Министерство образования и науки Украины Национальный технический университет «Харьковский политехнический институт» Кафедра ТММиСАПР

Дипломная работа на тему «Моделирование процесса обтекания воздушным потоком вагона метро»

> Выполнила: студентка группы ТМ-89бс Пасечная Дарина Игоревна Руководитель: Васильев Антон Юрьевич

Введение

Аэродинамическое сопротивление составляет примерно 13% от всего сопротивления системы. Именно поэтому улучшение аэродинамических характеристик вагона метрополитена является актуальной задачей. Ведь если удастся улучшить этот показатель хотя бы до 10%, то это может существенно увеличить КПД, снизить количество потребляемой электроэнергии и, как следствие, уменьшить затраты.

В курсовой работе на тему «Оценка влияния геометрии вагонного состава метрополитена на аэродинамические характеристики» был сделан вывод, что зазоры между вагонами увеличивают аэродинамическое сопротивление на 14%. В данной работе производится расчет геометрии вагона и его элементов, а также проверяется, как влияет геометрия тоннеля метро на аэродинамические характеристики.

Постановка задачи

- 1. Построить трехмерные модели вагона, тележки.
- 2. Импортировать модели в программу, в которой будет производиться расчет.
- 3. Приложить на объект необходимые нагрузки и граничные условия.
- 4. Выполнить необходимые расчеты с разными комбинациями ГУ.
- 5. Провести расчет отдельных элементов вагона.
- 6. Провести расчеты с разной геометрией тоннеля метро.
- 7. Рассчитать себестоимость и срок окупаемости НДР.
- 8. Рассмотреть вопросы охраны труда и гражданской защиты.
- 9. Проанализировать результаты.

Построение геометрической модели

Трехмерная модель состава была построена в программе Autodesk Inventor 2014 на основе чертежа состава типа 81-718/719 (рис. 1).

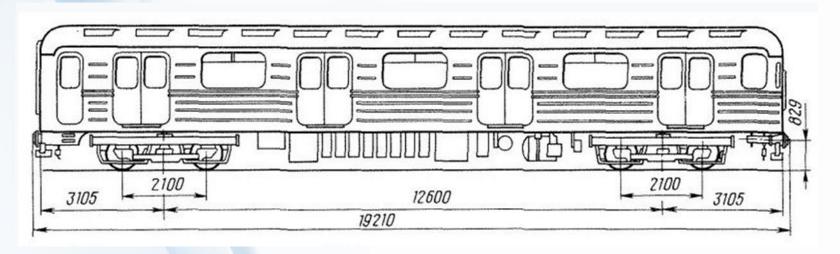


Рисунок 1 — Основные габариты вагона типа 81-718/719

Построение геометрической модели

Модель максимально приближена к оригиналу, чтобы оценить влияние каждого элемента на аэродинамические характеристики (рис. 2).

Рисунок 2 – Геометрическая модель вагона типа 81-718/719

При попытке создать расчет в программе ASCFD 2014 с данной моделью, программа не сумела построить конечно-элементную сетку, так как в геометрической модели содержаться поверхности, которые нельзя разбить на конечные элементы по тем или иным причинам (рис. 3).

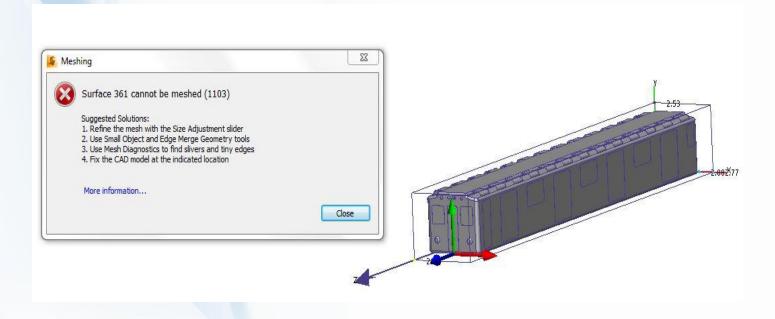


Рисунок 3 – Ошибка при создании КЭ сетки

Видно, что программа не может создать сетку на поверхности под номером 361. Проблемная поверхность показана на рисунке 4.

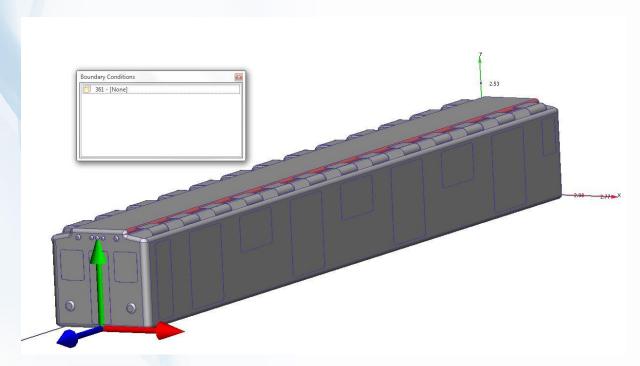


Рисунок 4 – Поверхность, на которой ASCFD не может построить КЭ сетку

Чтобы этой ошибки не было, изменим геометрию воздухозаборников: вместо полых – сплошные (рис. 5).

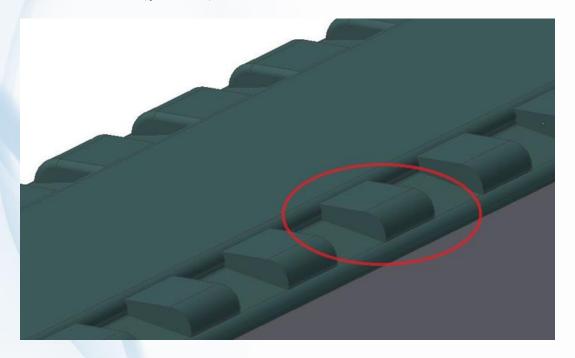


Рисунок 5 – Измененная геометрия воздухозаборников

Таким образом, упрощая и изменяя геометрическую модель, была получена расчетная модель, которую можно использовать для расчетов в ASCFD. Окончательная модель представлена на рисунке 6.

Рисунок 6 – Расчетная модель вагона

Построение геометрической модели тележки

Трехмерная модель тележки вагона метро была построена в программе Autodesk Inventor 2014. В модели были сохранены основные конструктивные элементы, а также габариты тележки. Геометрическая модель тележки представлена на рисунке 7.

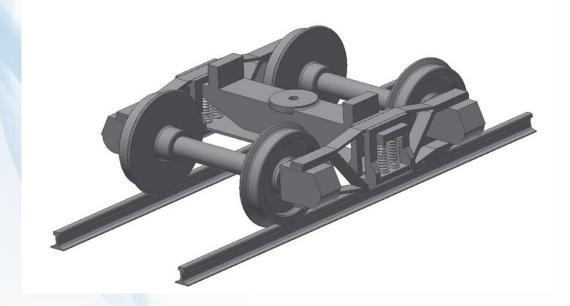


Рисунок 7 – Геометрическая модель тележки

Построение геометрической модели тележки

При попытке рассчитать задачу в ASCFD на базе этой модели, возникли трудности, при создании КЭ сетки. В модели присутствуют мелкие элементы, которые в разы увеличивают время разбиения модели. В данном случае, этими элементами являются пружины (рис. 8).

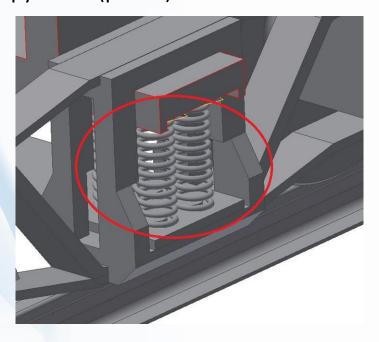


Рисунок 8 – Геометрическая модель тележки

Граничные условия

Граничные условия определяют начальные параметры для расчета задачи. Чтобы оценить, какие граничные условия лучше использовать для данного типа задач, были проведены три расчета с разными граничными условиями (рис. 9). Результаты оформлены в таблице 1.

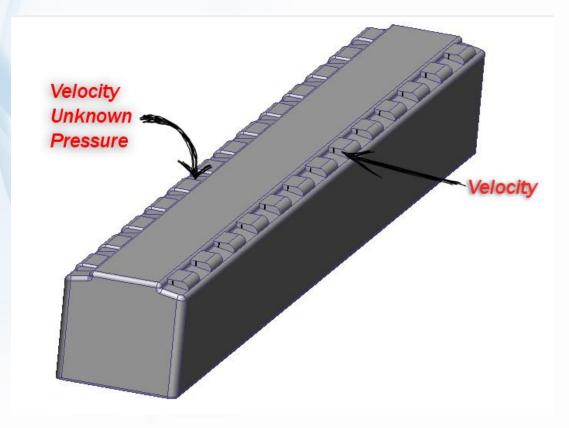


Рисунок 9 – Варианты граничных условий

Граничные условия

Граничное	Давление на поверхности	Давление на поверхности	
условие	ВЗ, что поглощает воздух,	ВЗ, откуда выходит воздух,	
	Па	Па	
Velocity	114390	113793	
Unknown	114390	113793	
Pressure	114677	0	

Таблица 1 – Сравнение результатов расчета с разными ГУ

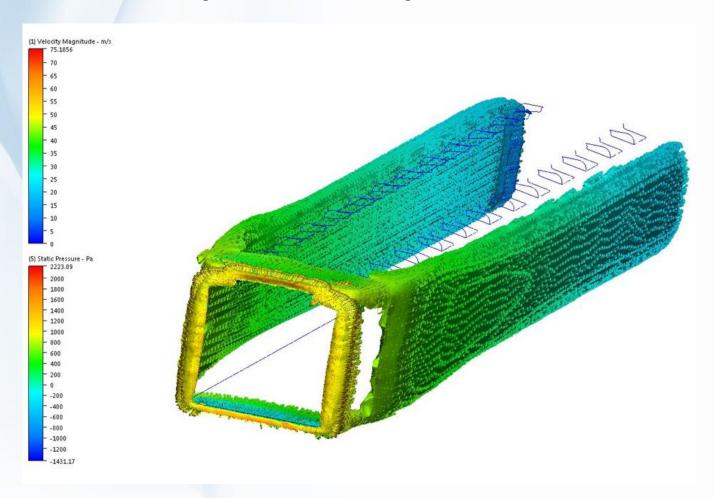


Рисунок 10 – Результат расчета вагона метро

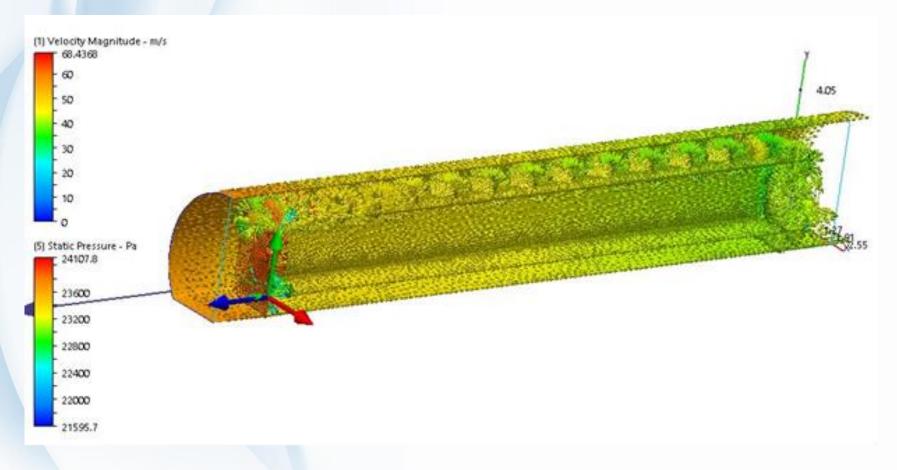


Рисунок 11 – Результат расчета вагона метро в тоннеле круглой формы

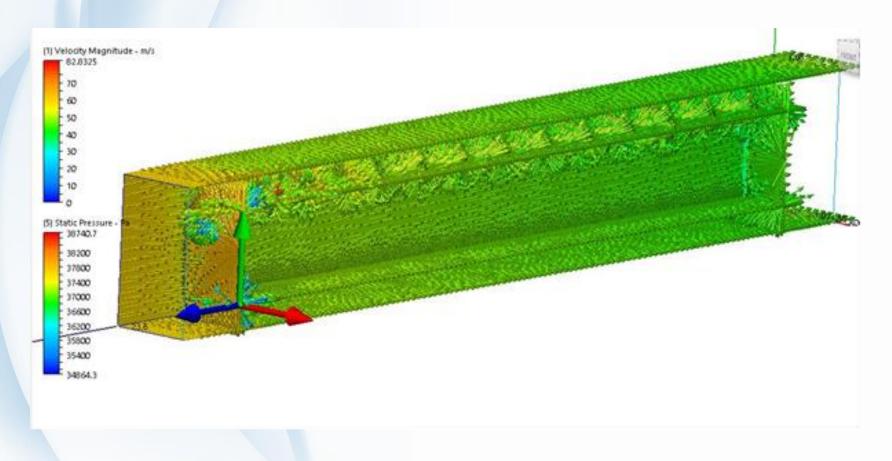


Рисунок 12 — Результат расчета вагона метро в тоннеле прямоугольной формы

Форма туннеля	Давление, Па	Сила, Н
Круглая	24107,8	66672
Прямоугольная	38740	105912

Таблица 2— Сравнение результатов расчета туннеля круглой и прямоугольной форм

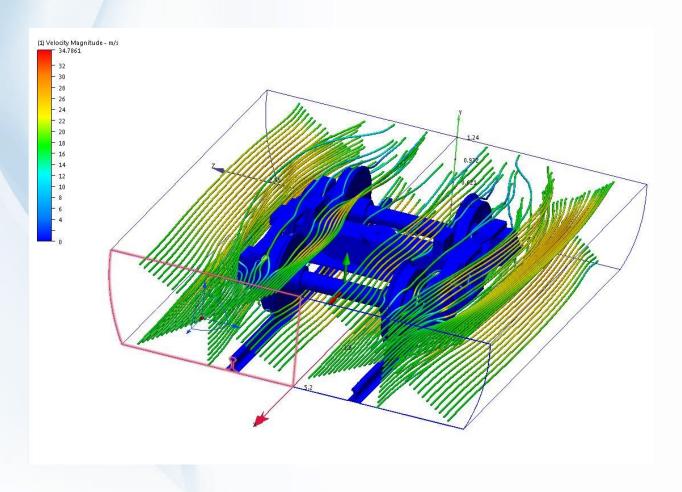


Рисунок 13 – Результат расчета тележки вагона

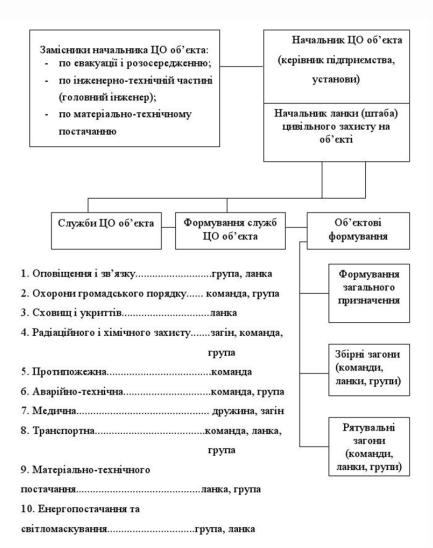
Экономическая часть

Себестоимость НДР являет собой выраженные в денежной форме текущие расходы предприятия, научно-исследовательских институтов и других научных учреждений на проведение исследований в соответствии с техническим заданием.

№ п/п	Наименование статьи расходов	Сумма, грн.
1	Стоимость материалов	87,00
2	Транспортно-заготовительные расходы	13,05
3	Основная заработная плата	10000,00
4	Дополнительная заработная плата	1500,00
5	Отчисления на социальные мероприятия	4416,00
6	Амортизация	1892,00
7	Общепроизводственные расходы	3450,00
8	Производственная себестоимость	20412,05
9	Административные расходы	2300,00
10	Прибыль	2271,20
11	Полная себестоимость	25929,25

Охрана труда

Одним из важнейших заданий охраны труда является обеспечение таких условий труда, которые бы исключали возможность действия на работников разных опасных и вредных производственных факторов.


В рамках раздела Охрана труда были рассмотрены такие вопросы:

- производственная санитария;
- микроклимат производственной среды;
- освещение;
- электромагнитное излучение;
- шум;
- меры безопасности;
- пожарная безопасность.

Гражданская защита

Гражданская защита — это функция государства, направленная на защиту населения, территорий, окружающей среды и имущества от чрезвычайных ситуаций путем предотвращения таких ситуаций, ликвидации их последствий и оказания помощи пострадавшим в мирный час и в особенный период.

В данном разделе рассматривался вопрос «Организация и порядок функционирования гражданской защиты на объекте хозяйствования».

Выводы

Целью дипломной работы было рассчитать вагон метрополитена и его элементы на аэродинамические характеристики.

Были выполнены такие задачи:

- построены геометрические модели вагона и тележки;
- рассчитаны задачи с разными ГУ;
- рассчитаны задачи с разной геометрической формой тоннеля метро;
- рассчитана геометрия тележки вагона;
- рассчитана себестоимость НДР и срок окупаемости;
- рассмотрены вопросы охраны труда;
- рассмотрено, как организовывается ГЗ на объекте.

Спасибо за внимание!