Head of the Department

Kurpa1Lidiya Vasilyevna Kurpa started management of the Department of Applied Mathematics since 1995.

L.V.Kurpa started her pedagogical activity in 1969 after she had obtained PhD degree. Her scientific supervisor was V.L. Rvachev.

At the beginning of her career L.V.Kurpa took the position of assistant professor and later the position of associate professor of the Department of Applied Mathematics. In 1980 she gave up pedagogical activity at the Polytechnic Institute and began working at Kharkov Institute of Machine Building Problems at the Department of Applied Mathematics and Computational Methods.

Under the direction of V.L. Rvachev she performed researches concerning solution of vibration problems for plates and shallow shells of arbitrary form by the R-functions method. The results of these investigations have been published in 3 monographs and more than 250 papers.

In 1990 L.V. Kurpa defended Dr.Sci. thesis “Development of R-functions-based methods and software for solving problems of bending, vibration and stability of thin-walled structural elements of complex shape”.
After obtaining Dr.Sci. degree she renewed her work at the Department of Applied Mathematics as a professor and later as the Head of the Department.

Under the management by L.V. Kurpa the Department has gained considerable success in scientific and educational activities. During last years (2010-16) scientific workers of the Department wrote more than 70 research papers and more than 20 textbooks. The results of investigations were presented at well-known scientific conferences.

Scientific interests:

  • The theory of R-functions;
  • Development of the methods for solving non-linear problems of vibrations of laminated plates and shallow shells of complex shape.

SELECTED PUBLICATIONS (overall number - over 250):

(Here you can find complete list including papers written in Russian)

  1. J. Awrejcewicz Dynamical instability of laminated plates with external   cutout // J. Awrejcewicz, L. Kurpa, O. Mazur / Int. J. of Non-linear Mechanics (81), 2016, p.103–114.
  2. L. Kurpa. Application of the R-functions  theory to problems of nonlinear dynamics of laminated composite shallow shells and plates: Review. Proceedings of the 5th  International Conference on Nonlinear Dynamics ND-KhPI 2016 September 27–30, 2016, Kharkov, Ukraine, 431–437.
  3. L. Kurpa, K. Lyubitska. Application 0f the R-functions method for nonlinear bending of orthotropic shallow shells on an elastic foundation. Proceedings of the 5th  International Conference on Nonlinear Dynamics ND-KhPI2016 September 27–30, 2016, Kharkov, Ukraine, 438–444.
  4. L. Kurpa, O. Mazur, V. Tkachenko. Investigation of the parametric vibrations of laminated plates by RFM. Proceedings of the 5th  International Conference on Nonlinear Dynamics ND – KhPI2016 September 27–30, 2016, Kharkov, Ukraine, 445–450.
  5. L.Kurpa, G.Timchenko, A.Osetrov. Application of R-functions theory to nonlinear vibration problems of laminated shallow shells with cutouts. Proceedings of the 5th  International Conference on Nonlinear Dynamics ND-KhPI2016 September 27–30, 2016, Kharkov, Ukraine, 451–455.
  6. Курпа Л.В.  К 90-летию со дня рождения Академика Нан Украины Владимира логвиновича Рвачева / Т.И. Шейко, Л.В. Курпа, Е.О. Бездетко, А.А. Осетров //  Вісник НТУ «ХПІ», 2016. – № 26 (1198) с.
  7. J. Awrejcewicz, L. Kurpa, T. Shmatko. Investigating geometrically nonlinear vibrations of laminated shallow shells with layers of variable thickness via the R-functions theory //Composite Structures, V. 125, P. 575–585, 2015
  8. Jan Awrejcewicz, Lidiya Kurpa, Tatiana Shmatko. Vibration of functionally-graded shallow shells with complex shape // DSTA-2015, December 7-10, 2015. Lodz, POLAND, 57-68.
  9. Курпа Л.В. Аналіз геометрично нелінійних коливань функціонально-градієнтних пологих оболонок за допомогою теорії R-функцій / Л.В. Курпа, Т.В. Шматко // Вісник НТУ «ХПІ». Серія: Математичне моделювання в техніці та технологіях. – Харків: НТУ «ХПІ», 2015. – №6 (1115). – с. 56–66.
  10. Курпа Л.В. Исследование геометрически нелинейных колебаний функционально-градиентных пологих оболочек со сложной формой плана / Л.В. Курпа, Т.В. Шматко // Вісник Запорізького національного університету: Збірник наук.статей. Физико-матем.науки. – Запоріжжя: Запорізький нац..ун.-т., 2015. – с.89–97.
  11. L. Kurpa, A. Osetrov. Investigation of free vibrations of perforated multilayered plates by R-functions theory and spline-approximation // DSTA–2015 (December 7–10, 2015. Lodz, POLAND).
  12. Курпа Л.В. Свободные колебания функционально-градиентных пологих оболочек со сложной формой плана / Л.В. Курпа, Т.В. Шматко  // Теоретическая и прикладная механика, 2014. – Вып. 54. – № 8. – с. 77–86.
  13. L.V.Kurpa, T.V. Shmatko. Nonlinear vibrations of laminated shells with layers of variable thickness./ Shell Structures: Theory and Applications, 2014 Taylor & Francis Group, London, UK. – V.3, p. 305–308.
  14. L.V. Kurpa, O.S. Mazur, V.V. Tkachenko. Parametric Vibrations and Dynamic Instability of thin laminated plates with complex form. / Shell Structures: Theory and Applications, 2014 Taylor & Francis Group, London, UK. – V. 3, p. 309–312.
  15. L.V. Kurpa, Parametric Vibrations of Multilayer Plates of Complex Shape / L.V. Kurpa, O.S.Mazur, V.V.Tkachenko. // Journal of Mathematical Sciences, Vol. 174, No 2, February, 2014, – P. 101–114.
  16. L. Kurpa, O. Mazur. Investigation of Parametric Vibrations of Laminated plates by R-functions Method// ENOC, 2014 Vienna, july 6–11.
  17. Курпа Л.В. Применение метода R-функций к исследованию нелинейных колебаний функционально-градиентных пологих оболочек / Л. В. Курпа, Т. В. Шматко  // Теоретическая и прикладная механика, 2014. – Вып.55. – № 9. –  с. 59-70.
  18. Курпа Л.В. Определение собственных частот функционально-градиентных пологих оболочек с помощью метода R-функций и сплайн-аппроксимации / Л. В. Курпа, А. А. Осетров, Т. В. Шматко // Вісник НТУ «ХПІ». Серія: Математичне моделювання в техніці та технологіях. – ISSN 2222-0631. Вісник НТУ «ХПІ», 2014. – №6 (1049).  – с. 99 – 111.
  19. L. Kurpa, O. Mazur, I. Tsukanov. Application of R-Functions Theory to Study Parametric Vibrations and Dynamical Stability of Laminated Plates // Proc. of the Fourth Int. Conference “Nonlinear Dynamics”, June 19-22, 2013. – p.271-276.
  20. J. Awrejcewicz, L. Kurpa, T. Shmatko. Large amplitude free vibration of orthotropic shallow shells of complex form with variable thickness. // Latin American Journal of Solid and Structures, 10(2013). – p.147-160.
  21. Курпа Л.В. Параметричні коливання багатошарових пластин складної форми / Л.В. Курпа, О.С.  Мазур,  В.В. Ткаченко // Математичні методи та фізико-механічні поля, 2013. – Т. 56. – №2. –  с. 136-150.
  22. Dynamical instability of laminated plate with external cutout. Awrejcewicz J., Kurpa L., Mazur O. 2013. (Lodz) 427-438.
  23. Kurpa, O. Mazur, V. Tkachenko. Dynamical stability and parametrical vibrations of the laminated plates with complex shape. Latin American Journal of Solids and Structures 10 (2013) 175 –188.
  24. Курпа Л.В. К вопросу о построении системы базисных функций для решения задач о геометрически нелинейных колебаниях многослойных пологих оболочек / Л.В.Курпа, Г.Н. Тимченко, Н.А. Будников // Динамические системы, 2013. –Т. 2(30). – № 3-4. – с. 273–284.
  25. Курпа Л.В. Исследование вынужденных нелинейных колебаний многослойных пологих оболочек при помощи многомодовой аппроксимации / Л.В.Курпа, Н.А. Будников //  Вісник донецького національного університету, Сер. А: Природничі науки, 2013. –  № 1.- с. 55–60.
  26. Jan Awrejcewicz, Lidiya Kurpa, and Andrey Osetrov. Investigation of the stress-strain state of the laminated shallow shells by R-functions method combined with spline-approximation // ZAMM Z. Angew. Math. Mech., 1 – 10 (2011) / DOI 10.1002/zamm.201000164
  27. Lidiya Kurpa, Tatiana Shmatko, Galina Timchenko. Free vibration analysis of laminated shallow shells with complex shape using the R-functions method // Composite Structures 93, 2010. – P. 225–233.
  28. Awrejcewicz J., Kurpa L., Mazur O. On the parametric vibrations and meshless discretization of orthotropic plates with complex shape// The International Journal of Nonlinear Science & Numerical Simulation 2010, 11(5). – C.371–386.
  29. Lidia Kurpa, Galina Pilgun, Marco Amabili. Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments // Journal of Sound & Vibr. 306 (2007). – pp. 580-600
  30. Kurpa L., Ventsel E. Analysis of sandwich plates of arbitrary shape // Mechanics of Advanced Materials and Structures, Vol. 12, Number 1, 2006, pp. 33-41
  31. L.V.Kurpa, T.V. Shmatko, O.G. Onufrienko Research of nonlinear vibrations of orthotropic plates with a complex form // Mathematical Problems in Engineering, Vol. 2006. Р. 125-138.
  32. Application of the R-functions method to nonlinear vibrations of thin plates of arbitrary shape.Journal of sound and vibration, No 284, 2005, pp.379-392. (в соавторстве).
  33. Solution of vibration problems for shallow shells of arbitrary form by the R-functions method. Journal of sound and vibration, No 279, 2005, pp.1071-1084. (в соавторстве).
  34. Researches of nonlinear vibrations of orthotropic plates with arbitrary form by the R-functions method. Proceedings of the 2nd International Conference “Research and education”. Miscolc, 2004, pp.109-114 (в соавторстве).
  35. The R-function method for the free vibration analysis of thin orthotropic plates of arbitrary shape.Journal of sound and vibration, No 26, 2003, pp.109-122. (в соавторстве).
  36. Calculation of shallow shells of the complex form in geometrically nonlinear statement. Theoretical Foundations of Civil Engineering, lipiec 1998, p.499-504.
  37. R-functions in physically nonlinear problems of a bending of plates. Proceedings of the International Congress “Advances in Systems, Signals, Control and Computers”, Vol.2, 1998, p.7-10 (в соавторстве).
  38. The variational-structural methods for problems of an elasto-plastic bending of arbitrary shape plates. Messages of the NAS of Ukraine, 1995, No 10, pp.60-62 (в соавторстве).
  39. The variational-structural methods for problems of bending flexible shallow shells with a complex boundary of the domain. Messages of the NAS of Ukraine, 1995, No 6, pp.63-65 (в соавторстве).