Министерство образования и науки Украины

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

Кафедра ТММ и САПР

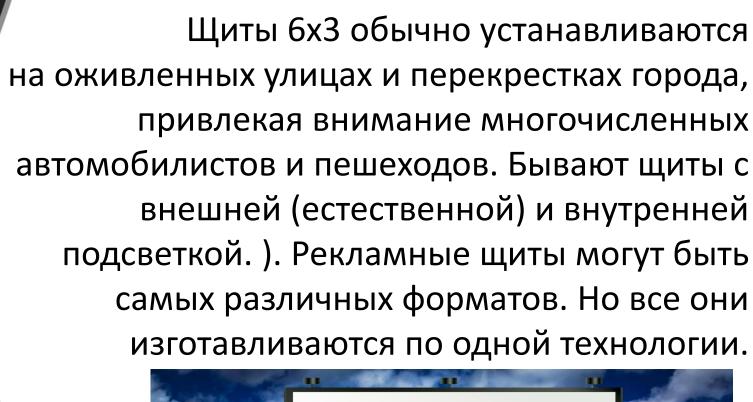
Дипломный проект по предмету Основы метода конечных элементов на тему «Анализ НДС рекламного щита при ветровой нагрузке»

<u>Выполнил:</u> ст. гр. ТМ-80Б

Алексеенко А.В.

Руководитель: Протасов Р. В.

<u>Научный консультант:</u> Протасов Р. В.

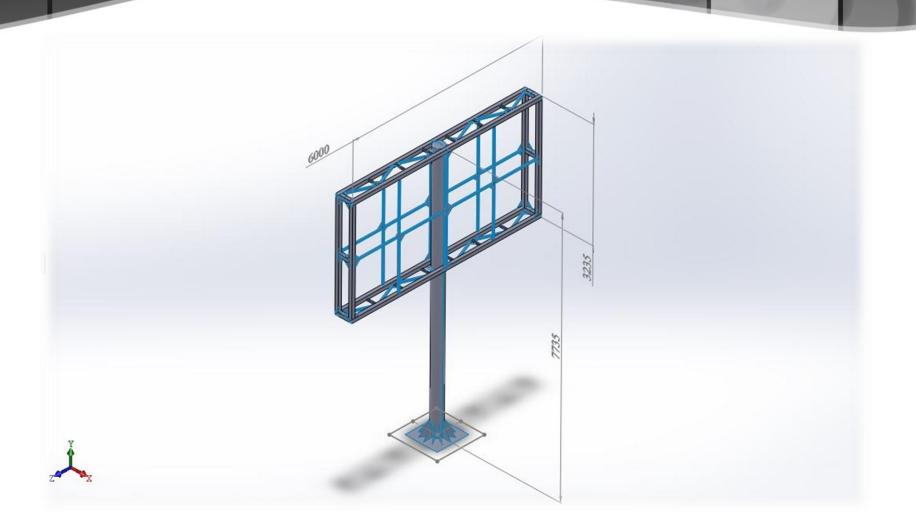


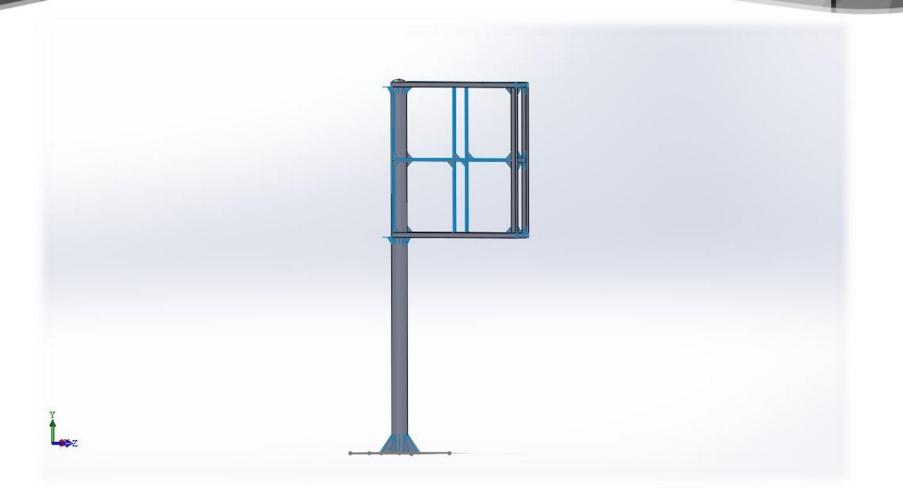
Содержание:

- Введение
- Постановка задачи
- Подготовка к расчету
- Результаты расчета
- Вывод

Введение:

Рекламные щиты - это самый распространенный и самый востребованный вид наружной рекламы. Информация, которая поступает с рекламных щитов, в большой степени в последнее время формирует не только покупательский спрос, но и участвует в образовании стандартов поведения. Сомневаться в эффективности данного вида наружной рекламы не приходится. По заявлениям специалистов рекламных и маркетинговых компаний, именно рекламные щиты дают наибольший приток потенциальных покупателей и клиентов. Самые популярные размеры - 6х3 метров.



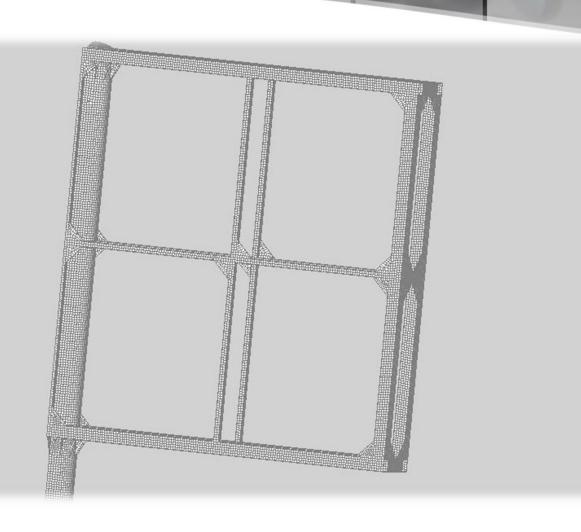

Постановка задачи:

- Построить рекламный щит в CAD-системе SolidWorks;
- Создать конечно-элементную модель рекламного щита в инженерно-расчетной программе Femap;
- Выполнить анализ напряженно деформированного состояния модели в САЕ-системе FEMAP.

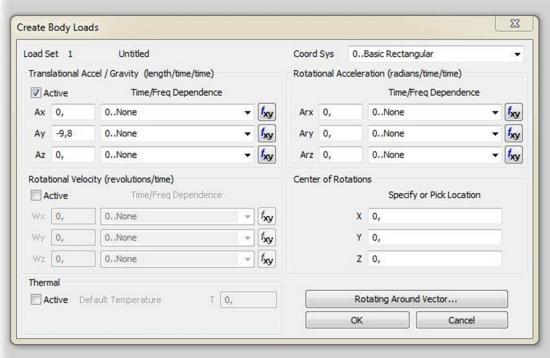
Трехмерная модель рекламного щита

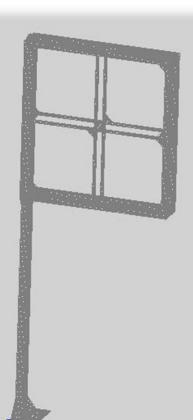
Упрощенная модель для расчета в FEMAP:

Подготовка к расчету:

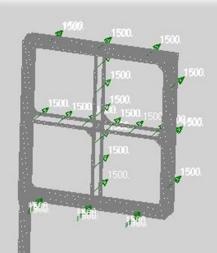

- Объединение всех плоскостей в одно целое.
- Выбор материала и толщины
- Задание размеров КЭ сетки и разбивка модели на КЭ сетку
- Задание силы тяжести и силы ветра
- Задание симметрии
- Расчет на собственные частоты
- Анализ НДС при ветровой нагрузке

Задание материала:

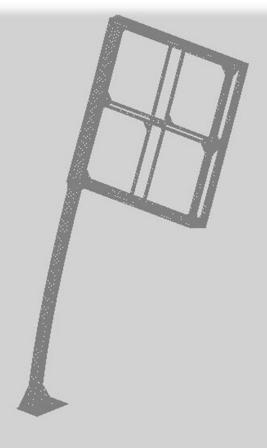

Stiffness		Limit Stress	
Youngs Modulus, E	2,E+11	Tension	0,
Shear Modulus, G	0,	Compression	0,
Poisson's Ratio, nu	0,3	Shear	0,
Thermal			
Expansion Coeff, a	0,	Mass Density	7800,
Conductivity, k	0,	and the second	0,
Specific Heat, Cp	0,	Damping, 2C/Co	
Heat Generation Fact	or 0,	Reference Temp	0,


Разбивка модели на КЭ сетку:

Задание силы тяжести

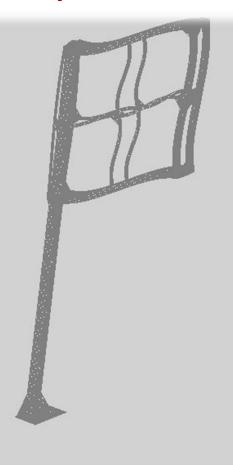


Задание силы ветра



Деформации щита:

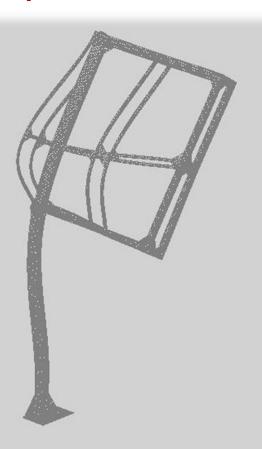
При первой частоте:



utput Set. Mode 1, 2,055482 Hz

Деформации щита:

При второй частоте:



utput Set: Mode 2, 12.06369 Hz

Деформации щита:

При третьей частоте:

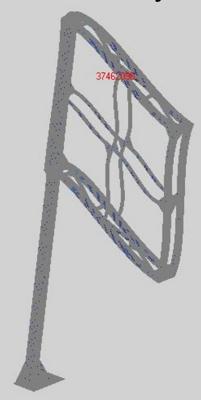

Julput Set: Mode 3, 15,19914 H:

Таблица собственных частот:

№ Частоты	Значения 2.055482 Hz 12.06369 Hz 15.19914 Hz 15.94649 Hz 17.45621 Hz	
1		
2		
3		
4		
5		
6	30.27196 Hz).27196 Hz
7 31.01847 Hz 8 39.93136 Hz		
9 55.88628 Hz		
10	58.28541 Hz	

Результаты анализа напряженнодеформированного состояния модели

Напряжения по Мизесу, 37 МПа

37462096.

34964624

HE SE

472304

4974730

22477256

19979784

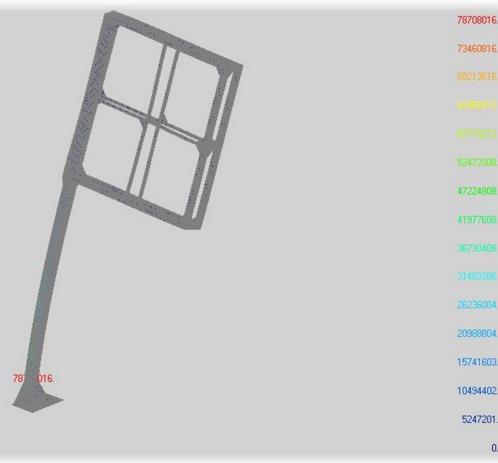
1748231

14984838

2487365

989892

7492419.


4994946.

2497473.

n

Результаты анализа напряженнодеформированного состояния модели

Напряжения по Мизесу, 78 МПа

9,8

utput Set: NX:NASTRAN Case 1
eformed(0.025): Total Translation

Вывод:

Результаты расчета показали перемещения, которые будут происходить под действием собственных частот. Расчет на собственные частоты очень важен, так как рекламный щит площадью в 18 м² весит достаточно для того, чтобы повредить при падении кузов автомобиля. В ходе выполнения курсовой работы я приобрел бесценный опыт работы в CAD-системе SolidWorks, а также в CAEсистеме FEMAP. Кроме того, я ознакомился с конструкцией рекламного щита, который и рассчитывал. Для более быстрого результата, я максимально упростил модель пренебрег деталями, которые не особо влияли на расчет.

Спасибо за внимание!