable evidence 

in courts in France, England and the USA. And 

nevertheless that the dangers became apparent and 

several persons suffered severe skin damage,   by 

1903 lead-impregnated rubber shielding devices 

were being used. 

The further investigations showed the following 

properties of X-rays. 
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1. Since X-rays were undeflected by a magnetic field, there were not charged 

particles.  

2. X-rays were ionizing radiation:  as they passed through air, ions were 

created.  

3. X-rays are electromagnetic radiation with the wavelength 810   m which 

can diffract on the periodic structures of crystals.   

The explanation of the X-rays origin is following.  Electrons are accelerated in 

an electric field through the potential difference of several thousand Volts and gain 

a kinetic energy KE eU  that can be converted into electromagnetic radiation 

(photons) when the electrons 

hit and slow  down in metal 

target. The emitted radiation 

gives continuous spectrum. At 

that, there is the minimum 

wavelength min  (or 

maximum frequency max ) 

that is independent of target material and limited by energy conservation: 

electron’s total kinetic energy is converted into a single X-ray photon. 

max

min

hc
eU h


  .    

Short-wavelength cutoff of X-rays:      
min

hc

eU
  ,     

or in terms of frequency:   max

eU
 


,   

max

eU

h
  . 

 

Applications of X-rays: 

 1. X-rays find vast application in medical science. They are used to detect 

fractures, tumors and presence of foreign matter in human body. 

2. X-rays are used to locate the cracks, blow holes and other defects in metals, 

especially, in different pieces, component parts of machines, etc.  
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3.  By taking X-ray diffraction of substances it is possible to get valuable 

information about their molecular and crystal structure. 

 

 

2.5. The Compton Effect 

 

In the experiments conducted by Arthur H. Compton in 1923, X-ray beam of 

wavelength   was directed towards a block of graphite (paraffin or other light 

substance).   The wavelength of scattered radiation and the energy of emitted 

electron are determined as a function of the angle relative to the incident beam. 

The wavelength of the scattered X-rays is longer as the scattering angle becomes 

larger. The relationship between incident   and scattered   radiation wavelengths 

is found to be 

    21 cos 2 sin 2c c            , 

where   is Compton’s shift, 12

0

2.43 10c

h

m c
    m = 2.43 pm is the 

Compton wavelength of electron and   is 

scattering angle. 

 Compton assumed that the incident 

X-rays collide against the electron in the 

graphite as a “particle” with the energy 

c
h h 


   and linear momentum 

h h
p

c




  . The energy and the 

momentum of the X-rays scattered in the 

scattering angle   are 
c

h h 


  

 and 

h h
p

c






  


, respectively. The electron of 
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mass 0m  recoils with the energy e   and the momentum ep


. The energies and 

momenta in Compton effect are conserved. 

2 2

0 0 em c m c       ,            e     ,  

ep p p  
  

.  

The Compton effect is explained by treating light (electromagnetic radiation) as 

particles that can transfer energy and momentum, and the energy isn’t completely 

absorbed in the interaction with material particles (electrons). This effect provides 

solid evidence for the particle nature of electromagnetic radiation.  

 

2.6. Matter waves  

 

In 1924, Louis de Broglie proposed that that light was not the only phenomenon 

to exhibit wave particle duality. He said that material particles like electrons and 

atoms, which are recognized as being particles, can exhibit wave behavior. To 

make this statement, he had to define a meaningful wavelength for a material 

particle; the quintessential wave properties of diffraction and interference require 

that the wavelength be comparable to the slit width or slit spacing. To define a 

wavelength, de Broglie used the photon to make an analogy: if the photon has a 

momentum related to its wavelength through the equation p h  , then perhaps 

material particles with momentum  p  have a wavelength that satisfies the same 

relation:       

h

p
  , 

where the linear momentum is p mv  for the particles moving with velocities 

v c  or 
21

m c
p







 ( v c  ) for relativistic particles moving with v c . 

This wavelength is called de Broglie wavelength of the particles. 
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The de Broglie relation is the mathematical expression for the wave nature of 

the particles. It gives the wavelength of the wave associated with a particle with 

momentum p.  

The de Broglie wavelength may be determined for any particle moving at 

different speeds. For example, the ball of mass m= 1 kg travelling at the velocity 

v= 1 m/s has the de Broglie wavelength 

34
346.62 10

6.62 10
1 1

h

mv





   


m. 

This magnitude is extremely small in comparison with the dimension of any 

physical system. Thus it is impossible to either prove or disprove the validity of de 

Broglie’s postulate by investigating the motion of a macroscopic particle.  

For electron of mass  
319.1 10m    kg moving at the velocity 

510v  m/s de 

Broglie wavelength is  
34

9

31 5

6.62 10
7.2 10

9.1 10 10

h

mv








   

 
m. 

This very small wavelength is of the order of the atom size, and, consequently, 

of the inter-atomic spacing in a crystal. Due to this fact it is possible to observe the 

diffraction effects at the transmission of the electron beam through the crystal. A 

practical device that relies on the wave characteristics of electrons is the electron 

microscope.  

2.7. The wave-particle duality 

Phenomena such as the photoelectric effect and the Compton effect offer 

evidence that when light (or other forms of electromagnetic radiation) and matter 

interact, the light behaves as if it were composed of particles having energy  

hc   and momentum p h  . In other contexts, however, light acts like a 

wave, exhibiting interference and diffraction effects.   

Overcoming the opposition of wave and quantum properties of light is one of 

the most significant achievements of the XX century physics.  The properties of 

continuity inherent to the electromagnetic field of light wave do not exclude the 

properties of discreteness inherent to light quanta – photons. This is a dialectic 

unity of two opposites (wave-particle duality).  
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BLACK BODY RADIATION 

 

Problem 1 

The radius of our Sun is 6.96·10
8
 m, and its total power output is 3.77·10

26
 W. 

(a) Assuming that the Sun’s surface emits as a black body, calculate its surface 

temperature. (b) Using the result of part (a), find m  for the Sun. 

 

Solution 

(a) The radiant emittance R is the magnitude equaled to the total energy 

radiated per square meter per second at a temperature T or the rate at which 

radiation is emitted from a unit area. The radiant emittance of a black body is 

E
R

S t

 


 

Taking into account that the energy radiated per the time unit is the radiating 

power  N E t , we obtain 

N
R

S

  . 

According to Stefan-Boltzmann Law, the radiant emittance of the black body is 

directly proportional to the fourth power of the object's temperature in Kelvin: 

4R T  , 

where 
85.67 10   W·m

-2
·K

-4
 is the Stefan-Boltzmann constant. 

Combining two expressions for the radiant emittance, we obtain 

4N
T

S
 , 

Since the surface area of the Sun is 
24S r , the temperature is given by 

 

26

4 4
4 22 8 8

3.77 10
5749

4 5.67 10 4 6.96 10

N N
T

S r   


   

   
K. 
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(b)  Wien’s displacement law determines the dependence of the wavelength m  

corresponding to the blackbody’s maximum spectral density of radiant emittance 

on the absolute temperature T of the object surface emitting the radiation: 

m

b

T
  , 

where 32.898 10b   m·K 32.9 10   m·K is the Wien’s constant. 

3
72.898 10

5.04 10
5749

m



   m. 

 

 

Problem 2 

The Earth has an average temperature of 288K. What is the Earth’s wavelength 

of the maximum emission (maximum spectral density of radiant emittance)? 

 

Solution 

Use Wien’s displacement Law m

b

T
  , we have 

3
52.898 10

1 10
288

m



   m = 10 μm. 

Maximum emission falls at the infrared thermal radiation. 

 

Problem 3 

The power of the radiation of the black body N = 10 kW. Find the area of the 

radiating surface if the maximum spectral density of radiant emittance falls at the 

wavelength m = 700 nm. 

 

Solution 

The power of the radiation of the black body is  

4N R S T S    
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The temperature may be determined using Wien’s displacement Law 
m

b

T
  . 

Then the area of the radiating surface 

44 4 6
4

4 8 3

10 0.7 10
6 10

5.67 10 2.9 10

mN N
S

T b



 




 

  
        

    
 m². 

 

Problem 4 

The black body is at the temperature  1T  = 2900 К. As a result of cooling, the 

wavelength of maximum emission was changed by m = 9 μm. Find the final 

temperature 2T . 

 

Solution 

The wavelengths of maximum emission for two temperatures according to the 

Wien’s Law 
m

b

T
    are 

2 1

2 1

m m m

b b

T T
       , 

where 
32.898 10b   m·K. 

The required temperature is 

3

1
2 3 6

1

2.97 10 2900
296

2.97 10 9 10 2900m

bT
T

b T



 

 
  

      
K. 

 

Problem 5 

The temperature of the black body was changed from 1000 K to 3000 K. Find 

the changes in (a) the radiant emittance 
2 1R R  , (b) the spectral density of radiant 

emittance m , and (c) maximum spectral density of  radiant emittance 2 1r r  . 

 

Solution 

Using the Stefan-Boltzmann Law gives 
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44

2 2

4

1 1

3000
81

1000

R T

R T









 
   

 
. 

The change in the spectral density of radiant emittance is 

3 6

1 2

1 2 1 2

1 1 1 1
2.97 10 1.97 10

1000 3000
m m

b b
b

T T T T
      

            
  

 m. 

The change in maximum spectral density of radiant emittance 

 

 

55

max 2 2

5

1max1

3000
243

1000

r CT

r CT





 
   

 
. 

 

Problem 6  

What power has to be transferred to the black metal sphere of radius r = 2 cm 

to keep it at the temperature 27 K higher than the room temperature. The room 

temperature is 293 K. Assume that the sphere is the black body; and the heat is lost 

only by radiation. 

 

Solution 

Power of the radiation that is emitted by the sphere at the room temperature T is 

4N R S T S   , 

and power of radiation at higher temperature 1T T T   is 

 
44

1 1 1N R S T S T T S        . 

The difference between these two powers is compensated by external heat 

   

 

2 4 4

1 1 1

4 8 4 4

4

4 4 10 5.67 10 320 293 0.89 W.

N N N S R R r T T 





 

       

      
 

 

Problem 7 

The current I =4.55 A flows across the heating element of the electric oven 

under the voltage U =220 V.  20% of the power input is dispersed by the walls, 

and the rest part is the thermal radiation from the hole of diameter d  = 10 cm. 
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Find the cutoff temperature 1T  of the operating zone assuming it the ‘grey” body 

with the coefficient 0.8k  . Ambient temperature is 0T =295 K. 

 

Solution 

The power input is 

0 4,55 220 1000N I U     W. 

Since 20% is dispersed by the walls, 80% is radiated, therefore, the efficiency 

factor 0.8  . 

Radiated power is 

0 0.8 1000 800N N     W. 

The radiating power of the oven at room temperature is 

2
4

0 0 0 0
4

d
N R S k R S k T


        . 

The radiating power at the temperature T is 

2
4

1 1 1 1
4

d
N R S k R S k T


        . 

The difference in powers is compensated by the power N : 

1 0N N N  , 

 
2 2 2

4 4 4 4

0 1 0 1 0
4 4 4

d d d
N k T k T k T T

  
              . 

Required temperature is 

3
4 444

1 02 8 2

4 4 0.8 10
295 1225

0.8 5.67 10 10

N
T T

k d



  

 
    

   
K. 
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PHOTONS. PHOTOELECTRIC EFFECT 

 

Problem 1 

Find the energy and the linear momentum of the photon which wavelength is 

 = 1.24 pm. 

 

Solution 

The energy of the photon is given by 
hc




 , where  
346.63 10h   J·s  is the 

Planck’s constant and 
83 10c   m/s is the speed of light. 

34 8
13

12

6.63 10 3 10
1.6 10

1.24 10

hc









  
   


J. 

The linear momentum is 

34
22

12

6.63 10
5.34 10

1.24 10

h
p









   


kg·m/s. 

 

 

Problem 2 

Find the speed of electron if its kinetic energy is equal to the energy of photon 

with wavelength (a)  = 520 nm; (b)  =1.2 pm. 

 

Solution 

(a) The photon’s energy is 
hc




 . The kinetic energy of the charged particle 

electron is 
2

2

mv
KE  . 

 By condition KE  , therefore,  

2

2

mv hc


 . 

If 
346.63 10h   J·s, 

83 10c   m/s and mass of electron 
319.1 10m   kg, the 

speed of electron is 
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34 8
5

9 31

2 2 6.63 10 3 10
9.16 10

520 10 9.1 10

hc
v

m



 

   
   

  
 m/s. 

(b) If we use the same expression for this case when the wavelength of photon 

is 121.2 10   m, we obtain the speed of electron 

34 8
8

12 31

2 2 6.63 10 3 10
6 10

1,2 10 9.1 10

hc
v

m



 

   
   

  
 m/s. 

In is impermissible and impossible result because the speed of any material 

object must be less than the speed of light. This result was obtained due to the 

usage of classical expression for the kinetic energy.  Let’s use the relativistic 

formula 2

0 2

1
1

1
кинE m c



 
  

  

, where v c  . Then  

2

0
2

1
1

1

hc
m c



 
  
  

, 

2 2
12 31 8

0

34 12 31 8

0

1.2 10 9.1 10 3 10
1 1

6.63 10 1.2 10 9.1 10 3 10

m c

h m c






 

  

       
      

         
=0.94. 

The speed of electron is 

80.94 2.8 10v c c     m/s. 

 

Problem 3 

Find the speed of electron if its linear momentum is equal to the momentum of 

photon with wavelength (a)  = 520 nm; (b)  =1.2 pm. 

 

Solution 

(a) The linear momentum of electron is ep mv and the momentum of photon 

is p h  . 

By the data,  
h

mv


 . Therefore, the speed of electron is 
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34
3

9 31

6.63 10
1.4 10

520 10 9.1 10

h
v

m



 


   

  
 m/s. 

(b) The same expression used for the second wavelength gives 

34
8

12 31

6.63 10
6.06 10

1.2 10 9.1 10

h
v

m



 


   

  
 m/s. 

This impermissible result connected with the usage of classical formula. The 

relativistic expression  0 0

2 21 1
e

m v m c
p



 
 

 
 gives 

0

21

m c h





, 

     

34

2 2 22 34 31 8 12
0

6,63 10
0.9

6.63 10 9.1 10 3 10 1.2 10

h

h m c






  


  

       

. 

The speed of electron is 

80.9 2.68 10v c    m/s. 

 

Problem 4 

The energy of photon is equal to the kinetic energy of electron that had the 

initial velocity of 10
6 

m/s and accelerated through the potential difference of 4 V. 

Find the  wavelength of photon. 

 

Solution 

The change in the kinetic energy of the electron is due the work of electric 

field: 

2 1KE KE W  , 

2 2

0

2 2

mv mv
eU  . 

The energy of photon is equal to the energy of accelerated electron, therefore, 

2KE  , 
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Taking into account that 
hc




  and 
2 2

0
2

2 2

mv mv
KE eU   , 

2

0

2

hc mv
eU


  , 

 2

0 2

hc

mv eU
 


, 

 

34 8
7

31 12 19

6.63 10 3 10
1.8 10

9.1 10 10 2 1.6 10 4







  
  

    
 m. 

 

Problem 5 

The threshold wavelength for the metal is 0 275  nm. Find the minimum 

energy of photons that will cause the photoelectric effect, and the work function A . 

Determine the maximum speed  mv  and maximum kinetic energy of photoelectrons 

as they are emitted. The wavelength of the light used for illumination are (a)  = 

180 nm; (b)  =1.2 pm. 

 

Solution 

Use Einstein’s photoelectric effect equation to determine the energy of the 

incident radiation 

mА KE   . 

Minimum energy that will cause the photoelectric effect is min A  . The work 

function 
0

hc
A


 , therefore, 

34 8
18

min 9

0

6.63 10 3 10
7.2 10

275 10

hc
A








  
    


J = 4.5 eV. 

The kinetic energy and the velocity of the photoelectrons we will find for two 

wavelengths. For  = 180 nm we obtain 

34 8
18

9

6.63 10 3 10
1.1 10

180 10
m

hc
KE A A








  
      


J = 6.9 eV. 



 26 

Taking into account that the mass of electron is 319.1 10m   , its velocity 

from
2

2
m

mv
KE  is 

18
6

31

2 2 1.1 10
1.55 10

9.1 10

m
m

KE
v

m





  
   


 m/s. 

For the second wavelength  =1.2 pm = 121.2 10 m the energy of the photon is 

34 8
13

12

6.63 10 3 10
1.7 10

1.2 10

hc









 
   


J = 61.03 10 eV. 

This magnitude significantly larger than the energy for the first wavelength, 

therefore, we will use relativistic expression for the kinetic energy for calculation. 

Moreover, the energy of photon is much greater than work function, hence, 

2

0 2

1
1

1
mKE m c



 
   

  

, 

 

2 2
2 31 16

0

2 13 31 16

0

9.1 10 9 10
1 1 0.95

1.7 10 9.1 10 9 10

m c

KE m c




 

     
       

       
, 

 

80.95 2.83 10mv c c     m/s. 

 

Problem 6 

 

Find the frequency of incident light which causes the emission of 

photoelectrons that are stopped by potential difference 3sU  V. The threshold 

frequency is 4

0 6 10   Hz. Find the work function for this metal. 

 

Solution 

The threshold (or cutoff) frequency is the smallest frequency of photon that will 

still result in the photoelectric effect occurring. Therefore, the work function is  

34 14 19

min 0 6.63 10 6 10 3.98 10A h           J = 6.23 eV. 



 27 

Using Einstein’s equation  

mА KE   , 

and taking into account that m sKE eU , and the energy of incident photon is 

h  , we can find the desired frequency from 

sh A eU   , 

19 19
15

34

3.98 10 1.6 10 3
1.32 10

6.63 10

sA eU

h


 



    
   


 Hz. 

 

Problem 7 

When light of wavelength   = 360 nm is incident, the stopping potential is 

found to be sU = 0.8 V. (a) What is the maximum kinetic energy of the emitted 

electrons?  (b) What is the work function? (c) What is the longest wavelength that 

will eject any electrons from the metal? 

 

Solution 

The maximum kinetic energy of electrons must be the energy that corresponds 

the voltage sU = 0.8 V. From the definition of the electron-Volt, the energy is 0.8 

eV. Converting this value to Joules, we obtain 19 190.8 1.6 10 1.28 10mKE       J. 

The work function is the energy lost by electron as it leaves the metal. Light of 

the wavelength   = 360 nm gives each electron an energy  

34 8
19

9

6.63 10 3 10
5.53 10

360 10

hc









  
   


J = 3.45 eV.  

The maximum kinetic energy of electron is 19 190.8 1.6 10 1.28 10mKE       J. 

Therefore, using Einstein’s photoelectric effect equation mА KE     gives the 

work function as 

3.45 0.8 2.65mА KE     eV= 
194.25 10  J. 

In order to eject electron, the photon energy must be at least equal to the work 

function. Taking into account that the photon’s energy is 
hc




 ,  
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0

hc
A 


  . 

So, the longest wavelength that will eject any electrons from the metal is  

34 8
9

0 19

6.63 10 3 10
468 10

4.25 10

hc

A







  
   


m = 468 nm. 

 

Problem 8 

The photons with the energy  = 4.9 eV produce photoelectrons with work 

function A= 4.5 eV. Find the maximum linear momentum maxp  that is transferred 

to the metal surface by each emitting electron. 

 

Solution 

From Einstein’s photoelectric effect equation maxА KE   , the kinetic energy 

of the emitting photoelectrons is 

4.9 4.5 0.4mKE A       eV = 
206.4 10 J. 

Using classical relationship between the linear momentum and the kinetic 

energy
 

22 2

2 2 2

mvmv p
E

m m
   , we have 

19 20 252 2 1.6 10 6.4 10 3.4 10mp m KE            kg‧m/s. 

 

Problem 9 

Ultraviolet radiation, which is part of the solar spectrum, causes a 

photoelectric effect in certain materials. If the kinetic energy of the photoelectrons 

from an aluminum sample is 5.6·10
−19

 J and the work function of aluminum is 4.1 

eV, what is the frequency of the photons that produce the photoelectrons? 

 

Solution 

 Einstein’s photoelectric effect equation mА KE    gives  
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mh A KE   . The frequency will be 

 

19 19
15

34

4.1 1.6 10 5.6 10
1.83 10

6.63 10

mA KE

h


 



    
   


Hz. 

 

Problem 10 

 Light with a frequency of 7.5·10
14

 Hz is able to eject electrons from the metal 

surface of a photocell that has a threshold frequency of 5.2·10
14

 Hz. What stopping 

potential is needed to stop the emitted photoelectrons? 

 

Solution 

From the Einstein relation we have that the kinetic energy of photoelectrons is 

mKE А  . The stopping potential for electrons given off by the metal is just the 

voltage required to stop the most energetic electrons, m sKE eU , where 

191.6 10e   C is the charge of electron 

m
s

KE A
U

e e

 
  . 

Taking into account that h   and 0A h , the stopping potential is 

   34 4

00

19

6.63 10 7.5 5.2 10
0.95

1.6 10
s

hh h
U

e e

  




   
   


 V. 

 

Problem 11 

When the wavelength of the incident light was diminished from 1 =600 nm to 

2 =400 nm, the maximum speed of photoelectrons was changed twice. Find the 

cutoff wavelength 0  for this metal. 

 

Solution 

Einstein’s photoelectric effect equations for two wavelengths are 
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1 1

2 2

,

.

max

max

А KE

А KE





 


 
  

where  
1

1

hc



  and 

2

2

hc



  ate the energies of the photons, 

2

1
1

2

max
max

mv
KE  and 

2

2
2

2

m
m

mv
KE  are the kinetic energies of electrons. 

Relying on the given data that 1 2  , we have 2 1  , therefore, 2 1m mKE KE , 

finally, 2 1m mv v  and 2 12m mv v . 

2

1

1

2

2

2

,
2

,
2

m

m

hc mv
А

hc mv
А






 



  


                                   

2

1

1

2

1

2

,
2

4
.

2

m

m

hc mv
А

hc m v
А






 



  


 

Multiply both sides of the first equation by 4 and subtract the second equation 

from the first one: 

2 2

1 1

1 2

4 4 4
4 3

2 2

m mhc hc m v m v
А А А

 
      , 

1 2

4 1

3

hc
А

 

 
  

 
. 

Due to 
0

hc
А


 , we have  

2 1

0 1 2 1 2

4 1 4

3 3

hc hc hc  

    

   
     

   
. 

The cutoff wavelength is 

9 9
71 2

0 9 9

2 1

3 3 600 10 400 10
7.2 10

4 4 400 10 600 10

 


 

 


 

     
   

    
m  = 720 nm. 
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Problem 12 

When metal is illuminated with radiation with a wavelength 1 = 491nm the 

stopping potential is 1sU =0.7 V. When the light with 2 is used the stopping 

potential is 2sU =1.43 V. Determine the wavelength 2  and the work function for 

the metal. 

 

Solution 

Equations for two wavelengths based on Einstein’s relation are 

1

1

2

2

,

.

m

m

hc
А KE

hc
А KE






 



  


 

The stopping potential is determined by the kinetic energy of the electrons, so 

1

1

2

2

,

,

s

s

hc
А eU

hc
А eU






 



  


 

Subtraction the first equation from the second equation gives 

 2 1

2 1

s s

hc hc
e U U

 
   , 

     

1 1
2

11 2 1
2 1 2 1

1

1s s
s s s s

hc hc

hc ehc e U U
e U U U U

hc

 






  
 

   

, 

   

1 1
2 19

1
2 1 8

7
7

7

34

4.91 10
3.81 10

4.91 10 1.6 10
1 1 1.43 0.7

6.63 10 3 10
s s

e
U U

hc

 


 









   

  
   

  

 

 

The work function from the first equation is 1

1

s

hc
А eU


  . Substitution of 

given data gives  
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34 8
19

7

6.63 10 3 10
1.6 10 0.7 2.93

4.91 10
А






  
    


 J = 1.83 eV. 

 

 

X-RAYS 

 

Problem 1 

 

Calculate the minimum-wavelength X-ray that can be produced when a target 

is struck by an electron that has been accelerated through a potential difference of 

(a) 15  kV and (b) 100 kV. 

 

Solution 

We have to find the short-wavelength cutoff of X-rays which is equal to 

min

hc

eU
  . 

When the accelerating potential is 15 kV the wavelength is 

34 8
11

19

6.63 10 3 10
8.23 10

1.6 10 15000
min






  
  

 
m.  

For the second voltage: 

34 8
11

19 5

6.63 10 3 10
1.24 10

1.6 10 10
min






  
  

 
m. 

 

Problem 2 

The extremes of the x-ray portion of the electromagnetic spectrum range from 

approximately 1·10
-8

 m to 1·10
-13

 m. Find the minimum accelerating voltages 

required to produce wavelengths at these two extremes. 

  

Solution 

Using the expression for the short-wavelength cutoff of X-rays gives  
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34 8

1 19 8

min1

6.63 10 3 10
124

1.6 10 10

hc
U

e



 

  
  

 
 V. 

34 8
7

2 19 13

min 2

6.63 10 3 10
1.24 10

1.6 10 10

hc
U

e



 

  
   

 
V =12.4 MV. 

 

Problem 3 

Find the short-wavelength cutoff of X-rays if the speed of electrons hitting the 

electrode of the tube is 0.85v c , where 
83 10c    m/s is the speed of light. 

 

 Solution 

The relation for the short-wavelength cutoff of X-rays is  

min

hc

eU
  , 

where U  is the accelerating voltage. 

The work W of electric field changes the speed of electrons moving from 

cathode of X-ray tube to its anode. As a result the kinetic energy of electrons is 

changed: 

2 1W KE KE KE     

An initial energy is zero 1 0KE  , therefore, 

2eU KE  

Taking into account that given speed is closed to the speed of light, the 

relativistic expression for kinetic energy has to be used: 

2

0 2

1
1

1
eU m c



 
  

  

. 

The short-wavelength cutoff of X-rays is 

 

34
12

2
31 8

0 2
2

6.63 10
2.7 10

1 11 9.1 10 3 10 1
1 1 0.85

min

hc hc

eU
m c











    

   
            

m. 
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Problem 4 

When the accelerating voltage across the X-tube was increased twice  2n  , 

the short-wavelength cutoff of X-rays min  was changed by   = 50 pm. Find 

1min . 

 

Solution 

At the increase of the voltage across the tube the short-wavelength cutoff of X-

rays min  decreases. 

1

1

2 1

2

,

.

min

min min

hc

eU

hc

eU



  






    


 

Dividing the second equation by the first equation and using of the given data 

gives 

2 1 1 1

1 1 2 1

1min min

min min

U U

U nU n

  

 

 
    . 

Finally, the initial value of the short-wavelength is 

12
10

1

2 50 10
10

1 2 1
min

n

n
 


 

   
 

 m. 

  

 

COMPTON EFFECT 

 

Problem 1 

X-rays of wavelength   = 0.2 nm are scattered from a block of material. The 

scattered X-rays are observed at an angle of 45° to the incident beam. (a) 

Calculate the wavelength of the X-rays scattered at this angle. (b) Compute the 

fractional change in the energy of a photon in the collision. 
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Solution 

(a) The change of the wavelength during the Compton effect (Compton shift) is 

   
34

13

31 8

0

6.63 10
1 cos 1 cos45 7.11 10

9.1 10 3 10

h

m c
 







       

  
 m = 0.711 pm. 

Since   = 0.2 nm = 200 pm, 

200 0.7 2.5         pm. 

(b) The change of energy is 
   hc hc

hc

   

  

  
  , 

    13
3

9

1 1 7.11 10
3.54 10

1 0.2 10

    

   






     
        

  
 

 

 

Problem 2 

Find the wavelength of the incident X-ray radiation if after the Compton 

scattering the rays with the wavelength  25,4  are deflected at  60°relative 

to the direction of the incident rays. Find: (a) the energies and linear momenta of 

incident ( , p ) and scattered ( , p   ) X-rays; (b) energy ( e  ), linear momentum 

( ep ) and velocity  v of recoiled electron; (c) the scattering angle , the angle of 

recoiled electron , and the spreading angle . 

 

Solution 

The expression for the Compton shift  

 1 cosc          

allow to find the wavelength of scattered photon 

(1 cos ) 25.4 2.43(1 cos60 ) 24.19c           m. 

The energies of the incident   and the scattered    photons  are 

34 8
15

12

6.63 10 3 10
8.22 10

24.19 10

hc









  
   


J, 
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34 8
15

12

6.63 10 3 10
7.82 10

25.4 10

hc









  
    


J. 

The energy of the recoiled electron may be found using the law of conservation  

of energy  

e     , 

15 15 168.22 10 7.82 10 4 10e               J. 

The linear momenta of the incident p  and scattered 

p  photons are 

34
23

12

6.63 10
2.74 10

24.19 10

h
p









   


 kg·m/s, 

34
23

12

6.62 10
2.6 10

25.4 10

h
p









    

 
 kg·m/s. 

From the law of conservation of linear momentum 

ep p p 
  

 and the figure that illustrated these 

momenta the linear momentum of recoiled electron may be found by the help of 

the cosine law: 

   

2 2

2 2
23 23 23 23

2 cos

2.74 10 2.6 10 2 2.74 10 2.6 10 cos60

ep p p pp 

   

    

          

 

232.67 10   kg·m/s. 

Now let’s find the speed of electron. Usage of the classical expression for 

momentum p mv , we obtain 

23
7

31

2.67 10
2.93 10

9.1 10

p
v

m






   


 m/s. 

As seen the speed is closed to the speed of light, therefore, we have to use 

relativistic relation for momentum 0 0

2 21 1
e

m v m c
p



 
 

 
 ( v c  ). It gives 



 37 

     

23

2 2 22 23 31 8
0

23

46 44

2.67 10

2.67 10 9.1 10 3 10

2.67 10
0.097.

7.13 10 7.46 10

e

e

p

p m c




 



 


  

     


 

  

 

 70.097 2.9 10v c c     m/s. 

The desired angles may be determined from sine law 

sin sin

ep p

 


 , 

23

23

2.6 10
sin sin sin 60 0.843

2.67 10e

p

p
 





 
   


, 

57.5   . 

The spreading angle is 60 57.5 117.5         . 

 

Problem 3 

In a Compton collision with an electron, the energy of the scattered photon is 

equaled to the half of the energy of incident photon. If the scattered X-rays are 

detected at 90° relative to the incident X-rays, determine the Compton shift   at 

this angle, the energy   and linear momentum p  of the incident photon, the 

energy    and linear momentum p   of the scattered photon, and the energy e   , 

linear momentum ep  and speed v  of the recoiling electron. 

 

Solution 

The increase in a photon’s wavelength (the Compton shift) when it is scattered 

through an angle  90     by an electron is given by 

 1 cos 1 cos
2

c c c


      

 
        

 
, 

c     . 
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From 
hc




 , the wavelengths of the incident and scattered photons are 
hc




  

and 
hc




 


,  respectively.  Taking into account that 
0

c

h

m c
  , we can write the 

equation c      in the following form 

0

hc hc h

m c 
 


. 

Let’s multiply and divide the right part of the equation by speed of light c   

2

0

hc hc hc

m c 
 


. 

Reducing the fractions by a factor hc , we obtain 

2

0

1 1 1

m c 
 


. 

Since 2

0 0m c   0.512 MeV =
148.18 10 J is the electron rest energy, the 

relationship between energies takes on form  

0

1 1 1

  
 


. 

According to the data of the problem, 2   . Then 

0

2 1 1

  
  . 

As a result,  0   and   0 2e     . 

Therefore, the energy of incident photon is 0.512  MeV =
148.18 10 J, and 

the energy of the scattered photon is 0.256   MeV =
14409 10 J.  

The linear momentums of the incident and 

scattered photons are  

14
22

8

8.18 10 kg m
2.72 10

3 10 s
p

c

 
 

   


, 

14
22

8

4.09 10 kg m
1.36 10

3 10 s
p

c

 
  

    


. 
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From the law of linear momentum conservation ep p p  
  

, the linear 

momentum of the recoiling electron using the Pythagorean Theorem is  

       
2 22 2 22 22 22 kg m

1.36 10 2.72 10 3 10
s

ep p p    
          

The speed of electron can be found by means of the relativistic formula for 

momentum 0

21
e

m c
p







: 

     

22

2 2 22 22 31 8
0

3 10
0.74

3 10 9.1 10 3 10

e

e

p

p m c




 


  

     

. 

The speed of electron is  

80.74 2.2 10v c c     m/s. 

 

Problem 4 

In a Compton collision with an electron, a photon with energy 1.536   MeV 

is backward scattered through an angle 180   .  Find the energies of   the 

scattered photon   and recoiling electron e  , the   linear momentums of the 

incident p  and scattered p  photons, and the linear momentum ep  and the speed 

v  of the recoiling electron. 

 

Solution 

The Compton shift when the photon is scattered through the angle 180    is 

   1 cos 1 cos 2c c c            . 

Using that 
hc




  and the Compton wavelength of the electron is 
0

c

h

m c
  , 

let’s bring the equation 2 c       to a form 

0

2hc hc h

m c 
 


. 

Multiply and divide the right part of the equation by speed of light c . 

2

0

2hc hc hc

m c 
 


, 
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2

0

1 1 2

m c 
 


. 

Taking into account that 2

0 0m c   = 0.512 MeV, we obtain that  = 1.536 MeV 

= 03 . Therefore,   

0 0

1 1 2

3  
 


, 

0 0 0

1 1 2 7

3 3   
  


.    

 

0

3 3 0.512
0.219

7 7
 


    MeV = 3.52·10

-14
 J. 

The law of energy conservation for Compton Effect is e     . From here it 

follows that 

0 0 03 0.219 2.781 2.781 0.512e             MeV = 1.43 MeV =2.28·10
-13 

J. 

The linear momenta of the incident and scattered photons are 
2

22 220 0
0

3 3 kg m
3 3 2.731 10 8.193 10

s

m c
p m c

c c c

     
          , 

2
22 220 02.781 kg m

2.781 2.781 2.731 10 7.59 10
s

m c
p

c c c

     
         .  

From the law of linear momentum conservation ep p p  
  

, the magnitude of 

the linear momentum of electron is 

22 22 21 kg m
2.72 10 7.59 10 1.03 10ep p p

s

   
         . 

Then speed of electron can be found using 0

21
e

m c
p







 as 

     

21

2 2 22 21 31 8
0

1.03 10
0.967

1.03 10 9.1 10 3 10

e

e

p

p m c




 


  

     

, 

 
80.967 2.9 10v c c     m/s. 

 

 

Problem 5 

In a Compton effect, the wavelengths of the photons scattered through the 

angles 1  = 60°  and  2 = 120°, differ twofold. Find the wavelength of the incident 

X- ray radiation.  
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Solution 

The Compton shifts are  

   

   

1 1

2 2

1 cos 1 cos60 ,
2

3
1 cos 1 cos120 .

2

c
c c

c
c c


    


    


       


        


 

The second wavelength 2  of the scattered radiation is  2 12   . Then 

1

1

,
2

3
2 .

2

c

c


 


 


  


   


 

Express the wavelength 1
2

c      from the first equation and substitute it to the 

second equation 

3
2

2 2

c c 
 
 

   
 

. 

Taking into account that Compton wavelength is 122.43 10c
  m  = 2.43 pm, we 

obtain 

0.5 0.5 2.43 1.215c     pm.  
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Speed of light in vacuum с = 2,99810
8 
m/s = 83 10  m/s 

Plank’s constant 342 6.62 10 J sh       
342 1.055 10 J sh       

Stefan-Boltzmann constant -8 2 45.67·10 W m K      

Wien’s displacement constant 32.898 10 m Кb     

Constant 5 -3 -51.3 10 W m KC      

 Compton wavelength for the electron 12

0 2.43 10c h m c    m =2.43 pm 

Electron rest mass 31

0 9.1 10em    kg 

Proton rest mass 27

0 1.67 10pm   kg 

  -particle rest mass 27

0 6.64 10m 

  kg 

Elementary charge (proton/electron) 191.6 10e    C 

 -particle charge  192 3.2 10q e

    C 

Electric constant (vacuum 

permittivity) 
0 = 8.8510

-12
 F/m  

01 4  = 910
9
 m/ F 

1 electron-Volt 1eV = 
191.6 10 J 

Rest energy of electron 2 14

0 0 8.187 10e em c    J =  

= 
55.12 10 eV = 0.512 MeV 

Rest energy of proton 2 10

0 0 1.49 10p pm c    J = 

=9.315·10
8
 eV = 0.93 GeV 

 

Rest energy of   -particle 2 10

0 0 5.97 10m c     J = 

=
93.72 10 eV = 3.72 GeV 

   22

0 2.73 10em c   kg·m/s 

 
2 44

0 7.46 10em c    kg
2
·m

2
/s

2
 

 251.986 10hc   J·m 

  
2 503.95 10hc   ( J·m)

2 


