ЛАБОРАТОРНА РОБОТА №5

МЕТОД ЕКВІВАЛЕНТНОГО ГЕНЕРАТОРА В КОЛАХ ПОСТІЙНОГО СТРУМУ

Мета роботи: експериментально перевірити метод еквівалентного генератора (теорему Тевенена) у складному лінійному колі постійного струму.

5.1. Загальні положення

Метод еквівалентного генератора застосовується для розрахунку струму в одній із гілок складного лінійного кола.

Гілку, де визначається струм через резистор R_n , можна виділити як навантаження двополюсника, позначеного прямокутником з буквою А. При цьому усі резистори двополюсника можна врахувати одним еквівалентним резистором R_{BX} , а активну дію двополюсника – одним еквівалентним джерелом $E_{\Gamma} = U_{\text{XX}}$ (дивись рис. 1). В цьому полягає зміст методу про еквівалентний генератор (МЕГ).

Рисунок 5.1

Згідно з МЕГ струм у будь-якій виділеній гілці складного електричного кола обчислюється за формулою:

$$I_n = \frac{U_{XX_n}}{R_n + R_{BX_n}},$$

де U_{XX_n} – напруга на розімкнутих затискачах *n*-ї гілки (напруга холостого ходу);

 R_{BX_n} – опір всієї всього кола відносно розімкнутих затискачів *n*-ї гілки за умови, що всі джерела ЕРС закорочені (їхні внутрішні опори $R_{BH_E} = 0$), а джерела струму розімкнуті (їхні внутрішні опори $R_{BH_J} = \infty$);

 R_n – опір виділеної *n*-ї гілки.

Таким чином, для знаходження величини струму за допомогою ТЕГ необхідно визначити напругу холостого ходу U_{XX} та вхідний опір R_{BX} експериментально або аналітично.

Для аналітичного розрахунку U_{XX} застосовують другий закон Кірхгофа, а R_{BX} розраховується за методом еквівалентного перетворення опорів.

5.2. Порядок виконання роботи

До початку виконання лабораторної роботи підготувати бланк ПРОТОКОЛУ (ДОДАТОК 5.1).

У ПРОТОКОЛІ накреслити схему досліджуваного електричного кола згідно з варіантом (ДОДАТОК 5.2).

УВАГА: роботу виконувати згідно з методичними вказівками, а результати експериментальних вимірювань заносити до відповідних таблиць ПРОТОКОЛУ.

5.3. Експериментальна перевірка метода еквівалентного генератора в складному лінійному колі постійного струму

5.3.1. В Multisim мультиметром в режимі омметра виміряти опори резисторів (рис. 5.1), номери яких наведені в табл. 5.1 протоколу.

Рисунок 5.1 – Вимірювання опору мультиметром в програмному комплексі Multisim

Результати вимірювань занести в табл. 5.1.

Таблиця 5.1 – Результати вимірювань опорів резисторів

Позначення на схемі	Формула розрахунку опору	Величина виміряного
	резистора, Ом	опору резистора, Ом
R_1	350+10·N	
<i>R</i> ₂	300+10· <i>N</i>	
<i>R</i> ₃	$100 + 10 \cdot N$	
R_4	200+10·N	
<i>R</i> ₅	$150 + 10 \cdot N$	
R ₆	250+10·N	

⁽*N* – номер в журналі)

5.3.2. На набірному полі Multisim зібрати модель досліджуваного електричного кола згідно з варіантом N, що відповідає номеру у журналі групи (Додаток 5.2).

Джерелами електричної енергії *EPC* в колі є залежне від номеру варіанту N джерело $E_1 = 15 + N$ (B) і однакове для всіх варіантів джерело живлення $E_2 = 12$ В.

Для перевірки методу еквівалентного генератора слід виконати вимірювання та розрахунки окремо для кожної з двох гілок з резисторами: n = 3 i n = 5.

Перед початком вимірювань на принциповій схемі вказати довільно вибрані позитивні напрямки струмів в гілках з n=3 і n=5.

У дослідженнях в Multisim замість перемички в гілках з n = 3 і n = 5 (в розрив) підключається амперметр в режимі *DC* (постійний струм). Амперметр підключається послідовно з елементами досліджуваної гілки електричного кола та з полярністю відповідно до вибраного позитивного напрямку струму («+» на приладі відповідає початку стрілки струму, «–» відповідає кінцю стрілки).

Підключити вольтметри до джерел ЕРС та паралельно резисторам з n = 3 і n = 5.

У з'єднанні вольтметра з ЕРС «+» приладу слід підключати до «+» джерела.

Полярність (від «+» до «-») приєднання вольтметра для вимірювання напруги має відповідати вибраному напрямку струму через кожен резистор.

5.3.3. Запустити моделювання в Multisim (натиснути кнопку «Run»).

Зібрану на набірному полі Multisim схему скопіювати (меню: **Tools/Capture_screene_area**) та вставити в Протокол, нижче принципової схеми.

5.3.4. Виміряти напругу джерела *E*₁. Результат вимірювання записати перед табл. 5.2.

$E_1 = B; E_2 = 12 B$

Таблиця 5.2 – Результати вимірювань та розрахунків параметрів

	Результати вимірювань				Результати
Номер					розрахунків
гілки	<i>I</i> _n , мА	U_n, \mathbf{B}	U_{xx_n} , B	R_{ex_n} , кОм	<i>I</i> _{<i>n</i>} , мА
<i>n</i> =3					
n=5					

5.3.5. Для перевірки методу еквівалентного генератора виконати вимірювання та розрахунки окремо для кожної з двох гілок, що містять резистори з номерами n = 3 і n = 5.

Виміряти амперметром струм І_n, в досліджуваній гілці.

Результати вимірювання занести до табл. 5.2.

5.3.6. Виміряти вольтметром, підключеним паралельно резистору, падіння напруги *U_n* на опорі.

Результати вимірювання занести до табл. 5.2.

Розрахувати струм I_n за законом Ома $\left(I_n = \frac{U_n}{R_n}\right)$ та порівняти його з виміря-

ним у пункті 5.3.5. струмом *I_n*. Якщо між ними різниця становить більше 5%, експеримент повторити.

Зупинити моделювання в Multisim (натиснути кнопку «Stop»).

5.3.7. Вилучити один з двох дротів, якими резистор приєднаний до досліджуваної гілки (рис. 5.2).

Рисунок 5.2 – Вимірювання напруги холостого ходу вольтметром, підключеним паралельно резистору з *n*=5

Запустити моделювання в Multisim (натиснути кнопку «Run»). Виміряти вольтметром в досліджуваній гілці напругу холостого ходу U_{xx_n} .

Результати вимірювання занести до табл. 5.2.

Зупинити моделювання в Multisim (натиснути кнопку «Stop»).

В розрив замість резистора в досліджуваній гілці підключити мультиметр з панелі приладів, розташованих праворуч набірного поля Multisim (рис. 5.3).

Рисунок 5.3 – Вимірювання мультиметром в гілці *n*=5 вхідного опору

Вилучити зі схеми підключені джерела ЕРС, а замість них поставити перемички (дроти).

Запустити моделювання в Multisim (натиснути кнопку «Run»).

Перевівши мультиметр в режим омметра (Ω), виміряти вхідний опір R_{ex_n} .

Результати вимірювання занести до табл. 5.2.

Зупинити моделювання в Multisim (натиснути кнопку «Stop»).

5.3.8. Провести розрахунки струму I_n за формулою:

$$I_n = \frac{U_{xxn}}{R_n + R_{ex}} \, .$$

Результати розрахунків занести до табл. 5.2.

Порівняти виміряні і розраховані струми I_n для кожної досліджуваної гілки. Якщо між ними різниця становить більше 5%, експеримент повторити.

5.3.9. Зібрати електричне коло, яке складається з навантаженого резистором R_n еквівалентного генератора, ЕРС якого дорівнює напрузі холостого ходу U_{xx_n} , а внутрішній опір дорівнює вхідному опору R_{ex_n} (рис.5.4.). Амперметром або мультимером в режимі амперметра виміряти струм I_n в цьому одноконтурному колі. Порівняти результати вимірів з отриманими в п. 5.3.5.

Рисунок 5.4 – Вимірювання амперметром струму в гілці *n*=5 після заміни кола еквівалентним генератором

Зберегти файл схеми.

Результати дослідження показати викладачу.

УВАГА: перед дослідженнями в наступній гілці відновити початкову схему.

5.4. Виконання аналітичного розрахунку струмів в гілках досліджуваного електричного кола

Аналітично розрахувати струми *I*₃, *I*₅ третьої і п'ятої гілок досліджуваної схеми методом еквівалентного генератора.

Вихідні дані для розрахунку: величини опорів наведені в табл. 5.1; величини *E*₁, *E*₂ – перед табл. 5.2.

Результати розрахунку струмів *I*₃, *I*₅ занести до таблиці 5.3 та порівняти їх з експериментальними величинами в табл. 5.2.

Таблиця 5.3 – Результати аналітичних розрахунків

Номер	Розраховані величини			
гілки	U_{xx_n}, \mathbf{B}	$R_{_{ex_n}}$, Ом	<i>I</i> _n , мА	
<i>n</i> = 3				
<i>n</i> = 5				

Зробити висновок.

Питання для контролю.

- 1. Дати визначення контуру електричного кола.
- 2. Сформулювати другий закон Кірхгофа.
- 3. Пояснити суть методу еквівалентних перетворювань.
- 4. Що таке активний двополюсник?
- 5. Що таке пасивний двополюсник?
- 6. Як аналітично та експериментально визначити напругу холостого ходу двополюсника?
- 7. Що є вхідним опором двополюсника?
- 8. Сформулювати теорему Тевенена.

ДОДАТОК 5.1

Група _____ Студент _____ П.І.пБ.

Викладач_

П.І.пБ.

ПРОТОКОЛ виконання лабораторної роботи 5

МЕТОД ЕКВІВАЛЕНТНОГО ГЕНЕРАТОРА В КОЛАХ ПОСТІЙНОГО СТРУМУ

Рисунок 5.1 – Принципова схема досліджуваного електричного кола, згідно з варіантом N (Додаток 5.2)

Рисунок 5.2 – Модель досліджуваного електричного кола, згідно з варіантом N

Позначення на схемі	Формула розрахунку опору	Величина виміряного
	резистора, Ом	опору резистора, Ом
R_1	$350 + 10 \cdot N$	
<i>R</i> ₂	300+10·N	
<i>R</i> ₃	$100 + 10 \cdot N$	
R_4	200+10·N	
<i>R</i> ₅	$150 + 10 \cdot N$	
R ₆	250+10·N	

Таблиця 5.1 – Результати вимірювань опорів резисторів

(*N* – номер в журналі)

 $E_1 = 15 + N = B; E_2 = 12 B$

Таблиця 5.2 – Результати вимірювань параметрів та розрахунків струмів

	Результати вимірювань				Результати
Номер					розрахунків
гілки	<i>I</i> _n , мА	U_n, \mathbf{B}	U_{xx_n} , B	R_{ex_n} , Ом	<i>I</i> _{<i>n</i>} , мА
<i>n</i> =3					
n=5					

Гаолиця 5.3 – Результати аналітичних розрахунків
--

Номер	Результати розрахунків			
гілки	<i>I</i> _n , мА	$U_{_{XX_n}}$, B	R_{ex_n} , Ом	
<i>n</i> =3				
n=5				

ДОДАТОК 5.2

